2016辽宁医药职业学院单招数学模拟试题(附答案解析)
- 格式:doc
- 大小:270.00 KB
- 文档页数:13
考单招——上高职单招网2016辽宁水利职业学院单招数学模拟试题(附答案解析) 一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把正确答案的字母填在题后的括号内)1.设集合A和集合B都是实数集R,映身f:A→B把集合A中的元素x映射到集合B中的元素lg(x2+1),则在映射f下,象1的原象所成的集合是()A.{-1,1} B.{3,0} C.{3,-3} D.{3} 2.如果复数z适合|z+2+2i|=|z|,那么|z-1+i|的最小值是()A.4B.C.2D.3.若函数为增函数,那么的图象是()A. B. C.D.4.展开式的各项系数和大于8且小于32,则展开式中系数最大的项是()考单招——上高职单招网A.6B.C.D.5.(理)直线关于直线对称的直线的极坐标方程是()A. B.C.D.(文)把直线沿y轴正方向平移1个单位,再关于原点对称后,所得直线的方程是()A.B.C. D.6.设有如下三个命题:甲:相交的直线l,m都在平面α内,并且都不在平面β内;乙:直线l,m中至少有一条与平面β相交;丙:平面α与平面β相交 .当甲成立时()A.乙是丙的充分而不必要条件; B.乙是丙的必要而不充分条件C.乙是丙的充分且必要条件D.乙既不是丙的充分条件又不是丙的必要条件.7.△ABC的内角A满足则A的取值范围是()A.B.C.D.8.直线、的倾斜角的取值范围是()A.B.C.D.9.在轴截面为直角三角形的圆锥内有一个内接圆柱,已知此圆柱的全面积等于该圆锥的侧面积,则圆锥顶点到圆柱上底面的距离是圆锥母线长的()A.B. C. D.考单招——上高职单招网10.设S n是等差数列{a n}的前n项和,已知,则n 等于()A.15 B.16 C.17 D.1811.已知双曲线,给出以下四个命题:(1)双曲线C的渐近线方程是;(2)直线与双曲线C只有一个交点;(3)将双曲线向左平移1个单位,并向上平移2个单位可得到双曲线C;(4)双曲线C的一个焦点到一条渐近线的距离为3.其中所有正确命题的序号是()A.(1)(4)B.(2)(4)C.(2)(3)D.(3)(4)12.若直线、)始终平分圆的周长,则a、b的取值范围是()A.B.C.D.第Ⅱ卷 (非选择题)二、填空题:(本大题共4小题,每小题4分,共16分。
考单招——上高职单招网2016辽宁职业学院单招数学模拟试题(附答案解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线,则它的焦点坐标是A .B .C .D .2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y = -x 2,值域为{-1,-9}的“同族函数”共有A .8个B .9个C .10个D .12个3.下表是某班数学单元测试的成绩单:学号与其分数相对应.下列说法:①这种对应是从集合A 到集合B 的映射;②从集合A 到集合B 的对应是函数;③数学成绩按学号的顺序排列:135 ,128 ,135 ,…,108 ,94 ,97组成一个数列.以上说法正确的是A . ①②B .①③C .②③D .①②③4.已知x =a +a -21(a >2),y =(21)(b <0) ,则x ,y 之间的大小关系是A . x >yB . x <yC . x =yD .不能确定5.已知A 是三角形的内角,且sin A +cos A =,则cos2A 等于考单招——上高职单招网A .B .-C .D .-6.已知二面角的大小为,和是两条异面直线,则在下列四个条件中,能使和所成的角为的是A . ∥,∥B .∥, C . D . ,∥7.已知函数反函数为,若,则最小值为A . 1B .C .D .8. 下图是某企业2000年至2003年四年来关于生产销售的一张统计图表 (注: 利润=销售额-生产成本). 对这四年有以下几种说法:(1) 该企业的利润逐年提高; (2) 2000年—2001年该企业销售额增长率最快; (3) 2001年—2002年该企业生产成本增长率最快;(4) 2002年—2003年该企业利润增长幅度比2000年—2001年利润增长幅度大. 其中说法正确的是A.(1)(2)(3)B.(1)(3)(4)C.(1)(2)(4)D.(2)(3)(4)9.在圆周上有10个等分点,以这些点为顶点,每三个点可以构成一个三角形,如果随机选择三个点,恰好构成直角三角形的概率是A .41B .31C .21D .51考单招——上高职单招网10.抛物线上点A处的切线与直线的夹角为,则点A的坐标为A.(–1,1) B. C.(1,1) D. (–1,1)或11.设函数的图象如右图所示,则导函数的图像可能为考单招——上高职单招网A .B .C .D .12.有限数列A =(a 1,a 2,…,a n ),为其前项和,定义n S1+S2+…+Sn为A 的“凯森和”;如有2004项的数列(a 1,a 2,…,a 2004)的“凯森和”为2005,则有2005项的数列(1,a 1,a 2,…,a 2004)的“凯森和”为 ( )A .2004B .2005C .2006D .2008二、填空题 :本大题共4小题,每小题4分,共16分.13.圆x 2+y 2=2上到直线x -y -4=0距离最近的点的坐标是_________。
考单招——上高职单招网2016辽宁装备制造职业技术学院单招数学模拟试题(附答案解析)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.(理)全集设为U,P、S、T均为U的子集,若()=()则()A.B.P=T=SC.T=U D.=T(文)设集合,,若U=R,且,则实数m的取值范围是()A.m<2B.m≥2C.m≤2D.m≤2或m≤-42.(理)复数()A.B.C.D.(文)点M(8,-10),按a平移后的对应点的坐标是(-7,4),则a=()A.(1,-6)B.(-15,14)C.(-15,-14)D.(15,-14)3.已知数列前n项和为,则的值是()A.13B.-76 C.46D.76考单招——上高职单招网4.若函数的递减区间为(,),则a的取值范围是()A.a>0B.-1<a<0C.a>1D.0<a<15.与命题“若则”的等价的命题是()A.若,则B.若,则C.若,则D.若,则6.(理)在正方体中,M,N分别为棱和之中点,则sin (,)的值为()A.B.C.D.(文)已知三棱锥S-ABC中,SA,SB,SC两两互相垂直,底面ABC上一点P到三个面SAB,SAC,SBC的距离分别为,1,,则PS的长度为()A.9B.C.D.37.