统计学抽样推断
- 格式:ppt
- 大小:2.37 MB
- 文档页数:37
统计学中的抽样与推断在统计学中,抽样与推断是两个非常重要的概念和方法。
抽样是从总体中选择出一部分个体来进行观察和研究的过程,而推断则是根据样本的统计特征来对总体的特征进行推断和估计。
本文将从抽样方法、推断的基本原理和应用等方面进行阐述。
一、抽样方法抽样是进行统计研究的基础,良好的抽样方法能够保证样本的代表性和可靠性。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
1. 简单随机抽样简单随机抽样是指从总体中随机选择出若干个体作为样本,每个个体被选中的概率相等且相互独立。
通过随机数表、随机数发生器等工具可以实现简单随机抽样。
2. 系统抽样系统抽样是按照一定的规则和间隔,从总体中选择个体作为样本。
例如,从一排座位上每隔固定的间隔选取个体作为样本。
3. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次选择样本。
通过这种方法可以确保不同层次的个体在样本中的比例与总体中的比例保持一致。
4. 整群抽样整群抽样是将总体划分为若干个群体,然后从其中选择若干个群体作为样本。
这种抽样方法常用于人口调查或者地理区域的研究。
二、推断的基本原理推断是根据样本数据对总体的特征进行推断和估计的过程。
推断的基本原理包括参数估计和假设检验两方面。
1. 参数估计参数估计是通过样本数据对总体的参数进行估计。
常见的参数估计方法有点估计和区间估计。
点估计是通过样本数据得到总体参数的估计值,例如平均数的点估计是样本均值。
区间估计是通过样本数据得到总体参数的置信区间,可以对总体参数的范围进行估计。
2. 假设检验假设检验是通过样本数据对总体参数的假设进行检验。
常用的假设检验方法有单样本假设检验、两样本假设检验和方差分析等。
假设检验的基本步骤包括建立原假设和备选假设、选择适当的检验统计量、确定显著性水平和计算P值等。
三、抽样与推断的应用抽样与推断在实际问题中有着广泛的应用,特别是在市场调研、医学研究和社会科学等领域。
1. 市场调研市场调研是通过抽样方法对消费者的需求和偏好进行调查和研究。
统计学中的抽样与推断在统计学中,抽样与推断是非常重要的概念。
它们涉及到我们如何从一小部分样本中推断出整个总体的特征。
在这篇文章中,我们将讨论抽样的不同方法以及如何使用样本数据进行推断。
一、抽样方法在统计学中,我们通常使用以下三种抽样方法:1. 简单随机抽样这是最基本的抽样方法。
简单随机抽样意味着从总体中随机抽出样本,每个样本被抽样的概率相等。
这种方法可以确保样本的代表性。
例如,如果我们要调查一个城市的人口,我们可以从人口登记簿中随机抽取一定数量的人口作为样本。
2. 分层抽样分层抽样是把总体划分为若干个层次,然后从每个层次中随机抽取样本。
这个方法可以减小代表性偏差。
例如,如果我们要调查一个城市的人口,我们可以按照不同的年龄段对总体进行分层,然后从每个年龄段中随机抽取一定数量的人口作为样本。
3. 系统抽样这是从总体中按照一定的规则抽样。
例如,如果我们要调查一个工厂中的员工,我们可以按照员工的工号顺序每隔一定数量抽取一个员工作为样本。
二、样本统计量的计算在进行统计推断之前,我们需要先计算样本统计量。
样本统计量是样本数据的数量指标,可以代表总体的特征。
常见的样本统计量包括:1. 样本均值样本均值是样本数据的平均值。
它可以代表总体的平均值。
例如,我们可以从一个城市的人口中随机抽取一部分人口,计算他们的平均收入,这个平均收入就是样本均值。
2. 样本标准差样本标准差是样本数据的标准差。
它可以代表总体的方差。
例如,我们可以从一个工厂中随机抽取一部分产品,计算它们的重量,这个重量的标准差就是样本标准差。
三、参数估计我们通常使用抽样中的样本统计量来估计总体参数。
例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。
常见的参数估计方法包括:1. 点估计点估计是用样本统计量来估计总体参数的方法。
例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。
2. 区间估计区间估计是用一个区间来估计总体参数的方法。
第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。
(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。
全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。
(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。
社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。
