桥梁板式无碴轨道施工技术
- 格式:doc
- 大小:153.00 KB
- 文档页数:12
CRTSⅢ型板式无砟轨道施工工法CRTSⅢ型板式无砟轨道施工工法是一种用于无砟轨道铺设的先进工艺,具有独特的优势和特点。
本文将结合工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面进行介绍。
一、前言CRTSⅢ型板式无砟轨道施工工法是针对城市轨道交通建设需求而研发的一种高效、稳定的施工工法。
它充分考虑了城市地下空间的限制和施工周期的紧迫性,能够快速、精确地完成轨道的铺设工作,并保证轨道的牢固性和使用寿命。
二、工法特点CRTSⅢ型板式无砟轨道施工工法具有如下几个特点:1. 施工速度快:采用模块化设计和标准化制造,能够实现高效快速的施工,大大缩短了工期;2. 施工质量高:板式无砟轨道的各个组件经过精心设计和施工,保证了轨道的牢固性和平整度;3. 维护成本低:采用先进的材料和工艺,保证了轨道的长时间使用寿命,减少了后期维护成本;4. 环境友好:无砟轨道采用了可回收利用的材料,对环境造成的影响较小,符合可持续发展的要求。
三、适应范围CRTSⅢ型板式无砟轨道施工工法适用于地铁、轻轨和有轨电车等城市轨道交通线路的建设。
它可以在城市内部的隧道、桥梁和地面等多种地形条件下进行施工,具有较大的适应性。
四、工艺原理CRTSⅢ型板式无砟轨道施工工法的原理是通过预制轨道组件和连接件,将轨道组装成一段段的模块,然后在现场进行拼接。
施工过程中,采取了多种技术措施来确保连接牢固、轨道平整度和轨道几何参数满足设计要求。
五、施工工艺CRTSⅢ型板式无砟轨道施工工法主要包括如下几个施工阶段:材料预备、轨道组装、连接件安装、轨道调整和固定等。
具体的施工过程中,需要注意的每个细节都会进行详细描述和解释,确保施工工艺的正确实施。
六、劳动组织CRTSⅢ型板式无砟轨道施工工法需要合理组织施工的劳动力,包括施工人员的分工和协作,以及对施工现场的管理和安排等方面。
七、机具设备CRTSⅢ型板式无砟轨道施工工法需要一定的机具设备支持,包括轨道组装机、连接件安装机、调整设备和固定设备等。
CRTSII板式无砟轨道施工技术总结CRTSII板式无砟轨道施工技术总结(2011年10月)目录一、工程概况二、施工依据的规范和文件三、施工主要工序和设备四、无砟轨道测量五、梁面、路基面验收六、桥面防水层七、高强挤塑板安装八、滑动层铺设九、桥上底座板施工单元的划分十、桥上底座板混凝土施工十一、轨道板的运输十二、定位锥安装十三、轨道板粗铺十四、轨道板精调十五、水泥乳化沥青砂浆灌注十六、轨道板的纵向连接十七、剪切连接十八、侧向挡块一、工程概况1、路基上无砟轨道全标段路基包括了邢台东站和四段区间路基,全长5568.86m。
路基正线铺设无砟轨道,在路基上铺设水硬性支承层,支承层上铺设无砟轨道板,在轨道板与支承层之间灌筑沥青水泥砂浆。
2、桥梁上无砟轨道全标段共有特大桥4座、大桥1座,分别为尹村跨京广铁路及汦河特大桥5231.29m、中平跨京珠高速公路特大桥26236.42m、吴村特大桥692.48m、榆林洺河特大桥30519.27m和杨家沟大桥153.31m。
桥上无砟轨道系统由防水层、滑动层、底座板、水泥乳化沥青砂浆垫层、CRTS-Ⅱ型轨道板五大部分组成。
混凝土底座板是Ⅱ型轨道板的支撑基础和结构构件,浇筑在“两布一膜”上,通过混凝土底座板可以作出轨道超高设置,混凝土底座板和轨道板通过水泥乳化沥青砂浆连接,底座板作为有效力学构件贯穿整个箱梁,箱梁连接缝处安装了一块5cm厚的硬泡沫塑料板,混凝土底座板和箱梁之间进行剪切连接。
除了上述固定点连接之外,混凝土底座板通过由土工布和薄膜构成的滑动层铺设在桥梁上,滑动层能消除伸缩变形产生的应力。
3、全标段共铺设了CRTSII型轨道板21012块。