在含有30个个体的总体中,抽取一个容量为5的样本,则个体a被抽到的概率为()A.B.C.D.8.(理)已知抛物线C:与经过A(0,1),B(2,3)两点的线段AB有公共点,则m的取值范围是()A.,[3,B.[3,C.,D.[-1,3]考单招——上高职单招网(文)设,则函数的图像在x轴上方的充要条件是()A.-1<x<1B.x<-1或x>1C.x<1D.-1<x<1或x<-19.若直线y=kx+2与双曲线的右支交于不同的两点,则k的取值范围是()A.,B.,C.,D.,10.a,b,c(0,+∞)且表示线段长度,则a,b,c能构成锐角三角形的充要条件是()A.B.C.D.11.今有命题p、q,若命题S为“p且q”则“或”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(理)函数的值域是()A.[1,2]B.[0,2]C.(0,D.,(文)函数与图像关于直线x-y=0对称,则的单调增区间是()A.(0,2)B.(-2,0)考单招——上高职单招网C.(0,+∞)D.(-∞,0)二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.等比数列的前n项和为,且某连续三项正好为等差数列中的第1,5,6项,则________.14.若,则k=________.15.有30个顶点的凸多面体,它的各面多边形内角总和是________.16.长为l0<l<1的线段AB的两个端点在抛物线上滑动,则线段AB中点M到x轴距离的最小值是________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(12分)从一批含有13只正品,2只次品的产品中不放回地抽取3次,每次抽取一只,设抽得次品数为.(1)求的分布列;(2)求E(5-1).18.(12分)如图,在正三棱柱中,M,N分别为,BC之中点.考单招——上高职单招网(1)试求,使.(2)在(1)条件下,求二面角的大小.19.(12分)某森林出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.问应该派多少消防队员前去救火,才能使总损失最少?20.(12分)线段,BC中点为M,点A与B,C两点的距离之和为6,设,.(1)求的函数表达式及函数的定义域;(2)(理)设,试求d的取值范围;(文)求y的取值范围.21.(12分)定义在(-1,1)上的函数,(i)对任意x,(-1,1)都有:;(ii)当(-1,0)时,,回答下列问题.(1)判断在(-1,1)上的奇偶性,并说明理由.(2)判断函数在(0,1)上的单调性,并说明理由.考单招——上高职单招网(3)(理)若,试求的值.22.(14分)(理)已知O为△ABC所在平面外一点,且a,b,c,OA,OB,OC两两互相垂直,H为△ABC的垂心,试用a,b,c表示.(文)直线l∶y=ax+1与双曲线C∶相交于A,B两点.(1)a为何值时,以AB为直径的圆过原点;(2)是否存在这样的实数a,使A,B关于直线x-2y=0对称,若存在,求a的值,若不存在,说明理由.参考答案1.(理)A(文)B2.(理)B(文)B3.B4.A5.D6.(理)B(文)D7.B8.(理)C(文)D9.D10.D11.C12.(理)A(文)A13.1或014.15.10080°16.17.解析:(1)的分布如下(2)由(1)知.考单招——上高职单招网∴.18.解析:(1)以点为坐标原点,所在直线为x轴,所在直线为z 轴,建立空间直角坐标系,设,(a,(0,+∞).∵三棱柱为正三棱柱,则,B,,C的坐标分别为:(b,0,0),,,,,,,(0,0,a).∴,,,,,.(2)在(1)条件下,不妨设b=2,则,又A,M,N坐标分别为(b,0,a),(,,0),(,,a).∴,.∴同理.∴△与△均为以为底边的等腰三角形,取中点为P,则,为二面角的平面角,而点P坐标为(1,0,),∴,,.同理,,.∴.考单招——上高职单招网∴∠NPM=90°二面角的大小等于90°.19.解析:设派x名消防员前去救火,用t分钟将火扑灭,总损失为y,则y=灭火劳务津贴+车辆、器械装备费+森林损失费=125tx+100x+60(500+100t)===当且仅当,即x=27时,y有最小值36450.故应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.20.解析:(1)当A、B、C三点不共线时,由三角形中线性质知;当A,B,C三点共线时,由在线段BC外侧,由或x=5,因此,当x=1或x=5时,有,同时也满足:.当A、B、C不共线时,考单招——上高职单招网定义域为[1,5].(2)(理)∵.∴d=y+x-1=.令t=x-3,由,,两边对t求导得:关于t在[-2,2]上单调增.∴当t=2时,=3,此时x=1.当t=2时,=7.此时x=5.故d的取值范围为[3,7].(文)由且,,∴当x=3时,.当x=1或5时,.∴y的取值范围为[,3].21.解析:(1)令,令y=-x,则在(-1,1)上是奇函数.(2)设,则,而,.即当时,.∴f(x)在(0,1)上单调递减.(3)(理)由于,考单招——上高职单招网,,∴.22.解析:(理)由平面,连AH并延长并BC于M.则由H为△ABC的垂心.∴AM⊥BC.于是BC⊥平面OAH OH⊥BC.同理可证:平面ABC.又,,是空间中三个不共面的向量,由向量基本定理知,存在三个实数,,使得=a+b+c.由且==0b=c,同理.∴.①又AH⊥OH,∴=0②联立①及②,得③又由①,得,,,代入③得:,,,考单招——上高职单招网其中,于是.(文)(1)联立方程ax+1=y与,消去y得:(*)又直线与双曲线相交于A,B两点,∴.又依题OA⊥OB,令A,B两点坐标分别为(,),(,),则.且,而由方程(*)知:,代入上式得.满足条件.(2)假设这样的点A,B存在,则l:y=ax+1斜率a=-2.又AB中点,在上,则,又,代入上式知这与矛盾.故这样的实数a不存在.。
