第3章 狭义相对论
- 格式:ppt
- 大小:7.42 MB
- 文档页数:75
第3章 狭义相对论地球虽有自转,但仍可看成一较好的惯性参考系,设在地球赤道和地球某一极(例如南极)上别离放置两个性质完全相同的钟,且这两只钟从地球诞生的那一天便存在.若是地球从形成到此刻是50亿年,请问那两只钟指示的时刻差是多少?解:地球的半径约为R = 6400千米 = ×106(m),自转一圈的时刻是T = 24×60×60(s) = ×104(s),赤道上钟的线速度为v = 2πR/T = ×102(m·s -1).将地球看成一个良好的参考系,在南极上看赤道上的钟做匀速直线运动,在赤道上看南极的钟做反向的匀速直线运动.南极和赤道上的钟别离用A 和B 表示,南极参考系取为S ,赤道参考系取为S`.A 钟指示S 系中的本征时,同时指示了B 钟的运动时刻,因此又指示S`系的运动时.同理,B 钟指示S`系中的本征时,同时指示了A 钟的反向运动时刻,因此又指示S 系的运动时. 方式一:以S 系为准.在S 系中,A 钟指示B 钟的运动时刻,即运动时Δt =50×108×365×24×60×60=×1016(s).B 钟在S`中的位置不变的,指示着本征时Δt`.A 钟的运动时Δt 和B 钟的本征时Δt`之间的关系为t ∆=,可求得B 钟的本征时为21`[1()]2v t t c∆=∆≈-∆, 因现在刻差为 21`()2v t t t c∆-∆≈∆=×105(s).在南极上看,赤道上的钟变慢了. 方式二:以S`系为准.在S`系中,B 钟指示A 钟的反向运动时刻,即运动时 Δt`=50×108×365×24×60×60=×1016(s). A 钟在S 中的位置不变的,指示着本征时Δt .B 钟的运动时Δt `和A 钟的本征时Δt 之间的关系为`t ∆=,可求得A 钟的本征时为21[1()]`2v t t t c∆=∆≈-∆, 因现在刻差为 21`()`2v t t t c∆-∆≈∆=×105(s).在赤道上看,南极上的钟变慢了. [注意]解此题时,先要确信参考系,还要确信运动时和本征时,才能正确引用公式.有人直接应用公式计算时刻差``t t t ∆-∆=-∆2211[1()]``()`22v v t t t c c ≈+∆-∆=∆, 由于地球速度远小于光速,因此计算结果差不多,可是关系没有弄清.从公式可知:这人以S 系为准来对照两钟的时刻,Δt `是B 钟的本征时,Δt 是A 钟的运动时,而题中的本征时是未知的.也有人用下面公式计算时刻差,也是一样的问题.`t t t ∆-∆=-∆2211[1()]()22v v t t t c c ≈+∆-∆=∆一根直杆在S 系中观看,其静止长度为l ,与x 轴的夹角为θ,S`系沿S 系的x 轴正向以速度v 运动,问S`系中观看到杆子与x `轴的夹角假设何?解:直杆在S 系中的长度是本征长度,两个方向上的长度别离为l x = l cos θ和l y = l sin θ.在S`系中观看直杆在y 方向上的长度不变,即l`y = l y ;在x 方向上的长度是运动长度,依照尺缩效应得`xl l =``tan `yxl lθ==,可得夹角为21/2`arctan{[1(/)]tan }v c θθ-=-.在惯性系S 中同一地址发生的两事件A 和B ,B 晚于A 4s ;在另一惯性系S`中观看,B 晚于A 5s 发生,求S`系中A 和B 两事件的空间距离?解:在S 系中的两事件A 和B 在同一地址发生,时刻差Δt = 4s 是本征时,而S`系中观看A 和B 两事件确信不在同一地址,Δt ` = 5s 是运动时,依照时刻膨胀公式`t ∆=, 即5=能够求两系统的相对速度为v = 3c /5.在S`系中A 和B 两事件的空间距离为Δl = v Δt ` = 3c = 9×108(m).一个“光钟”由两个相距为L 0的平面镜A 和B 组成,关于那个光钟为静止的参考系来讲,一个“滴答”的时刻是光从镜面A 到镜面B 再回到原处的时刻,其值为002Lc τ=.假设将那个光钟横放在一个以速度v 行驶的火车上,使两镜面都与v 垂直,两镜面中心的连线与v 平行,在铁轨参考系中观看,火车上钟的一个“滴答”τ与τ0的关系如何?解:不论两个“光钟”放在什么地址,τ0都是在相对静止的参考系中所计的时刻,称为本征时.在铁轨参考系中观看,火车上钟的一个“滴答”的时刻τ是运动时, 因此它们的关系为τ=S 系中观看到两事件同时发生在x 轴上,其间距为1m ,S`系中观看到这两个事件间距离是2m ,求在S`系中这两个事件的时刻距离.解:依照洛仑兹变换,得两个事件的空间和时刻距离公式`x ∆=2`t ∆=----------(1)由题意得:Δt = 0,Δx = 1m ,Δx` = 2m .因此`x ∆=,2`t ∆=-----------(2)由(2)之上式得它们的相对速度为v =(3)将(2)之下式除以(2)之上式得 2``t vx c∆=-∆, 因此`t ∆=== ×10-8(s). [注意]在S `系中观看到两事件不是同时发生的,因此距离Δx` = 2m 能够大于距离Δx = 1m .