二、施工依据的规范和文件1、《客运专线铁路CRTS II型板式无砟轨道混凝土轨道板(有挡肩)暂行技术条件》(科技基【2008】173号)2、《客运专线铁路无砟轨道支承层暂行技术条件》(科技基【2008】74号)3、《客运专线铁路CRTS II型板式无砟轨道水泥乳化沥青砂浆暂行技术条件》(科技基【2008】74号)4、《客运专线铁路CRTS II型板式无砟轨道混凝土轨道板暂行技术条件》(科技基【2008】74号)5、《客运专线铁路无砟轨道充填式垫板暂行技术条件》(科技基【2008】74号)6、《客运专线铁路CRTS II型板式无砟轨道滑动层暂行技术条件》(科技基【2009】88号)7、《客运专线铁路CRTS II型板式无砟轨道高强度挤塑板暂行技术条件》(科技基【2009】88号)8、《客运专线无砟轨道铺设条件评估技术指南》(铁建设【2006】158号)9、《客运专线无砟轨道铁路工程施工技术指南》(TZ216-2007)10、《客运专线铁路无砟轨道充填层施工质量验收补充标准》(铁建设【2009】90号)11、《客运专线铁路无砟轨道铁路工程施工质量验收暂行标准》(铁建设【2007】85号)12、《高速铁路CRTS II型板式无砟轨道施工质量暂行标准》(铁建设【2009】218号)13、《客运专线铁路CRTS II型板式无砟轨道张拉锁件暂行技术条件》(科技基【2009】135号)14、《高速铁路无砟轨道工程施工精调作业指南》(铁建设函【2009】674号)15、《铁路混凝土工程施工质量验收补充标准》(铁建设【2005】160号)16、《高速铁路工程测量规范》(TB10601-2009)17、《铁路建设工程监理规范》(TB10402-2007)18、铁道第三勘察设计院北京至石家庄客运专线设计的相关图纸及其它相关标准图、参考图19、京石客专公司无砟轨道梁面、路基面质量验收实施细则20、京石客专公司无砟轨道桥面防水层施工质量管理实施细则21、京石客专公司无砟轨道水泥乳化沥青砂浆现场工艺性试验管理办法22、京石客专公司无砟轨道施工首段工序验收实施细则三、施工主要工序和设备1、施工主要工序施工准备→测设基桩→桥上滑动层铺设→硬泡沫板铺设→混凝土底座施工(路基支撑层)→定位圆锥安装→轨道板粗放→轨道板精调→水泥沥青砂浆灌注→轨道板纵向连接→轨道板锚固和剪切连接→挡块施工→质量检查。
高速铁路CRTSⅢ型板式无砟轨道施工工法1.前言CRTSⅢ型板式无砟轨道是在总结了我国既有无砟轨道研究与应用经验的基础上,结合无砟轨道技术再创新研发的具有完全知识产权的板式无砟轨道技术体系,该轨道技术改变了板式轨道的限位方式,扩展了板下填充材料,优化了轨道板结构,改善了轨道板弹性及完善了设计理论体系等,以于2009年在成都至都江堰(成灌)城际客运专线开展成套技术工程实验与设计创新,并取得了成功,于2010年12月正式定型为CRTSⅢ型轨道板,正式立项研究。
而武汉城市圈城际铁路是在总结成都至都江堰(成灌)城际客运专线的经验基础上,对CRTSⅢ型板式无砟轨道进行再次设计优化、进一步完善设计理论和设计方法后,研究出的新型CRTSⅢ型板式无砟轨道技术体系。
本工法主要依托于武汉城市圈新建武汉至黄石、新建武汉至咸宁城际铁路试验段工程对CRTSⅢ型板式无砟轨道三大关键部位施工进行开发,以形成一套完整的CRTSⅢ型板式无砟轨道施工工艺,总结形成《CRTSⅢ型板式无砟轨道施工工法》。
2014年4月23日,经天津市高新技术成果转化中心组织鉴定,关键技术达“国际先进”水平,成功创造了“一种自密实混凝土灌注料斗阀门(201420133839.8)、CRTSШ型板式无砟轨道自密实混凝土模板(201420131323.X)、CRTSШ型板式无砟轨道自密实混凝土压紧装置(201420133820.3)、一种CRTSШ型板式无砟轨道底座板伸缩缝模板(201420133896.6)、一种CRTSШ型板式无砟轨道底座板(201420133946.0)”五项实用新型专利。
