投影与直观图
- 格式:ppt
- 大小:1.68 MB
- 文档页数:34
投影,直观图和三视图【知识概述】柱、锥、台、球的结构特征是基础,以长方体为载体考查线线、线面、面面的关系是重点,三视图及直观图属新增内容,在高考中频繁出现,大多为由三视图确定原几何体的表面积与体积,多以选择题、填空题出现,难度不大.本节课通过知识的梳理和典型例题的讲解,使同学们理解和掌握空间几何体的结构特征、直观图和三视图的相关知识,并提高学生的空间想象能力、抽象概括能力以及几何直观能力.1.在三视图中,主视图反映物体的长与高的位置关系;俯视图反映物体的长与宽的位置关系;左视图反映物体的高与宽的位置关系.归纳口诀:长对正,高平齐,宽相等.2.斜二测画法的一般步骤:①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox 、Oy ,再作Oz 轴,使∠xOz =90°,且∠yOz =90°.②画直观图时,把它画成对应的轴O 'x '、O 'y '、O 'z ',使∠ x 'O 'y '= 45°(或135°),∠ x 'O 'z '= 90°,x 'O 'y '所确定的平面表示水平平面.③已知图形中平行于x 轴、y 轴、z 轴的线段,在直观图中分别画成平行于x '轴、y '轴、z '轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的一半.⑤画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.【学前诊断】1. [难度] 易一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A.球B.三棱锥C.正方形D.圆柱2.[难度] 中一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m .3.[难度] 中若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .【经典例题】例1.已知正三角形ABC 的边长为a ,那么ABC ∆的平面直观图'''A B C ∆的面积为( )A. 2B. 2C.28a D. 216a例2.如图所示,用斜二测画法画一个水平放置的平面图形得到一个边长为1的正方形,则原来图形的形状是( )例3.设如图所示,甲、乙、丙是三个空间几何体的三视图,甲、乙、丙对应的标号正确的是( )①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B. ②①③C. ①②③D. ③②④例4.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )例 5.如右图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )例 6.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )例 7.若几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.3352cm 3B.3320cm 3C.3224cm 3D.3160cm 3例 8.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.2B.1C.23D.13 例 9.一个几何体的三视图如图所示,则这个几何体的体积为 .例 10.某几何体的三视图如图所示,则它的体积是 .【本课总结】1.要注意牢固把握各种几何体的结构特征,利用它们彼此之间的联系来加强理解.2.以长方体为载体,借助实物模型,加深对几何体结构特征的理解和掌握.3.理解直观图与三视图的关系,能根据三视图画出直观图并求几何体的表面积和体积【活学活用】1.[难度] 易某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( ) 2. [难度] 中某几何体的三视图如图所示,它的体积为( )A.12π B.45π C.57π D.81π3.[难度] 难一个几何体的三视图如图所示,则该几何体的表面积为_________.。