若是在S `系中观看到两事件也是同时发生的,那么Δx`就表示运动长度,就不可能大于本征长度Δx,这时能够用长度收缩公式`x ∆=∆一短跑运动员,在地球上以10s 的时刻跑完了100m 的距离,在对地飞行速度为0.8c 的飞船上观看,结果如何?解:以地球为S 系,那么Δt = 10s ,Δx = 100m .依照洛仑兹坐标和时刻变换公式`x =2`t =,飞船上观看运动员的运动距离为`x ∆==≈-4×109(m).运动员运动的时刻为2`t ∆=100.8100/0.6c-⨯=≈(s).在飞船上看,地球以0.8c 的速度后退,后退时刻约为;运动员的速度远小于地球后退的速度,因此运动员跑步的距离约为地球后退的距离,即4×109m .已知S`系以0.8c 的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为x 1 = 20m ,x 2 = 40m ,t 1 = 4s ,t 2 = 8s .求S`系中测得的这两件事的时刻和空间距离. 解:依照洛仑兹变换可得S`系的时刻距离为2``21t t -=840.8(4020)/0.6c---=≈(s).空间距离为``21x x -=40200.8(84)0.6c --⨯-=≈×109(m).S 系中有一直杆沿x 轴方向装置且以0.98c 的速度沿x 轴正方向运动,S 系中的观看者测得杆长10m ,还有一观看以0.8c 的速度沿S 系x 轴负向运动,问该观看者测得的杆长假设何? 解:在S 系中的观测的杆长Δl = 10m 是运动长度,相对杆静止的参考系为S `,其长度是本征长度,依照尺缩效应l l ∆=∆`l ∆=== (m).另一参考系设为S ``系,相对S 系的速度为v 20 = -0.8c .在S ``系观看S`系的速度为102012210201/v v v v v c-=-0.98(0.8)10.98(0.8)c c --=--= 0.99796c . 在S ``系观看S`系中的杆的长度是另一运动长度``l l ∆=∆= (m).[注意]在涉及多个参考系和多个速度的时候,用双下标能够比较容易地域别不同的速度,例如用v 10表示S `相对S 系的速度,用v 12表示S `系相对S``系的速度,因此,尺缩的公式也要做相应的改变,计算就可不能混淆.一飞船和慧星相关于地面别离以0.6c 和0.8c 速度相向运动,在地面上观看,5s 后二者将相撞,问在飞船上观看,二者将经历多长时刻距离后相撞?解:二者相撞的时刻距离Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时刻距离,因此是运动时.在飞船上观看的碰撞时刻距离Δt`是以速度v = 0.6c 运动的系统的本征时,依照时刻膨胀公式t ∆=,可得时刻距离为`t ∆=∆.在太阳参考系中观看,一束星光垂直射向地面,速度为c ,而地球以速度u 垂直于光线运动.求在地面上测量,这束星光的大小与方向如何.解:方式一:用速度变换.取太阳系为S 系,地球为S`系.在S 系中看地球以v = u 运动,看星光的速度为u x = 0,u y = c .星光在S`系中的速度分量为`21/x x x u v u u u v c -==--`21/y x u u u v c=-=星光在S`系中的速度为`u c ==,即光速是不变的.星光在S`系中与y `轴的夹角,即垂直地面的夹角为``arctanarctan y u u θ==. 方式二:用大体原理.依照光速不变原理,在地球的S`系中,光速也为c ,本地球以速度v = u 沿x 轴运动时,依照速度变换公式可得星光的速度沿x`轴的分量为u y ` = -u ,因此星光速度沿y`轴的分量为`y u ==从而可求出星光速度垂直地面的夹角为```arctan x y u u θ==.[注意]解题时,要确信不同的参考系,通常将已知两个物体速度的系统作为S 系,另外一个相对静止的系统作为S`系,而所讨论的对象在不同的参考系中的速度是不同的.一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算得的二倍时,其速度是多少?解:(1)粒子的非相对论动能为E k = m 0v 2/2,相对论动能为E`k = mc 2 – m 0c 2, 其中m为运动质量m =22200m c m v -=,设x = (v/c )21x =+,或1(1x =+ 平方得1 = (1 – x 2)(1 - x ),化简得x (x 2 – x -1) = 0.由于x 不等于0,因此x 2 – x -1 = 0.解得12x ±=,取正根得速度为v =c . (2)粒子的非相对论动量为p = m 0v,相对论动量为`p mv ==,02m v =.很容易解得速度为v == 0.866c ..某快速运动的粒子,其动能为×10-16J ,该粒子静止时的总能量为×10-17J ,假设该粒子的固有寿命为×10-6s ,求其能通过的距离. 