武黄、武咸城际铁路CRTSⅢ型板式无砟轨道铺设成功为CRTSⅢ型板整体技术体系的完善做了较好的基础积累,该技术可为后续施工及设计提供借鉴,意义重大。
2.工法特点2.1 技术先进,精度高。
CRTSⅢ型板式无碴轨道采用板间不连接的单元分块式结构, 并适应ZPW--2000轨道电路的结构型式;每块板有独立的数据文件,线路上位置的固定,采用精调软件控制、定位、精调爪、螺栓扳手和压紧装置固定轨道板,铺设位置准确、精度高。
Value Engineering • 77 •高速铁路桥梁CR T S m型板式无砟轨道施工技术应用Application of CRTS 芋 Type Slab Ballastless Track in High Speed Railway Bridge Construction陈严生 CHENYan-sheng(中铁十七局集团第五工程有限公司,太原030032)(China R ailw ay 17th B ureau G rou p F ifth Engineering Co ., Ltd ., Taiyuan 030032, China )摘要:CRTSn 型板式无砟轨道是我国自主研发的一种新型无砟轨道,新建郑徐铁路客运专线开兰特大桥无砟轨道采用CRTSn型板式无砟轨道施工技术,通过工程实践简要介绍CRTSn 型板式无砟轨道施工技术施工关健环节,常见问题及处理措施。
Abstract : CR TS 芋 slab ballastless track is a n ew kind o f ballastless track developed by China . CR TS 芋 slab track construction technology is applied to th e ballastless track o f Kai-Lan B ridge in Zhengzhou-Xuzhou Passenger D edicated Line . The CRTSH key points ,com m on problem s and treatm en t m easures for construction o f slab ballastless track are introduced based o n practical engineering .关键词:客运专线;CRTSn 型板无砟轨道;施工技术Key words : passenger dedicated line ; CRTSH ballastless track ; construction technology 中图分类号:U 215.5 文献标识码:A 文章编号:1006-4311(2017)04-0077-02〇引言郑徐客运专线是国家“四纵四横”铁路专线网中徐 州至兰州客运专线的组成部分。
CRTSⅢ型板式⽆砟轨道常见施⼯质量问题及控制关键技术CRTSⅢ型板式⽆砟轨道是我国拥有⾃主知识产权的⼀种新型⽆砟轨道结构。
经过10余年研发及应⽤,在理论分析、结构设计、试验研究、⼯程材料、建造技术、养护维修、结构耐久性以及技术经济性等⽅⾯的研究⼯作基本完成[1-2],形成了先张法预应⼒轨道板、后张法预应⼒轨道板和普通钢筋混凝⼟轨道板3种基本板型。
这些板型结合“纵向单元、垂向复合”设计思路,可适应多种⽓候环境条件,且具有较好的耐久性和可维修性。
与有砟轨道相⽐,⽆砟轨道具有少维修的优点,但当出现质量问题时,也具有难维修的缺点。
前期⼯程实践表明,线路运营中的主要问题是建设阶段遗留下的问题。
尽管CRTSⅢ型板式⽆砟轨道结构在研发时考虑了可更换维修条件,但是⼀旦投⼊运营,更换难度与成本依然较⼤。
