说明在增益介质内
- 格式:ppt
- 大小:3.20 MB
- 文档页数:33
激光产生的基本原理
激光是一种高度聚焦、高能量密度、单色性好的光束,其产生的基本原理是通
过受激辐射过程。
激光的产生需要三个基本条件,增益介质、能量泵、共振腔。
在这三个条件的作用下,激光才能被成功产生。
首先,增益介质是激光产生的基础。
增益介质是指能够吸收外界能量并在受激
辐射作用下放出光子的物质。
常见的增益介质包括气体、固体、液体等。
当增益介质受到外界能量的激发时,其内部的原子或分子将处于激发态,这种激发态是不稳定的,会很快退激发到基态,放出光子。
这些光子会与周围的原子或分子发生受激辐射,从而形成光子的连锁反应,最终形成激光。
其次,能量泵是激光产生的关键。
能量泵是指能够向增益介质输入能量的装置,通常是激光器或者其他光源。
能量泵向增益介质输入能量,使得增益介质内部的原子或分子处于激发态,从而为激光的产生提供必要的能量。
最后,共振腔是激光产生的重要环节。
共振腔是指由两个高反射镜构成的腔体,其中一个镜子对光具有很高的反射率,另一个镜子对光具有一定的透射率。
共振腔的作用是使得增益介质中的光子在腔内来回多次反射,从而增强光的强度和单色性。
当光子在共振腔内得到足够的增强后,就可以从透射镜射出,形成激光。
综上所述,激光的产生基本原理是通过增益介质吸收外界能量并受激辐射放出
光子,需要能量泵向增益介质输入能量,并通过共振腔增强光的强度和单色性。
这三个条件共同作用下,才能成功产生激光。
激光因其高能量密度、单色性好等特点,被广泛应用于医疗、通信、材料加工等领域。
对激光产生的基本原理有深入的了解,有助于更好地应用和发展激光技术。
《激光原理》习题解答作者:周炳琨等 国防工业出版社 第五版解答人:广东海洋大学理学院光电科学系 石友彬(2008年修正版)习题解答说明:习题解答参考蓝信鉅的激光技术、陈家璧版激光原理及应用等,在此对上述作者表示敬意! 本章习题是在我系前外聘教授郭振华习题解答基础上汇总而成,在此表示衷心感谢。
1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136)ccυυνν-+=110υλν=由以上两个式子联立可得:0λυυλ⨯+-=C C代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。
证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。
在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。
以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫ ⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 120 显然,光强是以频率cυν⋅2为频率周期变化的。
光学谐振腔原理一、引言光学谐振腔是一种光学器件,利用反射镜将光束反复地来回传播,形成驻波场,从而增强光的强度。
它广泛应用于激光器、光纤通信等领域。
本文将详细介绍光学谐振腔的原理。
二、基本结构光学谐振腔由两个反射镜组成,其中一个镜子是半透明的,可以将一部分光线透过去。
当激光器发出一束单色激光时,它被反射镜反射回来,在两个反射镜之间来回传播,并在其中形成驻波场。
三、驻波场的形成当激光束从一个反射镜进入谐振腔时,它被反射回来,并在另一个反射镜上发生多次反射。
如果两个镜子之间的距离是整数倍的波长,则会形成一个驻波场。
在这个场中,电磁波的振幅和相位都是固定不变的。
四、增益介质为了使谐振腔中的激光能够不断地增强,需要在腔内加入一个增益介质。
增益介质是一种能够放大光信号的物质,如激光晶体、半导体等。