2016辽宁建筑职业学院单招数学模拟试题(附答案解析) 一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.两个非零向量e,e不共线,若(k e+e)∥(e+k e),则实数k的值为()A.1B.-1 C.±1D.02.有以下四个命题,其中真命题为()A.原点与点(2,3)在直线2x+y-3=0的同侧B.点(2,3)与点(3,1)在直线x-y=0的同侧C.原点与点(2,1)在直线2y-6x+1=0的异侧D.原点与点(2,1)在直线2y-6x+1=0的同侧3.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验.I.随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是()A.①配I,②配ⅡB.①配Ⅱ,②配ⅠC.①配I,②配ID.①配Ⅱ,②配Ⅱ4.已知函数,其反函数为,则是()A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增5.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④6.从单词“education”中选取5个不同的字母排成一排,则含“at”(“at”相连且顺序不变)的概率为()A.B.C.D.7.已知正二十面体的各面都是正三角形,那么它的顶点数为()A.30B.12C.32D.108.已知的展开式中,系数为56,则实数a的值为()A.6或5B.-1或4C.6或-1 D.4或59.对某种产品市场产销量情况如图所示,其中:表示产品各年年产量的变化规律;表示产品各年的销售情况.下列叙述:(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是()A.(1),(2),(3)B.(1),(3),(4)C.(2),(4)D.(2),(3)10.(文)函数的最小正周期是()A.B.C.D.(理)函数是()A.周期为的偶函数B.周期为的奇函数C.周期为2的偶函数D.周期为2的奇函数11.(文)如图,正四面体ABCD中,E为AB中点,F为CD的中点,则异面直线EF与SA所成的角为()A.90°B.60°C.45°D.30°(理)如图,正三棱柱中,AB=,则与平面所成的角的正弦值为()A.B.C.D.12.(文)抛物线的焦点在x轴上,则实数m的值为()A.0B.C.2D.3(理)已知椭圆(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是()A.B.或C.或D.二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.已知a=(3,4),|a-b|=1,则|b|的范围是________.14.已知直线y=x+1与椭圆(m>n>0)相交于A,B两点,若弦AB的中点的横坐标等于,则双曲线的两条渐近线的夹角的正切值等于________.15.某县农民均收入服从=500元,=20元的正态分布,则此县农民年均收入在500元到520元间人数的百分比为________.16.=________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a=(,),b=(,),a与b之间有关系式|k a+b|=|a-k b|,其中k>0.(1)用k表示a、b;(2)求a·b的最小值,并求此时,a与b的夹角的大小.18.(12分)已知a、b、m、,是首项为a,公差为b的等差数列;是首项为b,公比为a的等比数列,且满足.(1)求a的值;(2)数列与数列的公共项,且公共项按原顺序排列后构成一个新数列,求的前n项之和.19.已知:(a>1>b>0).(1)求的定义域;(2)判断在其定义域内的单调性;(3)若在(1,+∞)内恒为正,试比较a-b与1的大小.20.如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD ,边长为1,∠BAD=60°,再在的上侧,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.(1)求证:PQ⊥BD;(2)求二面角P-BD-Q的余弦值;(3)求点P到平面QBD的距离;21.(12分)在Rt△ABC中,∠CAB=90°,AB=2,AC=,一曲线E过C点,动点P在曲线E上运动,且保持的值不变.(1)建立适当的坐标系,求曲线E的方程;(2)直线l:与曲线E交于M,N两点,求四边形MANB的面积的最大值.22.(14分)(理)已知函数,记函数,,,…,,…,考察区间A=(-∞,0),对任意实数,有,,且n≥2时,,问:是否还有其它区间,对于该区间的任意实数x,只要n≥2,都有?(文)已知二次函数的二次项系数为负,对任意实数x都有,问当与满足什么条件时才有-2<x<0?参考答案1.C2.C3.B4.D5.D6.A7.B8.C9.D10.(文)B(理)B11.(文)C(理)C12.(文)B(理)B13.[4,6]14.15.34.15%16.17.解析:由已知.∵,∴.∴.∵k>0,∴.此时∴.∴=60°.18.解析:(1)∵,,由已知a<b<a+b<ab<a+2b,∴由a+2b<ab,a、得.∵,∴a≥2.又得,而,∴b≥3.再由ab<a+2b,b≥3,得.∴2≤a<3∴a=2.(2)设,即.∴,.∵b≥3,∴.∴.∴.故.19.解析:(1)由,∴,.∴x>0.∴定义域为(0,+∞).(2)设,a>1>b>0∴∴∴.∴.∴在(0,+∞)是增函数.(3)当,+∞时,,要使,须,∴a-b≥1.20.解析:(1)由P-ABD,Q-CBD是相同正三棱锥,可知△PBD与△QBD是全等等腰△.取BD中点E,连结PE、QE,则BD⊥PE,BD⊥QE.故BD⊥平面PQE,从而BD⊥PQ.(2)由(1)知∠PEQ是二面角P-BD-Q的平面角,作PM⊥平面,垂足为M,作QN⊥平面,垂足为N,则PM∥QN,M、N分别是正△ABD与正△BCD的中心,从而点A、M、E、N、C共线,PM与QN确定平面PACQ,且PMNQ为矩形.可得ME=NE=,PE=QE=,PQ=MN=,∴cos∠PEQ=,即二面角平面角为.(3)由(1)知BD⊥平面PEQ.设点P到平面QBD的距离为h,则∴.∴.∴.21.解析:(1)以AB为x轴,以AB中点为原点O建立直角坐标系.∵,∴动点轨迹为椭圆,且,c=1,从而b=1.∴方程为.(2)将y=x+t代入,得.设M(,)、N(,),∴由①得<3.∴.∴t=0时,.22.解析:(理),即,故x<0或x>1.∴或.要使一切,n≥2,都有,必须使或,∴或,即或.解得x<0或x>1或.∴还有区间(,)和(1,+∞)使得对于这些区间内的任意实数x,只要n≥2,都有.(文)由已知,.∴在(-∞,上单增,在(2,+∞)上单调.又∵,.∴需讨论与的大小.由知当,即时,.故时,应有.。