为减少施⼯过程返⼯及运营阶段维修管理作业量,本⽂总结CRTSⅢ型板式⽆砟轨道施⼯技术[3-8],分析施⼯过程中容易出现的质量问题[9-11]及其产⽣原因,并提出相应的解决措施,为后续相关⼯程质量控制提供参考。
1 CRTSⅢ型板式⽆砟轨道结构CRTSⅢ型板式⽆砟轨道(如图1所⽰)是在吸收CRTSⅠ,CRTSⅡ型板式和双块⽆砟轨道结构技术特点基础上,通过结构优化再创新研制⽽成的。
路基、桥梁、隧道地段结构形式统⼀,均采⽤单元结构,由钢轨、扣件、轨道板、⾃密实混凝⼟层、钢筋混凝⼟底座、隔离层及限位结构等部分组成。
轨道板在⼯⼚预制;⾃密实混凝⼟层现场浇筑,与轨道板形成复合结构并与底座预留凹槽形成榫卯限位;路基和隧道地段2~4块轨道板设置⼀段底座,桥梁地段每块轨道板设置⼀段底座;复合结构与底座之间设置隔离层。
图1 CRTSⅢ型板式⽆砟轨道结构⽰意2 施⼯质量问题及控制技术2.1 轨道板铺设精度2.1.1 主要问题轨道板承受列车荷载并提供扣件接⼝,其铺设精度直接影响轨道⼏何状态。
常见问题有:①铺设精度偏差超出验收标准,但仍在建设期扣件有效调整范围内,⽅向调整⼀般不⼤于扣件左右调整量的⼀半,⾼程调整不超过10 mm。
桥梁板式无碴轨道施工技术中国混凝土网 [2006-7-18] 网络硬盘我要建站博客常用搜索提要:本文介绍了用于秦沈客运专线桥梁上的一种新型轨道结构——板式无碴轨道施工技术,主要包括轨道板的制造、CA 砂浆的研究及配制,混凝土底座及凸形挡台施工、轨道板铺设、CA 砂浆灌注、充填式垫板的施工等一系列关键技术,对城市高架轻轨、高速铁路桥梁等工程推广此项新技术具有重要参考价值和实用价值。
关键词:客运专线;桥梁;板式无碴轨道中图分类号:U215 文献标识码:A1 前言随着我国铁路运营速度的不断提高,有碴轨道在列车荷载反复作用下轨道残余变形积累很快,从而导致轨道高低不平顺,影响旅客乘坐的舒适性,增大轨道养护维修工作量。
板式无碴轨道是用双向预应力轨道板及CA 砂浆替换传统有碴轨道的轨枕和道碴的一种新型轨道型式。
由于板式无碴轨道具有结构简单、具有足够的强度和稳定性及设有提高轨道弹性的水泥沥青砂浆垫层而优于其它无碴轨道结构,被很多专家认为是一种应该在高速铁路广泛采用的结构形式。
与有碴轨道相比,板式轨道具有更好的整体性、稳定性和耐久性,虽然技术较复杂,一次性投资要略大于有碴轨道,但其使用寿命周期长,通常使用周期为30年,轨道板在使用周期内基本上免维修,运营过程中维修工作量可减少70以上,能够有效缓解高速铁路运营与维修的矛盾,且高速行车时的安全性和舒适性亦优越于普通轨道。
秦沈客运专线是我国第一条设计时速大于200 km/h的高速铁路,其中双何特大桥全长703.33 m,梁体为单线箱梁,上下线并行。
桥梁位于两个曲线及其间的夹直线上,纵坡为9.9‰ 和一1.5‰ 。
为提高旅客乘坐的安全性、舒适性,减小桥梁振害及减少运营期间的维修工作量,满足高速铁路运营的要求,梁上采用的板式无碴轨道,为京沪高速铁路的施工做了一定的技术准备。
2 结构设计及特点板式无碴轨道是由预制的轨道板、混凝土底座,以及介于两者之间的CA 砂浆填充层组成,在两块轨道板之间设凸形挡台以承受纵、横向水平力。
秦沈客运专线双河特大桥板式无碴轨道特点是:结构高度699mm,3.2 t/延m。
具有结构高度低、自重轻、现场混凝土施工量少、可修复行强、施工需专用设备等特点。
3 施工工艺要点3.1 轨道板制造轨道板是板式无碴轨道的重要组成部分之一,列车荷载和振动等产生的巨大能量先由其传给桥梁。
轨道板的平整度、预埋件位置直接影响铺轨质量及桥梁振动,因此,轨道板制造精度要求非常高,而且必须具有很高的平整度和抗裂性。
轨道板设计为双向预应力混凝土构件。
轨道板C60混凝土,要求弹性模量为35GPa,分A、B、C、D、E五种型式,其中A型外形尺寸为4930×2400X190 mm ,B、C 型为4765X 2400X190 mm ,D、E型为3765X2400X190 mm。