样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。
一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。
在样本容量确定之后,样本的可能数目便完全取决于抽样方法。
抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。
抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。
在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。
样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。
统计学的抽样与推断统计学是一门研究数据收集、处理、分析和解释的学科,而抽样与推断则是其中非常重要的两个概念和方法。
抽样是指从总体中选择一部分样本进行数据收集和分析,而推断则是在收集到的样本数据的基础上对整个总体做出合理的推断和估计。
本文将从抽样的方法和推断的步骤两个方面来介绍统计学的抽样与推断。
一、抽样的方法在进行统计学调查或研究时,往往无法对整个总体进行数据收集,这时候就需要通过抽样的方法选取一部分样本来进行研究。
常用的抽样方法包括以下几种:1. 简单随机抽样:简单随机抽样是指通过随机抽取的方法,使得每个样本都有相同的机会被选中。
这样可以保证样本是来自总体的一个典型子集,能够准确反映总体的特征。
2. 分层抽样:分层抽样是将总体划分为若干个层次,然后在每个层次中进行简单随机抽样。
这样可以保证每个层次都有足够的代表性样本,从而更准确地推断每个层次的特征。
3. 系统抽样:系统抽样是指按照一定的规则从总体中选择样本,例如每隔一定间隔选取一个样本。
系统抽样的优点是可以保证样本均匀分布在总体中,同时又比随机抽样更具有操作性。
4. 整群抽样:整群抽样是将总体划分为若干个互不重叠的群组,然后随机选择一部分群组作为样本。
这样可以减少调查的工作量,同时又保持了群组内部的相似性。
二、推断的步骤在得到样本数据后,需要进行推断分析,从而对整个总体进行合理的推断和估计。
推断的步骤主要包括以下几个方面:1. 参数估计:参数估计是指通过样本数据对总体参数进行估计。
常用的参数估计方法包括点估计和区间估计。
点估计是通过样本数据计算出一个具体的数值作为总体参数的估计值,例如样本均值作为总体均值的估计值。
区间估计则是通过样本数据计算出一个区间,该区间可以包含真实总体参数的真值,例如置信区间。
2. 假设检验:假设检验是使用样本数据对总体参数的某个假设进行检验。
常用的假设检验方法包括单样本检验、双样本检验和方差分析等。
通过假设检验可以判断样本数据是否支持某个假设,并对总体参数的差异性进行推断。
统计学中的抽样方法与推断统计学是一门研究数据收集、分析和解释的学科。
在统计学中,抽样方法和推断是两个重要的概念。
抽样方法指的是从总体中选择一部分样本进行研究,而推断则是基于样本的结果对总体进行估计和推断。
一、抽样方法的分类在统计学中,有多种抽样方法可供选择。
其中最常见的包括简单随机抽样、系统抽样、分层抽样和整群抽样。
简单随机抽样是指从总体中随机选择样本,确保每个个体都有相同的概率被选中。
这种方法简单易行,适用于总体规模较小且分布均匀的情况。
系统抽样是指按照一定的规律从总体中选择样本。
例如,从一本电话簿中每隔一定的页码选择一个电话号码进行调查。
系统抽样相对简单,但要求总体的顺序性。
分层抽样是将总体划分为若干层次,然后从每个层次中随机选择样本。
这种方法适用于总体具有明显特征的情况,可以提高样本的代表性。
整群抽样是将总体划分为若干个群组,然后随机选择部分群组进行调查。
这种方法适用于总体较大且难以直接访问的情况,可以减少调查的成本和时间。
二、推断的原理推断是基于样本结果对总体进行估计和推断的过程。
在进行推断时,需要考虑样本的代表性和抽样误差。
样本的代表性是指样本能否准确地反映总体的特征。
为了提高样本的代表性,需要选择合适的抽样方法,并确保样本的大小足够大。
抽样误差是指由于样本选择的随机性而引入的误差。
抽样误差的大小与样本的大小和总体的变异程度有关。
通常情况下,样本越大,抽样误差越小。
在进行推断时,可以利用统计学中的一些方法和技巧。
例如,可以计算样本均值的置信区间来估计总体均值的范围。
置信区间是指总体均值落在某个区间内的概率。
通过计算置信区间,可以对总体均值进行推断。
此外,还可以利用假设检验来进行推断。
假设检验是一种比较样本结果与总体假设之间差异的方法。
通过设置显著性水平,可以判断样本结果是否支持或拒绝总体假设。
三、实际应用抽样方法和推断在实际应用中具有广泛的应用。
例如,在市场调研中,可以利用抽样方法从目标消费群体中选择样本,通过对样本的调查和分析,推断出总体的消费行为和偏好。