信号控制分类方法
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
毕业设计中文摘要目录1 前言 (1)2 城市轨道交通信号系统 (1)2.1 信号定义与实现意义 (1)2.2 信号的基本分类 (2)2.3 信号机与行车标志种类 (2)2.3.1 信号机的基本种类 (3)2.3.2 行车标志 (3)2.3.3 信号标志 (4)2.4 视觉信号的意义 (5)2.5 手信号的显示方式和意义 (6)2.6 听觉信号 (9)3 信号系统的基础 (11)3.1 联锁的定义 (11)3.2 进路与道岔 (11)3.3苏州地铁信号系统 (13)3.4 车场线信号 (13)4 信号控制系统在城市轨道交通中的应用 (13)4.1 城市轨道交通中使用的信号系统 (13)4.2 城市轨道交通移动闭塞信号系统的通信实现方式 (15)4.3 信号控制方式及列车运行模式信号控制方式 (16)4.3.1 ATP列车自动保护系统 (16)4.3.2 ATO列车自动驾驶系统 (16)4.3.4 SICAS微机联锁系统 (17)结论 (19)致谢 (20)参考文献 (21)1 前言近年来,在改革开放政策的指导下,我国国民经济发展十分迅速,为了城市轨道运输能力与国民经济发展相适应。
就要求足够数量、质量良好的车辆投入到生产运输当中去,才能满足和适应国民经济发展的需要。
所以信号控制系统作为最重要的一部分,关乎到效益的今天,不得不重视信号控制系统的作用。
稳定而安全是最重要的,信号系统在快速发展的同时,安全这一块也不能忽视,总体来说信号系统还是可以确保列车的安全可靠,但再紧密的机器也会有失误。
本文从信号系统的安全可靠性分析,从细小的组成到整体的应用,探讨了信号控制系统。
首先介绍了信号系统的组成,信号机、联锁、进路、信号标志等。
从而介绍信号控制系统在轨道交通中的应用,三种闭塞的分类,固定闭塞,准移动闭塞,移动闭塞,更加详细介绍了当今通用的无线通信移动闭塞系统。
2 城市轨道交通信号系统2.1 信号定义与实现意义定义:所谓信号是指示列车运行与调车工作开展的命令,它传达指挥者的意图,指示列车运行条件,表示有关行车设备的位置和状态等,是行车指挥的一种形式。
一、控制系统各种分类的方法(l)如果按被控变量可划分为:温度、压力、液位、流量和成分等控制系统。
这是一种常见的分类。
(2)如果按被控系统中控制仪表及装置所用的动力和传递信号的介质可划分为:气动、电动、液动、机械式等控制系统。
如图l-4所示就是一个机械式液位控制系统;图1-5所示是一个电动式液位控制系统;如果图l-5中的LT和LC用气动仪表代替,阀门也采用气动的,就构成气动控制系统。
(3)如果按被控制对象可划分为:流体输送设备、传热设备、精馏塔和化学反应器控制系统等。
(4)按调节器的控制规律可划分为:比例控制、积分控制、微分控制、比例积分控制、比例微分控制、比例积分微分控制等。
(5)按系统功能与结构可划分为:单回路简单控制系统;串级、比值、选择性、分程、前馈和均匀等常规复杂控制系统;解耦、预测、推断和自适应等先进控制系统和程序控制系统等。
(6)按结定值的变化情况可划分为:定值控制系统、随动控制系统和程序控制系统。
二、PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
1.比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
2.积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
1、“交通管理”是对道路上的行车、停车、行人和道路使用,执行交通法规的“执法管理”,并用交通工程技术措施对交通运行状况进行改善的“交通治理”的一个统称。
交通控制是依靠交通警或采用交通信号控制设施,随交通变化特性来指挥车辆和行人的通行。
2、交通管理与控制措施分类:交通执法管理:具有法律意义必须强制执行的管理措施;交通治理:不具有法律意义3、交通管理与控制的原则与方法以人为本(保护弱者)、公平为重(公交优先)、因势利导(科学管理)、环境友好(持续发展)、交通分离(安全有序)、交通连续(方便快捷)、流量均分(时空利用)、总量削减(缓解拥堵)、交通信息(信息为重)、“四E”科学(减少事故)4、交通引起的问题:土地问题,安全问题,能源问题,环境问题5、交通管理的演变与发展:第一阶段:传统交通管理(保障交通安全)、第二阶段:交通系统管理(提高现代道路效率为主)、第三阶段:交通需求管理(降低需求量,以适应已有道路设施的容纳程度)、第四阶段:智能交通管理(加以科学技术,提高交通系统利用率与服务水平,保障交通需求)6、交通管理体制:是执行国家法律法规所授予的交通管理权限的组织机构设置及其职能分工合作。
城市交通管理体制:是执行国家法律、法规所授予的交通管理权限的组织机构设置及其职能分工与合作。
健全、合理、高效的交通管理体制,是达到交通管理目的最重要的支撑保证,是达到交通管理目的最重要的支撑保证,是达到交通管理目的最重要的支撑保证,是达到交通管理目的最重要的支撑保证条件之一。
