高中数学1.2.1任意角的三角函数(二)
- 格式:pdf
- 大小:388.94 KB
- 文档页数:10
三角函数线及其应用课时第21.有向线段(1)定义:带有方向的线段.OMMP. (2)表示:用大写字母表示,如有向线段,2.三角函数线PPPMxM. ,过垂直于作轴,垂足为作图:①(1)α的终边与单位圆交于AxT. α0)作的终边或其反向延长线于点轴的垂线,交②过(1,(2)图示:MPOMAT,分别叫做角α、结论:有向线段(3)的正弦线、余弦线、正切线,统称为三、角函数线.思考:当角的终边落在坐标轴上时,正弦线、余弦线、正切线变得怎样?xy轴上当角的终边落在轴上时,正弦线、正切线分别变成了一个点;终边落在提示:时,余弦线变成了一个点,正切线不存在.π8π1.角和角有相同的( )77A.正弦线 B.余弦线.不能确定D .正切线C.π8πC [角和角的终边互为反向线,所以正切线相同.]772.如图,在单位圆中角α的正弦线、正切线完全正确的是( )OMAT′.正弦线′,正切线 A OMAT′.正弦线′,正切线 B MPAT,正切线C.正弦线MPAT′,正切线′D.正弦线MPAT,C,正切线为正确.C [α为第三象限角,故正弦线为]3.若角α的余弦线长度为0,则它的正弦线的长度为.y轴上,正弦线与单位圆的交点为(0,0的余弦线长度为时,α的终边落在1 [若角α1)或(0,-1),所以正弦线长度为1.]】作出下列各角的正弦线、余弦线、正切线.【例1ππ10π17.(3)-;(2);(1)364 [解]如图.MPOMAT为正切线.其中为正弦线,为余弦线,三角函数线的画法x轴的垂(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作线,得到垂足,从而得正弦线和余弦线.xA)的终边(α作正切线时,应从(1,0)点引为第一或第四象限角轴的垂线,交α(2)ATT.于点,即可得到正切线或α终边的反向延长线(α为第二或第三象限角)π5 1.作出-的正弦线、余弦线和正切线.8 ]如图:[解π5????MP-=,sin??8π5????OM-,cos=??8π5????AT-. =tan??8) >cos β,那么下列结论成立的是( 【例2】 (1)已知cos αβsin α>sin .若Aα、β是第一象限角,则α>tan β是第二象限角,则B.若α、βtanα>sin βC.若α、β是第三象限角,则sin>tan β.若α、β是第四象限角,则tan αDππ4π2π4π22π4 的大小.,tan和tan和(2)利用三角函数线比较sin和sin,coscos553533在规定象限内画观察正弦线或正、β的余弦线出α→思路点拨:(1) 切线判断大小满足cos α>cos β2π4π观察图形,(2)作出和的正弦线、余弦线和正切线→比较大小35 错误;A,故βsin <αsin 时,βcos >αcos 可知,(1)由图[ D)1(图(1)由图(2)可知,cos α>cos β时,tan α<tan β,故B错误;图(2)由图(3)可知,cos α>cos β时,sin α<sin β,C错误;图(3)由图(4)可知,cos α>cos β时,tan α>tan β,D正确.]图(4)2π2π2π4π4πMPOMATMPOM′,=′,tan=,=′cos==解:如图,(2)sin,cos,333554πAT′.=tan 5.MPMP′|,符号皆正,| 显然|′|>2π4π∴sin>sin;352π4πOMOM′|,符号皆负,∴cos>cos;|<| |352π4πATAT′|,符号皆负,∴tan<tan|>||.35(1)利用三角函数线比较大小的步骤:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.(2)利用三角函数线比较函数值大小的关键及注意点:①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向.2π2π2πabc=tan,则( =cos, 2.已知sin=,)777abcacb<..<B<<A babcac<.D<.C<<D[由如图的三角函数线知:2π2ππATMP>,因为=<,784MPOM,>所以.2π2π2π所以cos<sin<tan,777bac.]