2020-2021学年辽宁省辽阳市医药职业高级中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,则满足条件A?C?B的集合C的个数为()A.1 B.2 C.4 D.8参考答案:D【考点】集合的包含关系判断及应用;其他不等式的解法.【专题】不等式的解法及应用.【分析】通过解分式不等式求出好A,无理不等式求出集合B,通过满足条件A?C?B的集合C的个数即可.解:∵={1,2}={0,1,2,3,4},因为A?C?B,所以C中元素个数至少有1,2;至多为:0,1,2,3,4;所以集合C的个数为{0,3,4}子集的个数:23=8.故选D.【点评】本题考查分式不等式与无理不等式的求法,集合的子集的求解,考查计算能力,转化思想.2. 进入互联网时代,发电子邮件是不可少的,一般而言,发电子邮件要分成以下几个步骤:a.打开电子邮箱;b.输入发送地址;c.输入主题;d.输入信件内容;e.点击“写邮件”;f.点击“发送邮件”,则正确的流程是A. a→b→c→d→e→fB. a→c→d→f→e→bC. a→e→b→c→d→fD. b→a→c→d→f→e参考答案:C发电子邮件要分成以下几个步骤:a.打开电子邮箱;e.点击“写邮件”;b.输入发送地址;c.输入主题;d.输入信件内容;f.点击“发送邮件”.3. 已知,若关于x的不等式的解集中的整数恰有3个,则a的取值范围为()A. (-1,1)B. (0,2)C. (1,3)D. (2,5)参考答案:C【分析】要使关于的不等式的解集中的整数恰有3个,不等式的解集一定是在两个实数之间,这样得到不等式的解集,结合,求出的取值范围.【详解】由,可得,由题意可知不等式的解应在两根之间,即有,结合,所以,,不等式的解集为或舍去,不等式的解集为,又因为,所以,故当时,不等式的解集为,这样符合题意,故,而,,当满足时,就能符合题意,即,而,所以的取值范围为,故本题选C.【点睛】本题考查了一元二次不等式的解法,一元二次不等式整数解问题,利用二次函数的性质是解题的关键.4. 同时具有性质①最小正周期是;②图象关于直线对称;③在上是增函数的一个函数为()A. B. C. D.参考答案:C考点:三角函数的周期,单调性,对称性.5. 函数y=A sin(ωx+φ)+k(A>0,ω>0,|φ|<,x∈R)的部分图象如图所示,则该函数表达式为( )A.y=2sin(x-)+1 B.y=2sin(x-)C.y=2sin(x+)+1 D.y=2sin(x+)+1参考答案:A6. 下面是函数f(x)在区间[1,2]上的一些点的函数值A.1.2B.1.3C.1.4D.1.6参考答案:C略7. 已知过椭圆的左焦点且斜率为的直线与椭圆交于A,B两点.若椭圆上存在一点P,满足(其中点O为坐标原点),则椭圆的离心率为()A.B. C. D.参考答案:A设的中点,由题意知,两式相减得,则,而,所以,所以直线的方程为,联立,解得,又因为,所以,所以点代入椭圆的方程,得,所以,故选A.8. 已知,则不等式的解集为(A )≥199,(B)≥200,(C)≥201,(D)≥202,参考答案:解:9. 命题,则是()A. B.C. D.参考答案:C10. 已知球的直径SC=6,A、B是该球球面上的两点,且AB=SA=SB=3,则棱锥S﹣ABC的体积为()A.B.C.D.参考答案:D【考点】LF:棱柱、棱锥、棱台的体积.【分析】由条件:S﹣OAB为棱长为3的正四面体,由此能求出S﹣ABC的体积.【解答】解:∵球的直径SC=6,A、B是该球球面上的两点,且AB=SA=SB=3,∴由条件:S﹣OAB为棱长为3的正四面体,其体积为=,同理,故棱锥S﹣ABC的体积为.故选:D.【点评】本题考查线线垂直的证明,考查几何体的表面积的求法,考查数据处理能力、运算求解能力以及应用意识,考查数形结合思想等,是中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 若x,y满足约束条件,则z=x﹣2y 的最大值为.参考答案:2【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=x﹣2y为,由图可知,当直线过点A(2,0)时,直线在y轴上的截距最小,z有最大值为2.故答案为:2.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.12. 函数的定义域为.参考答案:(0,1)试题分析:由题意得,即定义域为考点:函数定义域13. 若复数是实数,则.参考答案:【知识点】复数综合运算【试题解析】因为=为实数,故答案为:014. 若,则的大小关系是______参考答案:试题分析:又考点:指数函数、对数函数的性质15. 已知直角坐标系xOy中,直线l的参数方程为. 以直角坐标系xOy中的原点O为极点,x 轴的非负半轴为极轴,圆C 的极坐标方程为,则圆心C 到直线l 距离为______.参考答案:16. 已知为虚数单位),则=.参考答案: 617. 已知函数,则函数有最 值为 。
2016辽宁医药职业学院单招数学模拟试题(附答案解析) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合且,若则()A.B.C.D.2.函数的反函数的图象是()3.若,则成立的一个充分不必要的条件是()A. B. C. D.4.实数满足,则的值为()A.8 B.-8 C.8或-8 D.与θ有关5.如图,正三棱锥A—BCD中,点E在棱AB上,点F在棱CD上,并使,其中,设α为异面直线EF与AC所成的角,β为异面直线EF与BD所成的角,则α+β的值为()A. B. C. D.与有关的变量6.已知点F1,F2分别双曲线的左,右焦点,过F1且垂直于x轴的直线与双曲交于A,B两点,若△ABF2是锐角三角形,则该双曲线的离心率e的范围是()A.(1,+∞)B.(1,1+)C.(1,)D.(1-)7.函数与有相同的定义域,且对定义域中任何x,有,若g(x)=1的解集是{x|x=0},则函数F(x)=是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数8.在轴截面是直角三角形的圆锥内,有一个体积最大的内接圆柱,则内接圆柱的体积与圆锥的体积的比值是()A.B. C.D.9.当n∈N且n≥2时,1+2+22+…+24n-1=5p+q,其中p,q为非负整数,且0≤q<5,则q 的值为()A.0B.2C.2D.与n有关10.过曲线C:x2+ay2=a外一点M作直线l1交曲线C于不同两点P1,P2,线段P1P2的中点为P,直线l2过P点和坐标原点O,若l1⊥l2,则a的值为()A.1 B.2 C.-1 D.无法确定11.在△ABC中,如果4sinA+2cosB=1,2sinB+4cosA=3,则∠C的大小是()A.30°B.150°C.30°或150°D.60°或120°12.若函数的图象如图,则a的取值范围是()A.(-∞,-1) B.(-1,0)C.(0,1) D.(1,+∞)第Ⅱ卷 (非选择题)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
