第六章 狭义相对论作业答案(2014)
- 格式:doc
- 大小:270.00 KB
- 文档页数:10
4-7.某飞船自地球出发,相对地球以速率v=0.30c匀速飞向月球,在地球测得该旅程的距离为Zo=3.84xl()8m, 在地球测得该旅程的时间间隔为多少?在飞船测得该旅程的距离Z=?利用此距离求出:在飞船测得该旅程的时间间隔为多少?解:取地球为K惯性系、飞船为K,惯性系。
在地球测得该旅程的时间间隔为:Az = L Q/V M4.27(S)在地球地球测得的£o=3.84xlO8 (m),为地球〜月球的固有距离。
则在飞船测得该旅程的距离为在飞船观测,地球与月球共同以速率v=0.30c匀速运行,先是地球、随后是月球掠过飞船,则在飞船测得该旅程的时间间隔为:Ar = Z/v^4.07(s)说明:显然,飞船测自身旅程的时间间隔宜为固有时,在地球测得该旅程的&为观测时。
△t与显然满足狭义相对论时间膨胀效应,即4-8.在K惯性系测两个同时发生相距Im的事件(该两事件皆在X、X,轴)。
在K,惯性系测该两事件间距为2m, 问:在K,惯性系测该两事件发生的时间间隔为多少?解:在K系测两事件相距Ax=lm;同时发生则&=0.在K,系测两事件相距Ax,=2m;两事件发生的时间间隔为由洛伦兹变换,有Ax —M A/A X 1 Ax' ~ V3-/ = = -/ —/ = — 2 u —Jl-("/c)2 Jl-(“/c)2Jl-("/c)2 Ax 24-10.测得不稳定粒子广介子的固有寿命平均值TO=2.6X1O8S,(1)当它相对某实验室以0.80c的速度运动时,所测的平均寿命z应是多少?(2)在实验室测该介子在衰变前运行距离L应是多少?解:取花+介子、实验室为K,和K惯性系,沿该介子运行方向取为X、X,轴,在K,系中观测:也,=宣=2.6*10%, Ax,=0在K系中观测:也与皆为待求量。
由时间膨胀效应关系式,有T = M MI Jl-(v/c)2 =T J J1-(0.80C/C)2| 1~。
习题4 一 选择题1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的。
(2)在真空中,光的速度与光的频率、光源的运动状态无关。
(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
若问其中哪些说法是正确的,答案是 (A )只有(1)、(2)是正确的 (B )只有(1)、(3)是正确的 (C )只有(2)、(3)是正确的 (D )三种说法都是正确的 [ ] 【分析与解答】根据狭义相对论的相对性原理可知(1)是正确的,根据光速不变原理可知(2)和(3)正确 正确答案是D 。
2.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其他惯性系中是否同时发生?关于上述两个问题的正确答案是: (A )(1)同时,(2)不同时 (B )(1)不同时,(2)同 (C )(1)同时,(2)同时 (D )(1)不同时,(2)不同时 [ ] 【分析与解答】根据洛仑兹变换有2'u t x t ∆-∆∆=,对于(1)0,0t x ∆=∆=,所以'0t ∆=; 对于(2)0,0t x ∆=∆≠,所以'0t ∆≠。
正确答案是A 。
3.某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A )(4/5)c. (B )(3/5)c. (C )(2/5)c. (D )(1/5)c. [ ] 【分析与解答】根据时间膨胀关系式't ∆=,4,'5t t ∆=∆=,解得35u c =正确答案是B 。
4.一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是(c 表示真空中光速) (A )()1/2.v c = (B )()3/5.v c =(C )()4/5.v c = (D )()1/5.v c = [ ]【分析与解答】根据长度收缩关系式l =,03,5l l ==,解得45u c = 正确答案是C 。
狭义相对论基础习题解答一 选择题1.判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。
(2) 在真空中,光速与光的频率和光源的运动无关。
(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。
A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。
2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1)不同时, (2) 不同时 解:答案选A 。
3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。
A. (1),(3),(4)B.(1),(2),(4)C.(1),(2),(3)D.(2),(3),(4) 解:同时是相对的。
答案选B 。
4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。
飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u =0.8c ,8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。
V v1l(V x1 + *0.8c=习题6-1.设固有长度/= 2.50m的汽车,以v = 30.0m/s的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:I = I。
』】-(vic,)Q112M = 1.-1 = /()x —二=1.25x10-%2c26-2.在参考系S中,一粒子沿直线运动,从坐标原点运动到了x = 1.5xl08m处,经历时间为山= 1.00s,试计算该过程对应的固有时。
解:以粒了为S'系△t' = &Jl-(U/c2) = 0.866s6-3.从加速器中以速度v = 0.8c、飞出的离了在它的运动方向上又发射出光了。
求这光了相对于加速器的速度。
解:设加速器为S系,离了为S'系6-4.两个宇宙飞船相对于恒星参考系以0.8c的速度沿相反方|何飞行, 求两飞船的相对速度。
解:设宇宙船A为S系,速度0.8c,宇宙船B为S'系,速度-0.8cI根据洛伦兹速度变换公式:*=丛也,有:u = 0.976c6-5.从S系观察到有一粒了在匕=0时由由=100m处以速度 v = 0.98c沿工方向运动,10s后到达方点,如在S'系(相对S系以速度=357.14mw = 0.96c 沿x 方向运动)观察,粒子出发和到达的时空坐标",弘 各 为多少? 0 =尸=0时,S'与S 的原点重合),并算出粒子相对S'系的速度。
—9.8C -0.96CX 挡= 2.14x10 七〃2. v -w 0.98c-0.96c < A1 . inx / v r = ----- =———— -------- =1.014x1()8 m/s1- —v v 1 ------ - x 0.98c c- c-6-6 .一飞船静长"以速度〃相对于恒星系作匀速直线飞行,飞船内一小 球从尾部运动到头部,宇航员测得小球运动速度为八试算出恒星系观察者 测得小球的运动时间。
AHA12GAGGAGAGGAFFFFAFAF第六章 狭义相对论基础(2014)一.选择题1、(基础训练1)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为( ).(c 表示真空中光速)(A) c ·t (B) v ·t (C) 2/1(v /)c t c ∆⋅-(D)2)/(1c t c v -⋅⋅∆解答:[A].飞船的固有长度为飞船上的宇航员测得的长度,即为c ·t 。
2、(基础训练2)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c .解答:[B].AHA12GAGGAGAGGAFFFFAFAF3、(基础训练3) K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O'x'轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .解答:[C].K '系中:00'cos30;'sin30x yl l l l ︒︒==K 系中:()2'tan 45'1/1/3x xy y l l l l v c v ===⇒-=⇒=4、(自测提高3)设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为 (以c 表示真空中的光速) (A)1-K c. (B) 21K Kc -.(C)12-K Kc . (D))2(1++K K K c解答:[C].111122020-=⇒=-=⇒-=K K c v K c v E E c v E E )/()/(总能量:AHA12GAGGAGAGGAFFFFAFAF二.填空题5、(基础训练7)一门宽为a .今有一固有长度为l 0 (l 0 > a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为_______.解答:[].门外的观察者测得杆的长度'l l au =≤⇒≥6、(基础训练8)(1) 在速度=v ____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v ____________情况下粒子的动能等于它的静止能量.AHA12GAGGAGAGGAFFFFAFAF解答:]. (1)0022p mv m v m m v ==⇒==⇒=(2)c v c v m m m c m c m mc E k 23122020202=⇒-==⇒=-=)/(7、(自测提高5)地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=______.解答:[0.994c ].2222()220.9'0.994()1/10.91v v v cv c v v c v c --⨯====-++-8、(自测提高8)已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是______.解答:[20(1)n m c -].01t t t n∆∆=⇒==∆22222000(1)k E mc m c m c n m c =-=-=-9、(附录B :11)两惯性系中的观察者O 和'O 以c 60.的相对速度互AHA12GAGGAGAGGAFFFFAFAF相接近。