轨道板的平整度及预埋件、预留管道位置的精度主要通过模型的精度来控制。
钢模型底模平整度保证在0.5 mm 范围内,各预埋件在底模上的预留安装偏差不得大于0.5 mm,采用螺栓固定安装预埋件。
钢模板允许偏差:长度、宽度为士1.5 mm,高度为+0~一1.5 mm,预埋件及平整度为±0.5 mm。
钢筋加工及绑扎在专用模具上完成,预应力孔道采用ф18mm 的钢管成孔,混凝土浇注过程中以底振为主,面振为辅,采用蒸汽养护,静停3h后升温,升温、降温速度不超过每h15 C,恒温控制在4O~50 C。
最高温度不大于55℃,恒温的持续时间在6 h以内。
张拉时先对称先张拉横向孔道,后张拉纵向孔道,纵向双层孔道每排同时对称张拉。
采用张拉力控制,伸长值量作为校核,并严格控制夹片回缩量。
3.2 底座混凝土基础底座混凝土基础是板式无碴轨道基础的找平层及桥上曲线段超高设置的调整层,施工的关键是施工控制测量及凸形挡台的准确定位。
凸形挡台模型的安装,曲线段遵循调平、对中、再调平的原则,反复调整直至满足要求为止。
3.3 轨道板铺设不同型号的轨道板按设计位置要求放置,曲线梁段每块轨道板必须按相应的偏转角放置,并在凸形挡台上标出线路中心线。
轨道板利用专用机具设备精确调整对位,前后和左右方向由调整器旋转丝杠进行调整,上下由松紧倒链或调整螺栓进行调整。
其允许偏差:与线路中心线的偏差2mm,支撑点处板顶高程偏差±1 mm,前后位置偏差±3mm。
3.4 CA 砂浆研制与施工3.4.1 CA砂浆特性CA 砂浆由水泥、乳化沥青、细骨料(砂)、混合料、水、铝粉、各种外加剂等多种原材料组成,其基本配方为:水泥225 kg,膨胀混合物45 kg,乳化沥青480kg,砂600 kg,铝粉0.04 kg,消泡剂0.15 kg,引气剂2.5 kg,水105 kg。
CA 砂浆作为板式轨道混凝土底座与轨道板问的弹性调整层,是一种具有混凝土的刚性和沥青的弹性的半刚性体。
CA 砂浆调整层是板式无碴轨道结构的关键组成部分,其性能的好坏直接影响板式轨道应用的耐久性和维修工作量。
为此,秦沈客运专线桥上无碴轨道课题组对板式轨道CA 砂浆开展了为期3年的科研攻关工作,在科研、设计与施工部门的大力配合下,课题研究取得了可喜的成果,其各项性能指标均达到或接近国外同类产品的质量水平,为板式无碴轨道结构在我国快速客运专线的首次铺设创造了条件。
在秦沈客运专线桥上桥式轨道CA 砂浆的研究与试验过程中,为少走弯路,加快研究进程,在借鉴日本新干线板式轨道CA 砂浆研究资料的基础上,结合我国前期的研究成果,针对性地提出了板式轨道CA 砂浆的性能指标及相应的试验方法。
其主要性能指标要求如下表。
从CA 砂浆的材料组成及性能指标要求可以看出,其技术的开发难度较大。
材料既要满足强度和弹性要求。
又必须具有必要的施工性能,同时考虑到CA 砂浆在寒冷地区使用工况,还应具备抗冻融性能,以保证其长期使用的耐久性。
3.4.2 主要技术性能指标与试验方法3.4.2.1 抗压强度(1)由轮重决定的抗压强度板式轨道CA砂浆填充于轨道板板底及凸形挡台四周,因此其抗压强度的确定取决于设计轮重以及作用于凸形挡台上纵向力的大小。
设计轮重作用下轨道板下CA 砂浆所需要的抗压强度为0.1 MPa。
(2)由作用于凸形挡台上纵向力决定的抗压强度凸型挡台与轨道板间的CA砂浆填充层所承受的最大合力F为:板式轨道CA 砂浆的抗压强度主要由凸形挡台周围的CA砂浆层的受力条件所决定。
秦沈客运专线板式轨道CA砂浆设计时还应考虑其抗冻性能,相应的强度指标也要提高。
但强度指标太高,弹性模量相应增大,势必影响适度弹性的设计初衷,为此,借鉴日本板式轨道CA 砂浆的强度指标,设计要求CA 砂浆28 d的抗压强度指标应在1.8~2.5 MPa范围内。
为提高CA 砂浆抗初期冻害性,提高施工工效,设计中,相应地对不同龄期的强度提出要求。