2016辽宁特殊教育师范高等专科学校单招数学模拟试题(附答案解析)2016辽宁特殊教育师范高等专科学校单招数学模拟试题(附答案解析)一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,,则(A)(B)(C)(D)(2)函数的反函数的解析表达式为(A) (B)(C)(D)(3)在各项都为正数的等比数列中,首项,前三项的和为21,则(A)33 (B)72 (C) 84 (D)189(4)在正三棱柱中,若,,则点到平面的距离为(A)(B) (C)(D)(1)中,,,则的周长为(A) (B)(C)(D)(2)抛物线上的一点到焦点的距离为1,则点的纵坐标是(A)(B)(C)(D)0(3)在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A) 9.4,0.484(B) 9.4,0.016(C) 9.5,0.04(D) 9.5,0.016(4)设、、为两两不重合的平面,、、为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则.其中真命题的个数是(A) 1 (B) 2 (C) 3 (D)4是(5)设,则的展开式中的系数不可能...(A)10 (B)40 (C)50 (D)80(6)若,则(A) (B) (C)(D)(7)点在椭圆的左准线上.过点且方向为的光线,经过直线反射后通过椭圆的左焦点,则这个椭圆的离心率为(A)(B)(C)(D)(8)四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的.现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A)96 (B) 48 (C)24 (D)0二.填空题:本大题共有6小题,每小题4分,共24分.把答案填写在答题卡相应位置上.(1)命题“若,则”的否命题为▲.(2)曲线在点处的切线方程是▲.(3)函数的定义域为▲.(4)若,,,则▲.(5)已知、为常数,若,,则▲.(6)在中,为中线上的一个动点,若,则的最小值是▲.三.解答题:本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤.(7)(本小题满分12分)如图圆与圆的半径都等于1,.过动点分别作圆、圆的切线、(、分别为切点),使得.试建立平面直角坐标系,并求动点的轨迹方程.(8)(本小题满分12分,每小问满分4分)甲、乙各两人射击一次,击中目标的概率分别是和.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.目标的概率;(Ⅰ) 求甲射击4次,至少有1次未击中...(Ⅱ) 求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;目标,则中止其射击.问:乙恰好射击5次后,被(Ⅲ) 假设某人连续2次未击中...中止射击的概率是多少?(1)(本小题满分14分,第一小问满分6分,第二、第三小问满分各4分)如图,在五棱锥中,底面,,,.(Ⅰ) 求异面直线与所成的角(用反三角函数值表示);(Ⅱ) 求证平面;(Ⅲ) 用反三角函数值表示二面角的大小(本小问不必写出解答过程).(2)(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数.(Ⅰ) 当时,求使成立的的集合;(Ⅱ) 求函数在区间上的最小值.(3)(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)设数列的前项和为,已知,,,且,,其中、为常数.(Ⅰ) 求与的值;(Ⅱ) 证明数列为等差数列;(Ⅲ) 证明不等式对任何正整数、都成立.考单招——上高职单招网参考答案一.选择题:本题考查基本概念和基本运算.每小题5分,满分60分.(1).(2) 由已知得,,∴,,即,因此所求的反函数为.(3) 设数列的公比为,则,∵,∴,这个方程的正根为,∴.(4) 取的中点,连结、,可证平面平面.作,垂足为,则平面.在中,,,,∴.(5) 由正弦定理得,,而,,∴,,∴.∴.(6) 抛物线的标准方程为,,准线方程为,,则由抛物线的定义得,,即.考单招——上高职单招网(7) 去掉一个最高分9.9和一个最低分8.4后,平均值为,方差为.(8) 在四个命题中,①、②是假命题,③、④是真命题.(9) 在的展开式中的系数为,其值分别为1,10,40,80,80,32.(10).(11)首先,椭圆的左焦点关于直线的对称点为,则,由,,得.故,离心率.(12)记四棱锥为,首先必须存放在4个不同的仓库内,每个仓库内不可能存放3种或3种以上的化工产品,所以每个仓库恰好存放2种化工产品,方案只有和两种. 因此,安全存放的不同方法种数为.二.填空题:本题考查基础知识和基本运算.每小题4分,满分24分.(13)若,则.(14).(15).(16).(17)2.(18).解析:(13)“若则”的否命题是“若则”.(14),在点处的切线的斜率为4,切线方程为,即.考单招——上高职单招网(15)由,得,解得,或.(16)∵,即,∴.因此,.(17)对比和可知,或,令,得.(18),当且仅当为的中点时取等号.三.解答题:(19)本小题主要考查求轨迹方程的方法及基本运算能力.满分12分.解:如图,以直线为轴,线段的垂直平分线为轴,建立平面直角坐标系,则两圆心分别为.设,则,同理.∵,∴,即.所以动点的轨迹方程为.(或)(20)本小题主要考查相互独立事件同时发生或互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分.考单招——上高职单招网解:(Ⅰ)设事件{甲射击4次,至少1次未击中目标},则{甲射击4次,全部击中目标}..答:甲射击4次,至少1次未击中目标的概率为.(Ⅱ)事件{甲射击4次,恰好2次击中目标},{乙射击4次,恰好3次击中目标},则.答:两人各射击4次,甲恰好2次击中目标且乙恰好3次击中目标的概率为.(Ⅲ)事件{乙恰好射击5次后,被中止射击}={乙射击5次,前2次至少1次击中目标,第3次击中目标,后2次未击中目标}..答:乙恰好射击5次后,被中止射击的概率为.(21)本小题主要考查异面直线所成角、线面垂直、二面角等基础知识以及空间线面位置关系的证明、角和距离的计算,考查空间想象能力、逻辑推理能力和运算能力.满分14分.