解:在相对论能量关系中E = E 0 + E k ,静止能量E 0已知,且E 0 = m 0c 2,总能量为22E mc ===,因此00kE E E +=, 由此得粒子的运动时为0`kE E t t E +∆==∆. 还可得00k E E E =+,解得速度为v =粒子能够通过的距离为l v t c t ∆=∆=∆8310 2.610-=⨯⨯⨯.试证相对论能量和速度知足如此关系式:vc =证:依照上题的进程已得v = E = E 0 + E k 代入公式立可得证.静止质子和中子的质量别离为m p = ×10-27kg ,m n = ×10-27kg ,质子和中子结合变成氘核,其静止质量为m 0 = ×10-27kg ,求结合进程中所释放出的能量. 解:在结合进程中,质量亏损为Δm = m p + m n - m 0 = ×10-30(kg), 取c = 3×108(m·s -1),可得释放出的能量为ΔE = Δmc 2 = ×10-13(J). 若是取c = ×108(m·s -1),可得释放出的能量为ΔE = ×10-13(J).。
狭义相对论的基本原理和推论狭义相对论,作为现代物理学中的重要理论之一,对于我们理解宇宙的运行规律和空间时间的统一起到了至关重要的作用。
在科学研究中具有重要的意义,本文将对狭义相对论的基本原理和推论进行深入研究,探讨其在物理学中的应用和影响。
第一章狭义相对论的历史背景# 1.1 牛顿力学的局限性牛顿力学是在17世纪由牛顿创立的经典物理学理论,是描述宇宙运动规律的重要工具。
然而,随着科学技术的不断发展和实验数据的不断丰富,人们逐渐意识到牛顿力学在描述高速运动和微观粒子运动时存在一定的局限性。
# 1.2 麦克斯韦电磁理论的挑战19世纪中期,麦克斯韦提出了电磁场理论,将电磁场统一到了一种方程中。
这一理论对于当时的物理学家来说是一个巨大的挑战,因为麦克斯韦的理论预言了电磁波的存在,这种波动介质必然是以光速传播的。
# 1.3 惯性系和相对论原理爱因斯坦在研究运动物体的时候发现,他们的运动与观察者的运动状态息息相关。
这就引出了狭义相对论的概念,即不同惯性系之间的相对运动是没有绝对的意义的。
第二章狭义相对论的基本原理# 2.1 相对性原理狭义相对论的基本原理就是相对性原理,它包含了以下两点内容:一是物理规律在所有惯性系中都是相同的;二是光在真空中的速度在所有惯性系中都是恒定的,即光速不变原理。
# 2.2 同步坐标系和尺缩效应根据狭义相对性理论,两个相对运动的参考系之间的时间和空间的测量是不同的。
当两个时钟相对静止时,它们显示的时间相同,但是当它们相对运动时,它们的时间会出现错位。
此外,根据洛伦兹收缩公式,当一个物体以接近光速的速度运动时,其长度在运动方向上会发生压缩。
# 2.3 双缝实验和时钟测量双缝实验是验证量子力学的重要实验之一,而在狭义相对论中也有类似的实验来验证其基本原理。
在双缝实验中,光同时通过两个狭缝,根据光的波动性质,会出现干涉条纹。
而在时钟测量中,当两个钟相对运动时,它们的时间会有微小的差异,这也是狭义相对论所描述的现象。
狭义相对论----爱因斯坦本文作者:周奇第一章:两个基本假设相对性原理:物理规律在所有的惯性系中都是平权的。
光速不变原理:光速在任何参考系中都是定值。
即81=⨯⋅310c m s-第二章:洛仑兹变换假设在t = t′ = 0时刻两个参考系的原点重合,在这个时刻,位于原点O 或O′ 的一个光源发出一个光信号。
根据光速不变原理,在两个参考系中,这个光信号将以相同的速度c 到达P 点,但所用的时间间隔不同,分别为t 和 t′。
于是P 点的坐标方程为()2222x y z ct ++= 和 ()2222x y z c t ++= 或()()22222222x y z ct x y z ct ''''++-=++-·······················1 因为只在X 轴方向有相对运动,应当有y = y′ 和z = z′,这样,方程1变为()()2222x ct x ct ''-=- (2)方程2的线性解就是一维洛伦兹变换:2x y y z zvx t t ⎧'=⎪⎪⎪⎪'=⎪'⎨=⎪'⎪'-⎪'=⎪⎪⎩ (3)2x y y z z vx t t ''⎧=⎪⎪⎪⎪'=⎪'⎨=⎪'⎪'+⎪=⎪⎪⎩ (4)在k 系中有l ct =··························1 在k '系中有s ct '=························2 d v t '=························3 有几何关系可知222s d l =+················4 将123式代入4式()()()222ct vt ct ''=+ ()()22221v ct ct c ⎛⎫'-= ⎪⎝⎭22221v t t c ⎛⎫'-= ⎪⎝⎭t '= (5)5式即为钟慢效应公式一维洛伦兹变换可以给出速度变换公式。