(3)试验方法CA砂浆抗压强度试验采用“单轴压缩法”进行。
试件为70.7×70.7×70.7 mm 的立方体,利用压力试验机以每min试件变形0.5 mm加载速率匀速加载,当压力不再上升时停止加载,其压力最大值即为该试件在各龄期时的抗压强度。
3.4.2.2 弹性模量在CA 砂浆的强度指标范围内,在配制各种砂浆配方的试验中,进行了大量试验,确定砂浆28d的弹性模量范围在200~600 MPa之间。
CA 砂浆弹性模量试验方法与抗压强度基本相同,试件为70.7×70.7×220 mm 的棱柱体,利用压力试验机以试件变形0.5 mm/min加载速率匀速加载,加载最大值为抗压强度的1/3。
由于CA 砂浆具有一定的塑性,弹性模量试验曲线实际上为一螺旋线,试验中取第四次加载曲线起始点的割线斜率为该试件的弹性模量。
3.4.2.3 流动度与可工作时间CA 砂浆流动度与可工作时间是保证板式轨道CA 砂浆现场灌注施工质量的重要指标。
为确定CA砂浆流动度指标,试验采用容积为640ml的特制漏斗进行测定,将拌和好的砂浆注入漏斗、自打开出口开始,至砂浆全部流出所经历的时问,即为流动度。
适宜的流动度对于砂浆的性能与灌注质量非常重要,流动度过小,砂浆材料会出现离析,影响其强度和耐久性;流动度过大,砂浆粘稠,就难以将轨道板与基础间的空隙填充密实,影响其强度和耐久性,直接影响灌注质量。
结合大量试验,确定流动度指标在16~26s范围内。
影响CA 砂浆流动度的因素很多,在拌和方式,投料顺序一定的条件下,流动度随温度、外加剂、主要原材料的配合比、水灰比的变化而不同。
CA砂浆的可工作时问是指CA 砂浆处于规定的流动度范围内所经历的时问,考虑到现场从砂浆拌和站配制好、运输过程、灌注作业所需要的时问,规定CA 砂浆的可工作时问不少于30min。
CA砂浆流动度的试验采用“漏斗法”进行。
将配制好的砂浆注入漏斗内,打开出口阀门,同时开始计时,砂浆从漏斗全部流出所经历的时问,即为砂浆的流动度——t(以s计)。
可工作时间的试验方法与流动度相同,但同一试样每隔5 min做一次,并绘出流动度曲线,既流动度与累计时问的对应关系。
砂浆在流动度设计范围内所经历的时间即为砂浆的可工作时间——T(以min计)。
3.4.2.4 膨胀率CA 砂浆灌注后固化,一般会产生2~3 mm 的收缩,因此直接影响板底砂浆的填充效果,为此设计中必须考虑在原材料中添加适量的膨胀剂(如铝粉等)使砂浆产生膨胀。
设计中要求CA 砂浆膨胀率应控制在1~3 之内。
CA砂浆膨胀率采用量筒、游标卡尺进行测定。
将配制好的CA 砂浆注入量筒内,其上加上一块玻璃板,用游标卡尺测量玻璃板至砂浆表面的高度。
3.4.2.5 材料分离度保证CA砂浆固化体的匀质性,采用材料分离度作为匀质性评价的指标,借鉴日本板式轨道CA 砂浆与我国前期试验的结果,确定CA 砂浆的材料分离度在3以下。
材料分离度试验采用“等分法”进行测定。
3.4.2.6 空气含量在CA砂浆的配制过程中导入适量的微小气泡,可提高抗冻性,这种气泡可缓和CA 砂浆层内的自由水等受冻害膨胀时产生的冻晶压力,根据日本铁路的研究结果,空气含量达8以上时,抗冻害性有显著的提高,但若超过16,砂浆层的密实度降低,影响其抗压强度。
为此,设计中将空气量控制在8~12 范围内。
在CA 砂浆内导入空气后,相应地要采取添加适量的消泡剂以及采用特殊的拌和方法等措施,以提高CA砂浆的质量。
空气量的试验主要是实测砂浆试件的单位容积的重量。
为得出空气量的大小,在砂浆配制前,称量砂浆所用原材料的重量,了解原材料的比重,从而计算出砂浆理论单位容积重量。
3.4.2.7 耐久性(抗冻性能)普通的CA 砂浆容易遭受冻害,表层会发生结构松疏和局部掉落的情况,必须研制并开发出抗冻性CA 砂浆。
(1)冻害分析CA 砂浆受冻害劣化的情况,主要分固结体的冻害和未固结或未达龄期前的初期冻害两种。