7、交通管理分类:交通行政管理、交通执法管理、交通运行管理8、城市交通管理的特点:管理的有限性和影响的扩展性,机非混合交通,对机动车发展准备不足,出行方式、出行结构和出行分布不断变化,中心与衔接治理相结合,常规治理和利用ITS相结合,多层次化的趋向9、城市交通管理规划的内容:现状问题和需求分析、制定发展目标和策略、建立长效管理机制、制定近期改善方案、拟定实施行动计划10、交通管理规划的编制:组织机构、编制原则、流程、保证严肃性11,交通管理的目的:保障安全,疏导交通,保持交通通畅,减少道路拥堵,降低道路上的交通总量,提高交通效率。
交通信号控制的基础理论知识第2章交通信号控制的基础理论知识2.1交通控制的分类城市交通控制有多种⽅式,其分类也有很多种。
从不同的⾓度看有不同的划分⽅式。
1、从控制策略的⾓度可分为三种类型(1)定时控制:交通信号按事先设定的配时⽅案运⾏,配时的依据是交通量的历史数据。
⼀天内只⽤⼀个配时⽅案的称为单时段定时控制,⼀天内不同时段选⽤不同配时⽅案的称为多时段定时控制。
根据历史交通数据确定其最优化配时的⽅法webster(1958),Bollis(1960),Miller(1963),Blunden(1964),Allsop(1971)等⼈的著作中已有详述。
我国杨佩昆等学者也有这⽅⾯的研究成果。
现在最常⽤的信号配时⽅法有:韦尔伯特法、临界车道法、停车线法、冲突点法。
定时控制⽅法是⽬前使⽤最⼴的⼀种交通控制⽅式,它⽐较适应于车流量规律变化、车流量较⼤(甚⾄接近于饱和状态)的路⼝。
但由于其配时⽅案根据交通调查的历史数据得到,⽽且⼀经确定就维持不变,直到下次重新调整。
很显然,这种⽅式不能适应交通流的随机变化,因⽽其控制效果较差。
(2)感应控制:感应信号控制没有固定的周期,他的⼯作原理为在感应信号控制的进⼝,均设有车辆检测器,当某⼀信号相位开始启亮绿灯,感应信号控制器内预先设置⼀个“初始绿灯时间”。
到初始绿灯时间结束时,增加⼀个预置的时间间隔,在此时间间隔内若没有后续车辆到达,则⽴即更换相位;若检测到有后续车辆到达,则每检测到⼀辆车,就从检测到车辆的时刻起,绿灯相位延长⼀个预置的“单位绿灯延长时间”。
绿灯⼀直可以延长到⼀个预置的“最⼤绿灯时间”。
当相位绿灯时间延长到最⼤值时,即使检测器仍然检测到有来车,也要中断此相位的通⾏权,转换信号相位。
感应式信号控制根据检测器设置的不同⼜可以分为半感应控制和全感应控制。
只在交叉⼝部分进道⼝上设置检测器的感应控制称为半感应控制,在交叉⼝全部进道⼝上都设置检测器的称为全感应控制。
电梯控制的分类
电梯控制主要分为以下几类:
1.电梯信号控制
电梯信号控制是指电梯的控制器根据楼层和呼叫信号来控制电梯的运行。
例如,当有人按下楼层的按钮时,控制器会接收到这个信号,然后根据按下楼层的位置来控制电梯的运行方向和停靠楼层。
2.电梯集选控制
集选控制是一种比较常见的电梯控制方式,它是指在电梯运行过程中,能够同时对多个楼层的呼叫信号进行处理和响应。
这种控制方式适用于高层建筑,可以满足大量乘客的需求。
3.电梯并联控制
并联控制是指将多台电梯的控制线路并联在一起,使得这些电梯可以同时运行,并且可以根据需要进行调度和分配。
这种控制方式适用于大型商场、车站等人员密集的场所。
4.电梯群控控制
群控控制是指通过中央控制器来控制多台电梯的运行。
这种控制方式可以有效地提高电梯的运行效率,并且可以根据大楼内的客流情况来进行智能调度。
5.电梯特殊控制
特殊控制是指在电梯运行过程中,根据特殊需求来进行控制。
例如,当需要搬运大型货物或者残障人士乘坐电梯时,就需要通过特殊控制来实现对电梯的特殊操作。
6.电梯远程控制
远程控制是指通过远程设备来对电梯进行控制。
例如,当有紧急情况发生时,可以通过远程设备来控制电梯的运行,从而快速地疏散乘客。
7.电梯安全控制
安全控制是指通过一系列安全措施来保证电梯的安全运行。
例如,当电梯出现故障或者异常情况时,安全控制系统会自动采取措施来保护乘客的安全。
8.电梯自动控制
自动控制是指通过自动化设备来对电梯进行控制。
这种控制方式可以大大提高电梯的运行效率,并且可以减少人工操作失误的可能性。
BRT 交叉口优先通行控制方法分为空间优先与时间优先,空间优先不属于本文的研究范畴,本文研究BRT 的时间优先控制方法。
目前,BRT 的优先通行方法可分为三类:被动优先控制,主动优先控制和实时优先控制。
被动优先:被动优先是基于固定配时的非感应式BRT 信号优先,该方法比较实用于BRT 发车频率较高,交通量较小且流量稳定的线路。
但是,该方法的鲁棒性较差,易受交通环境变化等的影响
主动优先:动态的调整信号相位降低了被动优先准确性差、信号损失时间过多的缺点,具有更强的适应性。
但由于车辆检测设备无法对BRT 车辆区别对待,主动优先控制系统尚不能对公交车辆与社会车辆的运行效益进行合理平衡与协调。
主动优先控制策略的这些缺陷驱动了实时优先策略研究的开展。
实时优先:不仅能够对BRT 车辆进行优先通行控制,还能够对整个交叉口的运行状态进行检测,有条件的给予BRT 车辆优先通行。
由于该方法能够自适应的调整交叉口信号配时,因此使用到的设备较多、算法复杂、对主动优先控制中遇到的问题,如公交车辆与社会车辆效益平衡、多申请排序等展开了深入研究。