由三视图确定立体图形
- 格式:doc
- 大小:247.50 KB
- 文档页数:4
第3期利用三视图确定正方体的个数三规则:主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
应用如图表示某个由小正方体搭成的几何体的俯视图,俯视图无法表示该几何体的高度,用3代表右上角这个位置有3个立方体。
用2表示左上角这个位置有2个立方体,1表示右下角这个位置有1个立方体,此时,我们不但可以轻易地画出该几何体的其它两个视图,也可以得知该物体一共由1 2 3=6个小正方体组成.借助俯视图的这个功能,我们在确定一个几何体由多少个小正方体组成的时候,可以先画出俯视图,再根据主视图与左视图,确定俯视图各位置上的立方体的个数,从而快速找出正方体的个数.例1 如图是由一些相同的小正方体构成的立体图形的三视图,那么构成这个立体图形的小正方体有_______个解析第一步:从俯视图入手,结合主视图,从正面看过去,也就是从如下图的箭头方向看过去,可以确定的是俯视图最右侧只有一层,标上数字1,左边这列最高有两层,具体数目还不能确定第二步:结合左视图,从箭头方向看过去,右侧有两个一层的,所以马上可以确定如图两个位置的数量.由于左视图的最左侧最高有2个,所以,沿箭头方向看过去最左侧最高有2个,所以,俯视图的空白处应填2,如图,所以,一共有2 1 1 1=5个正方体.点拨:此立体图形的三视图都已知,所以俯视图结合主视图和左视图,容易明确个位置上的正方体的个数.例2 一个几何体由若干个大小相等的小立方体组成,下面分别是此几何体的主视图,和俯视图,该几何体至少是用错少个小立方块搭成的.解析此题已经存在俯视图,还是从俯视图出发考虑,因为主视图已经确定,如蓝色所示,右侧两个位置最高只有一个,所以填写数字1.而最左侧最高有两个,因为是最少是多少个,所以左侧三个位置,只要有一个位置是2个,其余都是1个即可,如图,有下面三种可能总数都为2 2 2=6个.此时顺便还可以求出最多有多少个.如图,只需要左侧最高都是2个即可,所以,最多有2 2 2 1 1=8个.点拨:此题已知主视图与俯视图,可利用主视图在俯视图的基础上填写添加数字,但由于左视图不确定,所以,可能有多种情况.例3 如图,一个几何体是由若干个小正方体堆积而成的,主视、左视图如下,要摆成这样的图形,至少需要多少块小正方形,最多需要多少块小正方体.解析此题没有俯视图,不妨尝试去画出俯视图,主视图和俯视图的长要相等左视图和俯视图的宽要相等.已知俯视图的长和和宽也不一定能完全确定俯视图的形状,但是可以确定俯视图最大可能是什么由题意,俯视图最大可能是首先算出几何体最多可能是多少个,再次基础上,减少正方体的个数,在主视图和左视图不变的前提下,看最少能剩下几个.结合主视图,从前面看俯视图,右侧两个最高是1,所以可以确定右侧两列的最多全是1结合左视图,从左边看俯视图,最上面行和最下面的行最高都是2,如图.最后确定左视图中间的,最高为1 .此时我们得出的小正方体最多可能是2 2 1 1 1 1 1 1 1=11个.如图,减少4个,不影响主视图再减少1个,不影响左视图不能再减少了,所以,此时的数量2 2 1 1=6即是最少需要的正方体个数.点拨:此题已知主视图与左视图,但是不知道俯视图,利用投影的原则,主视图和俯视图的长要相等,左视图和俯视图的宽要相等.尝试画出俯视图的最大可能,首先确定出几何体的最多可能的正方体的个数,在此基础上减少正方体的个数,但不改变主视图与俯视图,到最后不能再减少时,即可确定最少的可能的个数.《义务教育数学课程标准》指出,在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
由三视图判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。
解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。
通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人.”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。
A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3列。
由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。
故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。
各行、各列小正方体的个数如俯视图中所表示.这堆货箱共有3+1+1+2+1+1=9(箱)。
二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可能是()。
分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3列。
第1列均为1层,第2列最高2层,第3列最高3层。
左视图为A时,第1行、第2行最高均为3层。
几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,,但不能同时为1层;第3列两行均为3层。
此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个.左视图为B时,第一行均为1层,第二行最高为3层。
由三视图判断几何体
能量储备
由几何体的三种视图想象其立体形状可以从如下途径进行分析:
(1)根据主视图想象物体的正面形状及上、下和左、右位置,根据俯视图想象物体上面形状及左、右和前、后位置,再结合左视图验证该物体的左侧面形状,并验证上、下和前、后位置;
(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线。
通关宝典
★基础方法点
方法点1:由三种视图还原几何体时,要了解简单的、常见的规则物体的三种视图,还要善于分析和想象。
例:如图527所示,是某一物体的三种视图,请说明它是一个什么形状的物体。
解:该物体是圆锥和圆柱的组合体,如图528所示。
分析:由三种视图可知,该物体的上半部分是圆锥,下半部分是圆柱,所以该物体是圆锥和圆柱的组合体
方法点2:主视图能体现物体的左右长度、上下高度;俯视图能体现物体的左右长度、前后宽度;左视图能体现物体的上下高度、前后宽度.通过观察三种视图可以想象出几何体的立体图形.