解:(Ⅰ)连结,由,,由图形的对称性可知,四边形是等腰梯形,,∴即为异面直线与所成的角.∵平面,,∴,,.考单招——上高职单招网在,∵,,∴.在,∵,,∴,.因此,异面直线与所成的角的.(Ⅱ)由(Ⅰ)知,四边形是等腰梯形,是等腰三角形,∴五边形是轴对称图形,∴,即.又∵平面,∴.而,∴平面.(Ⅲ)二面角的大小为.(提示:作出二面角的平面角.)(22)本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力.满分14分.解:(Ⅰ)当时,.方程即为或或或或.因此,方程的解集为.(Ⅱ)首先恒成立.①若,则在区间上,当时,取最小值0;考单招——上高职单招网②若,则在区间上,,,即在区间上是增函数,其最小值为;③若,则在区间上,,.若,则在区间上是增函数,在区间上是减函数,其最小值为与的较小者.∵,∴若,则在区间上,的最小值为;若,则在区间上,的最小值为;若,则在区间上是增函数,其最小值为.综上所述,函数在区间上的最小值为.(23)本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力.满分14分.解:(Ⅰ)由,,,得,,.把分别代入,得解得,,.考单招——上高职单招网(Ⅱ)由(Ⅰ)知,,即,①又.②②-①得,,即.③又.④④-③得,,∴,∴,又,因此,数列是首项为1,公差为5的等差数列.(Ⅲ)由(Ⅱ)知,.考虑..∴.即,∴.因此,.。
2016辽宁特殊教育师范高等专科学校单招数学模拟试题(附答案解析)一.选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,,则(A)(B)(C)(D)(2)函数的反函数的解析表达式为(A) (B)(C)(D)(3)在各项都为正数的等比数列中,首项,前三项的和为21,则(A)33 (B)72 (C) 84 (D)189(4)在正三棱柱中,若,,则点到平面的距离为(A)(B)(C)(D)(1)中,,,则的周长为(A)(B)(C)(D)(2)抛物线上的一点到焦点的距离为1,则点的纵坐标是(A)(B)(C) (D)0(3)在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A) 9.4,0.484(B) 9.4,0.016(C) 9.5,0.04(D) 9.5,0.016(4)设、、为两两不重合的平面,、、为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则.其中真命题的个数是(A) 1 (B) 2 (C) 3 (D)4是(5)设,则的展开式中的系数不可能...(A)10 (B)40 (C)50 (D)80(6)若,则(A)(B)(C) (D)(7)点在椭圆的左准线上.过点且方向为的光线,经过直线反射后通过椭圆的左焦点,则这个椭圆的离心率为(A)(B) (C)(D)(8)四棱锥的8条棱分别代表8种不同的化工产品,有公共点的两条棱所代表的化工产品放在同一仓库是危险的,没有公共点的两条棱所代表的化工产品放在同一仓库是安全的.现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A)96 (B) 48 (C)24 (D)0二.填空题:本大题共有6小题,每小题4分,共24分.把答案填写在答题卡相应位置上.(1)命题“若,则”的否命题为▲.(2)曲线在点处的切线方程是▲.(3)函数的定义域为▲.(4)若,,,则▲.(5)已知、为常数,若,,则▲.(6)在中,为中线上的一个动点,若,则的最小值是▲.三.解答题:本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤.(7)(本小题满分12分)如图圆与圆的半径都等于1,.过动点分别作圆、圆的切线、(、分别为切点),使得.试建立平面直角坐标系,并求动点的轨迹方程.(8)(本小题满分12分,每小问满分4分)甲、乙各两人射击一次,击中目标的概率分别是和.假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.目标的概率;(Ⅰ) 求甲射击4次,至少有1次未击中...(Ⅱ) 求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;目标,则中止其射击.问:乙恰好射击5次后,被中(Ⅲ) 假设某人连续2次未击中...止射击的概率是多少?(1)(本小题满分14分,第一小问满分6分,第二、第三小问满分各4分)如图,在五棱锥中,底面,,,.(Ⅰ) 求异面直线与所成的角(用反三角函数值表示);(Ⅱ) 求证平面;(Ⅲ) 用反三角函数值表示二面角的大小(本小问不必写出解答过程).(2)(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数.(Ⅰ) 当时,求使成立的的集合;(Ⅱ) 求函数在区间上的最小值.(3)(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)设数列的前项和为,已知,,,且,,其中、为常数.(Ⅰ) 求与的值;(Ⅱ) 证明数列为等差数列;(Ⅲ) 证明不等式对任何正整数、都成立.参考答案一.选择题:本题考查基本概念和基本运算.每小题5分,满分60分.题号123456789101112答案D A C B D B D B C A A B解析:(1).(2) 由已知得,,∴,,即,因此所求的反函数为.(3) 设数列的公比为,则,∵,∴,这个方程的正根为,∴.(4) 取的中点,连结、,可证平面平面.作,垂足为,则平面.在中,,,,∴.(5) 由正弦定理得,,而,,∴,,∴.∴.(6) 抛物线的标准方程为,,准线方程为,,则由抛物线的定义得,,即.(7) 去掉一个最高分9.9和一个最低分8.4后,平均值为,方差为.(8) 在四个命题中,①、②是假命题,③、④是真命题.(9) 在的展开式中的系数为,其值分别为1,10,40,80,80,32.(10).(11)首先,椭圆的左焦点关于直线的对称点为,则,由,,得.故,离心率.(12)记四棱锥为,首先必须存放在4个不同的仓库内,每个仓库内不可能存放3种或3种以上的化工产品,所以每个仓库恰好存放2种化工产品,方案只有和两种. 因此,安全存放的不同方法种数为.二.填空题:本题考查基础知识和基本运算.每小题4分,满分24分.(13)若,则.(14).(15).(16).(17)2.(18).解析:(13)“若则”的否命题是“若则”.(14),在点处的切线的斜率为4,切线方程为,即.(15)由,得,解得,或.(16)∵,即,∴.因此,.