所以<<πππ3π3.设<α<,试比较角α的正弦线、余弦线和正切线的长度.如果<α<,4224上述长度关系又如何?ππMPOMAT,,余弦线为,正切线为α<时,角α的正弦线为[解] 如图所示,当<42π3πATMPOMMPOM′,′时,角α显然在长度上,的正弦线为>′,余弦线为><;当<α24ATATMPOM′.′>′>′正切线为′,显然在长度上,]探究问题[aaa (|α≥|≤1)的不等式?,sin α≤1.利用三角函数线如何解答形如sinaaa(|,sin α≤|≤1)的不等式:提示:对形如sin α≥图①yOMaay轴的垂线交单位圆于两作),过点(0画出如图①所示的单位圆;在,轴上截取=PPOPOPOPOP′上的角的集合;图中阴影部分即为和点和和′;写出终边在′,并作射线aa的角α的范围.α的角α的范围,其余部分即为满足不等式sin ≥sin 满足不等式α≤aaa|≤1)的不等式?≤α(|.利用三角函数线如何解答形如2cos α≥,cosaaa|≤1)的不等式:≤cos α对形如提示:cos ≥,α(|图②.xaaxOM轴的垂线交单位圆于两,0)=,过点画出如图②所示的单位圆;在(轴上截取作OPOPPPOPOP′上的角的集合;图中阴影部分即为满′,作射线′;写出终边在点和和和aa cos α的角α≥足不等式cos α≤的范围.的角α的范围,其余部分即为满足不等式3】利用三角函数线确定满足下列条件的角α的取值范围.【例132. αα|≤(1)cos α>-≤;(3)|sin ;(2)tan 223的写出角α确定对应确定角α的终→思路点拨:→――方程的解边所在区域取值范围[解] (1)如图,由余弦线知角α的取值范围是3π3π???kkk?Z,<α<2π2+π-∈. α???44??(2)如图,由正切线知角α的取值范围是ππ???kkk?Zπ+∈π,α≤. α???62??111(3)由|sin α|≤,得-≤sin α≤.222如图,由正弦线知角α的取值范围是ππ???kkk?∈,π+Zπ-α≤≤.α???66??2”,求α的取值范围.的不等式改为“cos α< 1.将本例(1)2[解]如图,由余弦线知角α的取值范围是π7π???kkk?Z<2,π2+π+∈<α. α???44??132.将本例(3)的不等式改为“-≤sin θ<”,求α的取值范围. 22π117π3π2π????-=-,sin且-≤sin θ=]由三角函数线可知sin=sin,sin=[解??62633223,故θ的取值集合是< 2ππ2π7π????kkkk????k+22π2,+π+π,2π- (.∈Z)∪????6633yx-1的定义域..利用本例的方法,求函数=2sin 3x-1≥0,2sin ]要使函数有意义,只需解[1x≥.即sin 2π5π??kk??k++,2π2π∈Z). (由正弦线可知定义域为??66利用单位圆中的三角函数线解不等式的方法(1)首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角α满足条件的终边的位置.(2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.写角的范围时,抓住边界值,然后再注意角的范围的写法要求.(3)在一定范围内先找出符合条件的角,再用终边相同的角的表达式写出符合条件的提醒:所有角的集合..本节课的重点是三角函数线的画法,以及利用三角函数线解简单的不等式及比较大小1 问题,难点是对三角函数线概念的理解. .本节课应重点掌握三角函数线的以下三个问题2 ;三角函数线的画法,见类型1(1) ;利用三角函数线比较大小,见类型2(2)3.利用三角函数线解简单不等式,见类型(3).三角函数线是三角函数的几何表示,它们都是有向线段,线段的方向表示三角函数值3的正负,与坐标轴同向为正,异向为负,线段的长度是三角函数的绝对值,这是本节重中之 重. .利用三角函数线解三角不等式的方法41.下列判断中错误的是( )A .α一定时,单位圆中的正弦线一定B .在单位圆中,有相同正弦线的角相等C .α和α+π有相同的正切线D .具有相同正切线的两个角的终边在同一条直线上π5πB [A正确;B 错误,如与有相同正弦线;C 正确,因为α与π+α的终边互为反66向延长线;D 正确.]