例:已知一个几何体的三种视图如图5220所示,则该几何体是( )
解析:A图的主视图、左视图均为等腰三角形,B图的左视图、俯视图均为矩形,C图的俯视图的外轮廓线为四边形,由此可排除A,B,C选项.答案:D,
蓄势待发
考前攻略
中考题和教材习题都是考查根据视图判断几何体的形状,只不过教材习题是根据两种视图与画出的几何体进行对照,比较容易判断,而中考题是根据三种视图直接分析和想象出几何体,难度有所增加,通常采用排除法进行选择。
完胜关卡。
5.2视图(3)
第3课时由三视图描述几何体学案
学习目标
1.会辨别复杂的几何体的三视图,能由三视图想象出简单几何体的形状,并且能画出草
图。
(重点)
2.会画复杂的几何体的三视图,会根据复杂的三视图判断实物原型。
(重点)
3.理解三视图与几何体之间的联系。
(难点)
教学过程
活动一:情景引入激发兴趣
活动二:实践探究交流新知
1.右图是某种零件,你知道工人师傅是怎样
制造这个零件的吗?画出该几何体的三视图。
主视图左视图
俯视图
2.右图是某种机器零件三种视图,你知道工
人师傅是怎样制造这个零件的吗?
主视图左视图
俯视图
3.如图所示是一个立体图形的三视图,请根
据三种视图说出立体图形由正方体如何组成?
主视图左视图
俯视图
活动三:游戏激趣实践探究
社会主义核心价值观的内容是什么?
富强:已知某立体图形的俯视图如图所示,尝试画
出它的主视图和左视图。
主视图左视图
俯视图
民主:画出如图所示几何体的三视图。
主视图左视图
俯视图
文明:以下三种视图,是一个立体图形的三
视图,你能描述这个立体图形的形状吗?
主视图左视图
俯视图
和谐:如图所示是一个物体的三种视图,请
大家想象该物体的形状?
主视图左视图
俯视图
自由:某商品的外包装盒的三视图如图所示,
则这个包装盒是什么几何体?其体积是( )
主视图左视图
俯视图
A. B.
C. D.
平等:下面三视图对应的几何体是()
答案:C
主视图左视图
俯视图
3
200cm
π3
500cm
π
3
1000cm
π3
2000cm
π
公正:下面所给的三视图表示什么几何体?
主视图 左视图
俯视图 法治:下面是一种几何体的三种视图,说出该几何体。
主视图 左视图 俯视图 爱国:下列是一个由若干正方体组成的立体图形的三种视图,它由几个正方体组成? 主视图 左视图 俯视图
敬业:下列三种视图对应的几何体是什么?
主视图 左视图
俯视图 诚信:下列三种视图对应的几何体是什么?
主视图 左视图 俯视图 友善:图中三种视图是哪种几何体的?怎么放置?
主视图 左视图
俯视图
活动四:开放训练应用检测
1.如图所示是由若干个边长为1的正方体组
合成的一个立体图形的三视图,请说出该几何体
由几个正方体组成?位置是什么?
主视图左视图
俯视图
2.如图是一个几何体的三视图,这个几何体
是()
主视图左视图
俯视图
3.(2018河北)如图所示三视图对应的几何
体是()
主视图左视图
俯视图
活动五:这节课有什么收获?。