(17)对比和可知,或,令,得.(18),当且仅当为的中点时取等号.三.解答题:(19)本小题主要考查求轨迹方程的方法及基本运算能力.满分12分.解:如图,以直线为轴,线段的垂直平分线为轴,建立平面直角坐标系,则两圆心分别为.设,则,同理.∵,∴,即.所以动点的轨迹方程为.(或)(20)本小题主要考查相互独立事件同时发生或互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分.解:(Ⅰ)设事件{甲射击4次,至少1次未击中目标},则{甲射击4次,全部击中目标}..答:甲射击4次,至少1次未击中目标的概率为.(Ⅱ)事件{甲射击4次,恰好2次击中目标},{乙射击4次,恰好3次击中目标},则.答:两人各射击4次,甲恰好2次击中目标且乙恰好3次击中目标的概率为.(Ⅲ)事件{乙恰好射击5次后,被中止射击}={乙射击5次,前2次至少1次击中目标,第3次击中目标,后2次未击中目标}..答:乙恰好射击5次后,被中止射击的概率为.(21)本小题主要考查异面直线所成角、线面垂直、二面角等基础知识以及空间线面位置关系的证明、角和距离的计算,考查空间想象能力、逻辑推理能力和运算能力.满分14分.解:(Ⅰ)连结,由,,由图形的对称性可知,四边形是等腰梯形,,∴即为异面直线与所成的角.∵平面,,∴,,.在,∵,,∴.在,∵,,∴,.因此,异面直线与所成的角的.(Ⅱ)由(Ⅰ)知,四边形是等腰梯形,是等腰三角形,∴五边形是轴对称图形,∴,即.又∵平面,∴.而,∴平面.(Ⅲ)二面角的大小为.(提示:作出二面角的平面角.)(22)本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力.满分14分.解:(Ⅰ)当时,.方程即为或或或或.因此,方程的解集为.(Ⅱ)首先恒成立.①若,则在区间上,当时,取最小值0;②若,则在区间上,,,即在区间上是增函数,其最小值为;③若,则在区间上,,.若,则在区间上是增函数,在区间上是减函数,其最小值为与的较小者.∵,∴若,则在区间上,的最小值为;若,则在区间上,的最小值为;若,则在区间上是增函数,其最小值为.综上所述,函数在区间上的最小值为.(23)本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力.满分14分.解:(Ⅰ)由,,,得,,.把分别代入,得解得,,.(Ⅱ)由(Ⅰ)知,,即,①又.②②-①得,,即.③又.④④-③得,,∴,∴,又,因此,数列是首项为1,公差为5的等差数列.(Ⅲ)由(Ⅱ)知,.考虑..∴.即,∴.因此,.。
2016辽宁省交通高等专科学校单招数学模拟试题(附答案解析)一、选择题1、设集合A和集合B都是实数集R,映射f:A B把集合A中的元素x映射到集合B中元素x3-x+2,则在映射f下,象2的原象所成的集合是()(A) {1} (B) {0,1,-1} (C){0 } (D) {0,-1,-2}2、不等式的解集为()(A)(,1)∪(1,)(B) (-∞,)∪(,+∞)(C)(-∞,1)∪(,+∞)(D)(,1)∪(,+∞)3、直线L1:mx+(m-1)y+5=0与直线L2:(m+2)x+my-1=0互相垂直,则m的值为()(A)(B) 0(C)1或(D)0或4、设{a n}为等差数列,从{a1,a2,a3,···a20}中任取3个不同的数,使这三个数仍成等差数列,则这样的等差数列最多有()(A)90个(B)120个(C)180个 (D)200个5、过抛物线y2=2px(p>0)的焦点F作两弦AB和CD,其所在直线倾角分别为与,则与的大小关系是()(A) > (B)=(C) < (D)≥6、已知tanA·tanB=tanA+tanB+1,则cos(A+B)的值是()(A)(B)(C)(D)7、相交成900的两条直线与一个平面所成的角分别是300与450,则这两条直线在该平面内的射影所成角的正弦值为()(A) (B)(C) (D)8、将函数y=f(x)sinx的图象向右平移个单位后再作关于x轴对称的曲线,得到函数y=1-2sin2x,则f(x)是()(A)cosx (B)2cosx (C) sinx (D)2sinx9、(1+x)2n+x(1+x)2n-1+x2(1+x)2n-2+······+x n(1+x)n的展开式中,含x n项的系数为劲()(A) (B)(C) (D)10、对于x∈[0,1]的一切值,a+2b>0是使ax+b>0恒成立的()(A)充要条件 (B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件11、甲袋中装有3个白球5个黑球,乙袋中装有4个白球6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分掺混后再从乙袋中随机取出一个球放回甲袋,则甲袋中白球没有减少的概率为()(A)(B) (C) (D)12、定义在R上的函数y=f(x),在(-∞,)上是增函数,且函数y=f(x+)是偶函数,当x1<,x2>且时,有()(A) f(2- x1)> f(2- x2)(B) f(2- x1)= f(2- x2)(C) f(2- x1)< f(2- x2)(D) -f(2- x1)< f(x2-2)一、填空题:13、已知>b,·b=1则的最小值是。
2016辽宁医药职业学院单招数学模拟试题(附答案解析)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项
中,只有一项是符合题目要求的。
1.已知集合且,若
则()
A.B.C. D.
2.函数的反函数的图象是()
3.若,则成立的一个充分不必要的条件是()
A. B. C. D.
4.实数满足,则的值为()
A.8 B.-8 C.8或-8 D.与θ有关
5.如图,正三棱锥A—BCD中,点E在棱AB上,点F在棱CD
上,并使,其中,设α为异面直
线EF与AC所成的角,β为异面直线EF与BD所成的角,则α+β的值为()
A. B. C. D.与有关的变量
6.已知点F1,F2分别双曲线的左,右焦点,过F1且垂直于x轴的直线与双曲交于A,B两点,若△ABF2是锐角三角形,则该双曲线的离心率e的范围是()
A.(1,+∞)B.(1,1+)C.(1,)D.(1-
)
7.函数与有相同的定义域,且对定义域中任何x,有
,若g(x)=1的解集是{x|x=0},则函数F(x)
=是()
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数
8.在轴截面是直角三角形的圆锥内,有一个体积最大的内接圆柱,则内接圆柱的体积与圆锥的体积的比值是()
A.B.C.D.