如果O 测得两者的初始距离是20m ,'O 测得两者经过='t ∆ s 后相遇.解答:O 系中测得的相遇时间为:c v x t 60./20/==∆∆考虑't ∆是相对于'O 静止的'O 系中测得的时间间隔,为固有时间,而t ∆为相对于'O 运动的O 系中测得的时间间隔,为膨胀时间,因此,s c v t t 8210898-⨯=-=.)/(1'∆∆三.计算题10、(基础训练10)两只飞船相向运动,它们相对地面的速率是v .在飞船A 中有一边长为a 的正方形,飞船A 沿正方形的一条边飞行,问飞船B 中的观察者测得该图形的周长是多少?解答:222222222()22'()1/1'/224/()v v v vc u v v c c v v cu c C a ac c v β--===-++-==+=+;11、(基础训练13)要使电子的速度从v 1 =1.2×108m/s 增加到v2 =2.4×108 m/s必须对它做多少功?AHA12GAGGAGAGGAFFFFAFAF(电子静止质量m e=9.11×10-31 kg)解答:2212;E E==214214.7210()eA E E E m c J-=∆=-=-=⨯12、(基础训练14)跨栏选手刘翔,在地球上以12.88s时间跑完110m栏,在飞行速度为0.98c的飞船中观察者观察,试求(1)刘翔跑了多少时间,(2)刘翔跑了多长距离?解答:2121110()12.88()x x x m t t t s∆=-=∆=-=280.9812.88110'64.7()vt xt s∆-∆-⨯∆===8''1021' 1.9110()x x x m∆=-===-⨯负号表示运动员沿轴反方向跑动。
13、(基础训练15)已知m子的静止能量为105.7MeV,平均寿命为2.2´10-6s,试求动能为150MeV的m子的速度v和平均寿命t。
AHA12GAGGAGAGGAFFFFAFAF解答:222200021)0.91kkm cE mc m c m cm c Ev c=-=⇒=+⇒===66' 5.3110()t s--∆===⨯14、(自测提高12)飞船A以0.8c的速度相对地球向正东飞行,飞船B以0.6c的速度相对地球向正西方向飞行.当两飞船即将相遇时AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAFA 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解答:以地面为K 系,飞船A 为K ˊ系,以正东为x 轴正向;则飞船B 相对于飞船A 的相对速度220.60.8 1.4'0.9460.810.80.61(0.6)1B A B A B v v c c v c c v c c v c c----====-+⨯---' 6.17()t s ∆===15、(自测提高18)火箭相对于地面以c v 60.=(c 为真空中光速)匀速向上飞离地球,在火箭发射s t 10='∆后(火箭上的钟),该火箭向地面发射一导弹,其速度相对于地面为c v 30.1=,问火箭发射后多长时间(地球上的钟),导弹到达地球?计算中假设地面不动。
解答:火箭发射s t 10='∆(火箭上的钟,原时)后发射导弹,此时,地球上经历的时间为:s c v t t 51212.)/(/'=-=∆∆以地球为参考系,火箭高度m t v H 910252⨯==.∆导弹运动到地面需要时间(地球上的钟)s v H t 2511==/∆因此,火箭发射s t t T 537.'=+=∆∆后,导弹到达地球。
附加题:16、(自测提高14) (1) 质量为m0 的静止原子核(或原子)受到能量为E 的光子撞击,原子核(或原子)将光子的能量全部吸收,则此合并系统的速度(反冲速度)以及静止质量各为多少?(2) 静止质量为m'的静止原子发出能量为E 的光子,则发射光子后原子的静止质量为多大?解答:(1)设合并系统的速度为v,质量为M,静止质量为M0。
由动量守恒和能量守恒得:2220022;/m c E Mc m c EEcv Mm c E cp E c MvM m ⎧+=+⇒===⎨+==⎩⇒===(2) 设静止质量为M'。
由动量守恒和能量守恒得:()22//m c E M cp E c M v M m mM M⎧''+-=⎪⎪'''==⇒==⎨⎪''=⎪⎩如有侵权请联系告知删除,感谢你们的配合!&29224 7228 爨31818 7C4A 籊^20740 5104 億27969 6D41 流37176 9138 鄸 *-c20656 50B0 傰 31010 7922 礢26991 696F 楯AHA12GAGGAGAGGAFFFFAFAF。