πOMMP 分别是角α=的余弦线和正弦线,那么下列结论正确的是( 2.如果, )5MPOMMPOM <0<.B0<<.A .MPOMMPOM 0>>>>0 DC ..ππOM 的余弦线和正弦线满足α=[角β=的余弦线与正弦线相等,结合图象可知角D 54MP 0.]>>baba,则cos 4 ,3.若.=sin 4,的大小关系为=ππ35ba<,<< [因为424 ,如图4弧度角的正弦线和余弦线()画出ba.]<cos 4,即观察可知sin 4<的集合.α的终边范围,并由此写出角α.在单位圆中画出适合下列条件的角413. α≤-(1)sin α;≥(2)cos 223yOBABOA=(1)作直线[α的终边在如图①所交单位圆于解,两点,连接],,则角2π2???kkk?∈Zπ,≤π≤απ+2+2.α)含边界,角的取值集合为α(示的阴影区域内???33??图①图②1xCDOCOD,则角α=-(2)作直线交单位圆于,两点,连接,的终边在如图②所示的2.24???kkk?∈,Zπ≤α≤+2π2π+π.阴影区域内(α的取值集合为,角含边界)α???33??。
第二课时三角函数线及其应用[提出问题]在平面直角坐标系中,任意角α的终边与单位圆交于点P,过P作PM⊥x轴,过A(1,0)作AT⊥x轴,交终边或其反向延长线于点T.问题1:根据上面的叙述画出α分别取135°,30°,225°和-60°时的图形.提示:问题2:由上面的图形结合三角函数定义,可以得到sin α,cos α,tan α与MP,OM,AT的关系吗?提示:可以,|sin α|=|MP|,|cos α|=|OM|,|tan α|=|AT|.[导入新知]1.有向线段带有方向的线段叫做有向线段.2.三角函数线三角函数线的四个注意点(1)位置:三条有向线段中有两条在单位圆内,一条在单位圆外;(2)方向:正弦线由垂足指向α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与α的终边(或其延长线)的交点;(3)正负:三条有向线段中与x 轴或y 轴同向的为正值,与x 轴或y 轴反向的为负值; (4)书写:有向线段的始点字母在前,终点字母在后.[例1] 作出3π4的正弦线、余弦线和正切线.[解] 角3π4的终边(如图)与单位圆的交点为P .作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT ,与3π4的终边的反向延长线交于点T ,则3π4的正弦线为MP ,余弦线为OM ,正切线为AT .[类题通法] 三角函数线的画法(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.(2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT .[活学活用]作出-9π4的正弦线、余弦线和正切线.解:如图所示,-9π4的正弦线为MP ,余弦线为OM ,正切线为AT .[例2] 分别比较sin 3与sin 5;cos 3与cos 5;tan 3与tan π5的大小.[解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边作2π3的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin2π3=MP ,cos 2π3=OM ,tan 2π3=AT .同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan4π5=AT ′.由图形可知,MP >M ′P ′,符号相同,则sin2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5;AT <AT ′,符号相同,则tan 2π3<tan 4π5.[类题通法]利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.[活学活用] 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?