9.当n∈N且n≥2时,1+2+22+…+24n-1=5p+q,其中p,q为非负整数,且0≤q<5,则q 的值为()
A.0
B.2
C.2
D.与n有关
10.过曲线C:x2+ay2=a外一点M作直线l1交曲线C于不同两点P1,P2,线段P1P2的中点为P,直线l2过P点和坐标原点O,若l1⊥l2,则a的值为()
A.1 B.2 C.-1 D.无法确定
11.在△ABC中,如果4sinA+2cosB=1,2sinB+4cosA=3,则∠C的大小是()
A.30°B.150°C.30°或150°D.60°或120°
12.若函数的图象如图,则a
的取值范围是()
A.(-∞,-1) B.(-1,0)
C.(0,1) D.(1,+∞)
第Ⅱ卷 (非选择题)
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
13.某校编写了甲、乙、丙、丁四门选修课教材,在同一学年的五个班级试用。
要求:每个班级只开设一门选修课;只有一、二班开设相同的选修课,且三班不开设甲门选修课,则不同的开设方法共有种(用数字作答)
14.(理)函数的最大值是
(文)函数的最大值是
15.设正数数列{ a n}为等比数列,且a2=4,a4=16,则
16.(理)给出下列命题:
①当x∈(-1,1)时arctgx>arcctgx;
②极坐标方程ρcscθ=1表示一条直线;
③arcsin〔cos(-)〕=;
④方程 (r为参数,)表示过点(0,-1)倾
斜角为的直线。
其中正确命题的序号有(把你认为正确的都填上)(文)给出下列命题:
①若α,β是第一象限角,且α>β,则sinα>sinβ;
②函数y=cos(2x+)的图象的一条对称轴方程是x=-;
③把函数的图象向左平移个单位,得到函数
的图象;
④图象与函数的图象关于直线对称的函数是y=-tgx其中正确
命题的序号有(把你认为正确的都填上)
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
若方程(其中的两实根为α、β,数列1,
,(,……的所有项的和为2-,试求θ的值。
18.(本小题满分12分)
已知z1是非零复数,argz1=,且(1+(其中k∈R)(Ⅰ)试求复数z1;
(Ⅱ)(理)若|z2|≤1,试求arg()的取值范围;
(文)若|z2|=1,试求|z1+z2+1|的取值范围。
19.(本小题满分12分)
在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,
S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F。
(Ⅰ)求证:四边形EFCD为直角梯形;
(Ⅱ)求二面角B-EF-C的平面角的正切值;
(Ⅲ)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给
出证明。
20.(本小题满分12分)
一个有140名职工的合资企业投资生产甲、乙两种不同产品,2000年该企业生产的甲产品创外汇32万元,乙产品创外汇216万元,该企业以后每年所创外汇是甲产品以2.25倍的速度递增,而生产乙产品的机器由于老化的原因,每年创外汇为上年的。
这个企业只要年人均创外汇达3万元就可以列入国家重点企业。
若以2000为第一年,问:
(Ⅰ)从哪一年开始,甲产品年创外汇超过乙产品年创外汇
(lg2=0.3010,lg3=0.4771)
(Ⅱ)该企业哪一年所创外汇最少?该年甲、乙两种产品各创外汇多少万元?(Ⅲ)该企业到2003年能否进入国家重点企业?
21.(本小题满分12分)
已知函数f(x)=ax2+4x+b,(a,b∈R,a<0),设关于x的方程f(x)=0的两实根为x1和
x2,f(x)=x的两实根为α和β。
(Ⅰ)若a,b均为负整数,|α-β|=1,求f(x)的解析式;
(Ⅱ)(理)若α<1<β<2,求证:x1x2<2。
(文)若α为负整数,f(1)=0,求证:1≤|x1-x2|<2.
22.(本小题满分14分)
已知A、B是椭圆的一条弦,M(2,1)是AB中点,以M 为焦点,以椭圆的右准线为相应准线的双曲线与直线AB交于N(4,-1)。
(Ⅰ)设双曲线的离率心为e,试将e表示为椭圆的半长轴长的函数。
(Ⅱ)当椭圆的离心率是双曲线的离心率的倒数
时,求椭圆的方程。
(Ⅲ)求出椭圆的长轴长的取范围。
参考答案
一、选择题
1.D 2.C 3.C 4.A 5.C 6.B 7.B 8.B 9.A 10.D 11.A 12.D 二、填空题
13.18; 14.理1,文1; 15.;16.理③④,文②④
三、解答题
17.解:
、是方程的两实根
(1)
……4分
由已知
而……8分
满足(2)不满足(1)故……12分18.解:
(Ⅰ)
则……3分即
解得 k=2,r=1 ……6分
理(Ⅱ)令……9分
即,于是对应的点的轨迹为以(―1,―1)为圆心,以1为
半径的圆……12分
文(Ⅱ)……8分
则
……10分
……12分
19.解:
(Ⅰ)∵CD∥AB,AB平面SAB∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF∵又面
∴平面SAD,∴又
为直角梯形……4分
(Ⅱ)平面∥平面SAD 即为二面角D—EF—C的平面角……6分
中而且
为等腰三角形,……8分(Ⅲ)当时,为直角三角形
平面平面
在中,为SB中点,
平面平面为直角三角形……12分20.解:
(Ⅰ)设第n年甲产品创外汇a n万元,乙产品创外汇b n万元
则
若则即
第3年开始即2002年甲产品创外汇就可以超过乙产品创外汇……4分(Ⅱ)设该企业第n年创外汇万元
则
当且仅当
即n=2时,取“=”号,即第2年,2001年创外汇最少为216万元,这年甲产品创外汇72万元,乙产品创外汇144万元……8分
(Ⅲ)2003年即第4年,设该企业创外汇为y
则
∴2003年该企业能进入国家重点企业。
……12分
21.
(Ⅰ)的两实根为(1)
又令
则的两实根为(2)……2分
……4分
即均为负整数,为负奇数,从而满足(1),(2),故……6分
(Ⅱ)(理)
……8分
且
即……10分
由①得……12分
(Ⅱ)(文)
又由(Ⅰ)得
即
又…………8分
不妨令……10分
〔-1,0〕,……12分22.解
(Ⅰ)设
∴
两式相减,得
……3分
则由双曲线定义及题设知
(Ⅱ)
∴,
而此时点M(2,1)在椭圆外,不可能是椭圆弦AB的中点,舍去。
故所求椭圆方程为……10分
(Ⅲ)由题设知
联立
得
由(2)知
当
当
故……14分。