解:如图所示,当π4<α<π2时,角α的正弦线为MP ,余弦线为OM ,正切线为AT ,显然在长度上,AT >MP >OM ;当π2<α<3π4时,角α的正弦线为M ′P ′,余弦线为OM ′,正切线为AT ′,显然在长度上,AT ′>M ′P ′>OM ′.[例3] (1)sin α<-12;(2)cos α>32.[解] (1)如图①,过点⎝ ⎛⎭⎪⎫0,-12作x 轴的平行线交单位圆于P ,P ′两点,则sin ∠xOP=sin ∠xOP ′=-12,∠xOP =11π6,∠xOP ′=7π6,故α的范围是⎩⎨⎧α⎪⎪⎪⎭⎬⎫7π6+2k π<α<11π6+2k π,k ∈Z .(2)如图②,过点⎝⎛⎭⎪⎫32,0作x 轴的垂线与单位圆交于P ,P ′两点,则cos ∠xOP =cos ∠xOP ′=32,∠xOP =π6,∠xOP ′=-π6, 故α的范围是⎩⎨⎧α⎪⎪⎪⎭⎬⎫-π6+2k π<α<π6+2k π,k ∈Z .[类题通法]利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.[活学活用]利用三角函数线求满足tan α≥33的角α的范围. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪k ²π+π6≤α<k ²π+π2,k ∈Z2.三角函数线的概念[典例] 已知角α的正弦线是长度为单位长度的有向线段,那么角α的终边在( ) A .y 轴的非负半轴上 B .y 轴的非正半轴上 C .x 轴上 D .y 轴上[解析] 由题意可知,sin α=±1,故角α的终边在y 轴上. [答案] D [易错防范]1.本题易错误地认为正弦线是长度为单位长度的有向线段时,sin α=1,从而误选A. 2.若搞错正弦线和余弦线的位置,则易错选C.3.解决此类问题要正确理解有向线段的概念,既要把握好有向线段是带有方向的线段,有正也有负,同时也要把握准正弦线和余弦线的位置.[成功破障]已知角α的正切线是长度为单位长度的有向线段,那么角α的终边在( ) A .直线y =x 上 B .直线y =-x 上C .直线y =x 上或直线y =-x 上D .x 轴上或y 轴上 答案:C[随堂即时演练]1.已知角α的正弦线和余弦线是符号相反、长度相等的有向线段,则α的终边在( ) A .第一象限的角平分线上B .第四象限的角平分线上C .第二、四象限的角平分线上D .第一、三象限的角平分线上 答案:C2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论中正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM答案:D3.若角α的余弦线长度为0,则它的正弦线的长度为________. 答案:14.用三角函数线比较sin 1与cos 1的大小,结果是________. 答案:sin 1>cos 15.若θ∈⎝⎛⎭⎪⎫0,π2,利用单位圆证明:sin θ+cos θ>1.证明:如图所示,设角θ的终边交单位圆于点P ,作PM ⊥x 轴于点M .因为sin θ=MP =|MP |,cos θ=OM =|OM |,所以sin θ+cos θ=|MP |+|OM |>|OP |,而|OP |=1,所以sin θ+cos θ>1.[课时达标检测]一、选择题1.角π5和角6π5有相同的( )A .正弦线B .余弦线C .正切线D .不能确定答案:C2.已知α的余弦线是单位长度的有向线段,那么α的终边在( ) A .x 轴上 B .y 轴上 C .直线y =x 上 D .以上都不对 答案:A3.若π4<θ<π2,则sin θ,cos θ,tan θ的大小关系是( )A .tan θ<cos θ<sin θB .sin θ<tan θ<cos θC .cos θ<tan θ<sin θD .cos θ<sin θ<tan θ答案:D4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <c C .c <a <b D .a <c <b答案:C5.使sin x ≤cos x 成立的x 的一个变化区间是( )A.⎣⎢⎡⎦⎥⎤-3π4,π4B.⎣⎢⎡⎦⎥⎤-π2,π2C.⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]答案:A 二、填空题6.利用单位圆,可得满足sin α<22,且α∈(0,π)的α的集合为________. 答案:⎝ ⎛⎭⎪⎫0,π4∪⎝ ⎛⎭⎪⎫3π4,π 7.若0<α<2π,且sin α<32,cos α>12.利用三角函数线,得到α的取值范围是________. 答案:⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π8.若θ∈⎝⎛⎭⎪⎫3π4,3π2,则sin θ的取值范围是________.答案:⎝⎛⎭⎪⎫-1,22 三、解答题9.试作出角α=7π6的正弦线、余弦线和正切线.试作出角α=7π6的正弦线、余弦线和正切线.解:如图:α=7π6的余弦线、正弦线和正切线分别为OM ,MP 和AT .10.利用单位圆中的三角函数线,求满足⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0的x 的取值范围.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,得⎩⎪⎨⎪⎧sin x ≥0,cos x >12.如图所示,由三角函数线可得 ⎩⎪⎨⎪⎧2k π≤x ≤2k π+π k ∈Z ,2k π-π3<x <2k π+π3 k ∈Z .此交集为图形中的阴影重叠部分,即2k π≤x <2k π+π3(k ∈Z).故x 的取值范围为⎩⎨⎧⎭⎬⎫x |2k π≤x <2k π+π3,k ∈Z .11.试利用单位圆中的三角函数线证明:当0<α<π2时,sinα<α<tan α.证明:如图,单位圆与α的终边OP 相交于P 点,过P 作PM ⊥x 轴,垂足为M ,连接AP ,过单位圆与x 轴正半轴的交点A 作AT ⊥x 轴交OP 于点T ,则sin α=MP ,α=AP ,tan α=AT ,由S 扇形OAP <S △OAT,即12OA ²AP <12OA ²AT ,所以AP <AT .又MP <PA <AP ,因此MP <AP <AT ,即sin α<α<tanα.。
课题:任意角的三角函数(第二课时)一、教材分析●教学内容《任意角的三角函数》是普通高中课程标准实验教科书(必修4)第一章《三角函数》第二节的内容,课程标准安排本节内容授课时间为三课时,本节课作为第二课时.三角函数是中学数学的重要内容之一,而三角函数线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出三角函数的相关公式,求解三角函数不等式,探索三角函数的图象和性质,可以说,三角函数线是研究三角函数的有利工具.●地位与作用本小节给出了任意角的三角函数的代数定义和几何定义,这里用一个课时学习其几何定义-----三角函数线.三角函数线是三角函数定义的又一种表现形式,把三角函数的代数定义和几何定义有机地结合起来,又为继续学习三角函数的各种性质,如定义域、值域、单调性、最值等提供了另一种工具,具有承上启下的作用.由于本节内容是概念性的基础内容,所以其重要性不言而喻.二、学情分析就学生而言,已经学习了三角函数的定义,三角函数在各象限的符号、诱导公式一和单位圆的相关知识,对有向线段的相关知识也有所认知,已经具备了对三角函数线探究的能力.三、目标分析依据课程标准的要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:●知识目标①理解三角函数线的定义, 理解“有向线段”的定义;②掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值;③能利用三角函数线解决一些简单的三角函数问题.●能力目标借助多媒体演示让学生经历概念的形成过程,提高学生观察、发现、类比、猜想和探索的能力;并逐步形成自觉运用几何方法解决代数问题的能力,提高学生抽象概括、形象表述等数学核心素养.●情感、态度与价值观激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长.通过数形结合思想的应用,体会到由数转化为形所带来的美感.四、教学重点、难点●重点:三角函数线的作法及其简单应用.●难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数分别用它们的几何形式表示出来.五、教学方法与教学手段1.教法选择:“设置问题,探索辨析,归纳应用,延伸拓展”—问题串导引教学.2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展.3.教学手段:引导学生学会用三角函数的几何定义解决三角代数问题的方法,学会运用数形结合思想解决三角问题.六、教学过程教学环节教学内容学生活动设计意图复习引入复习引入:1.三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sinα,即sinα=y;(2)x叫做α的余弦,记作cosα,即cosα=x;(3)叫做α的正切,记作tanα,即学生回答巩固上节课的学习成果;为本节课的学习做好铺垫.tanα=(x≠0)2.三角函数在各象限的符号:yx oαsin yxoαcosyxoαtan+--+--++-+-+设置疑问点明主题以前我们学习指数函数和对数函数时,都是先学习函数的定义,然后画出图象,利用图象来研究函数的性质.三角函数是特殊的函数,当然也是一样的探讨顺序,当我们了解了三角函数的定义后,如何才能精确地画出三角函数的图象呢?那就必须知道三角函数定义的几何表示----三角函数线.学生思考用问题情境引出课题,可以增强学生的好奇心,激发学生的求知欲.思考1:若角α为第一象限角,能否借助单位圆用几何图形表示角α的正弦值?学生回实验探索辨析研讨利用定义y=αsin.取角α的终边与单位圆的交点为P,过点P作x轴的垂线,设垂足为M,则sin y MPα==.思考2:若角α为第二、三、四象限角,能否借助单位圆用几何图形表示角α的正弦值?(动画演示)由图可知sin y MPα==±,那么能否几何图形表示,这条线段既能表示角α的正弦值的数值,又能体现其在各象限的符号?于是,有向线段MP叫做角α的正弦线.即αsin=MP.角α的终边与x轴重合时,正弦线答动画演示学生观察概念引入,指导学生学会用三角函数的几何定义解决三角函数的代数问题的方法,引导学生建立有向线段(的数量)与三角函数值之间的对应.实验探索辨析研讨变成一个点,此时正弦值为0.思考3:哪条有向线段能表示角α的余弦值?cos x OMα==.有向线段OM叫做角α的余弦线.角α的终边与y轴重合时,余弦线变成一个点,此时余弦值为0 .思考4:若角α为第一象限角,用哪条有向线段表示角α的正切值?ATxy==αtan.学生思考学生回答学生回答通过类比正弦线、快速的寻找出余弦函数值的几何形式--余弦线.实验探索辨析研讨思考5:若角α为第四象限角,此时用哪条有向线段表示角α的正切值?ATxy==αtan.有向线段AT叫做角α的正切线.思考6:当角α的终边在坐标轴上,正切线又如何?当角α的终边与x轴重合时,正切线变成一个点,tanα=0;当角α的终边与y轴重合时,正切线不存在,tanα不存在.教师引导学生回答学生回答七、教学反思关于三角函数线的教学,曾有过两个设想:一是先交待三种三角函数线,再讲应用;另一个设想是,先指出正弦线、余弦线及它们的应用,然后再引入正切线及三线综合运用.本教案选择了前者,原因是利于学生类比思维的培养.我希望把三角函数线的发现过程展现给学生,让学生去猜、去找三角函数的几何形式,而不是教师包办代替.数形结合思想是中学数学中的重要数学思想,在教学中应不失时机地加以渗透.数形结合思想表现在由数到形和由形到数两方面.将任意角的正弦、余弦、正切值分别用有向线段表示出来体现了由数到形的转化;借助三角函数线求解三角函数方程和不等式又发挥了由形到数的巨大作用.通过三角函数线的学习,使学生了解数形结合的“形”不单有函数图象,还有其他的表现形式.可以说有了三角函数线,有关三角函数的问题都能解决,至于在解决有关三角函数的问题时用函数图象还是用三角函数线,则要具体情况具体分析,如证明等式sin2α+cos2α=1,研究同一个角的正余弦值的大小关系,都以三角函数线为好,而函数的周期性等,用图像更为直观.本节课还是有许多的不足之处,比如:没能大胆放开手让学生进行自主活动,学生的探究活动还是过少,如果三角函数线的寻找过程能让学生分组讨论得到,本节课将会更加充实.。