当激光通过增益介质时,它会被放大,并在反射镜上反射回来。
五、谐振条件为了使光学谐振腔正常工作,需要满足一定的谐振条件。
首先,两个反射镜之间的距离必须是整数倍的波长。
其次,增益介质必须具有足够的增益,以补偿光损失。
六、应用领域光学谐振腔广泛应用于激光器、光纤通信等领域。
在激光器中,它可以使激光输出更加稳定和强大。
在光纤通信中,它可以使信号传输更加远距离和高速。
七、总结本文详细介绍了光学谐振腔的原理和基本结构,以及驻波场的形成、增益介质、谐振条件和应用领域等方面。
通过深入了解这些知识点,我们可以更好地理解光学谐振腔的工作原理,为实际应用提供更加有效的支持。
实验五 光纤激光器与光纤放大器的设计实验一、实验目的1、掌握掺铒有源光纤的增益放大特性;2、掌握光纤激光器的原理及其基本结构,掌握光纤激光器的设计及其波长调谐方法;3、掌握光纤放大器的原理及其基本结构,掌握光纤放大器的设计以及基本特性参数的测试方法。
二、实验原理(一)光纤激光器的基本结构光纤激光器和其它激光器一样,由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激励光跃迁的泵浦源三部分组成。
纵向泵浦的光纤激光器的结构如图1所示。
图1 光纤激光器原理示意图一段掺杂稀土金属离子的光纤被放置在两个反射率经过选择的腔镜之间,泵浦光从左面腔镜耦合进入光纤。
左面镜对于泵浦光全部透射和对于激射光全反射,以便有效利用泵浦光和防止泵浦光产生谐振而造成输出光不稳定。
右面镜对于激射光部分透射,以便造成激射光子的反馈和获得激光输出。
这种结构实际上就是Fabry-perot 谐振腔结构。
泵浦波长上的光子被介质吸收,形成粒子数反转,最后在掺杂光纤介质中产生受激发射而输出激光。
激光输出可以是连续的,也可以是脉冲形式的,依赖于激光工作介质。
对于连续输出,激光上能级的自发发射寿命必须长于激光下能级以获得较高的粒子数反转。
通常当激光下能级的寿命超过上能级时只能获得脉冲输出。
光纤激光器有两种激射状态,一种是三能级激射,另一种是四能级激射,图2(a)、(b)分别表示三能级和四能级系统的跃迁系统的简化能级图。
两者的差别在于较低能级所处的位置。
在三能级系统中,激光下能级即为基态,或是极靠近基态的能级。
而在四能级系统中激光下能级和基态能级之间仍然存在一个跃迁,通常为无辐射跃迁,电子从基态提升到高于激光上能级的一个或多个泵浦带,电子一般通过非辐射跃迁到达激光上能级。
泵浦带上的电子很快弛豫到寿命比较长的亚稳态,在亚稳态上积累电子造成粒子数多于激光下能级,既形成粒子数反转。
电子以辐射光子的形式放出能量回到基态。
这种自发发射的光子被光学谐振腔反馈回增益介质中诱发受激发射,产生与诱发这一过程的光子性质完全相同的光子,当光子在谐振腔内所获得的增益大于其在腔内损耗时,就会产生激光输出。
激光器光路系统的组成-概述说明以及解释1.引言1.1 概述激光器是一种将电能转化为激光能的设备,它在现代科技和工业领域发挥着重要作用。
激光器的光路系统是激光器的核心组成部分,它决定了激光器的性能和输出功率。
光路系统由多个元件组成,包括透镜、反射镜、光栅、偏振片等,它们共同构成了光学腔。
通过精心设计和优化光路系统,可以提高激光器的效率和稳定性,实现更精确的激光输出。
本文将介绍激光器光路系统的组成要素及优化设计方法,以探讨如何提升激光器的性能和应用价值。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分中,首先概述了激光器光路系统的重要性,然后介绍了文章的结构和目的,为读者提供了整体的阅读框架。
正文部分分为三个小节,分别是激光器的基本原理、光路系统的组成要素以及激光器光路系统的优化设计。
在这部分,将会深入探讨激光器的工作原理、光路系统中各个要素的作用和功能,以及如何优化设计光路系统以提高激光器的性能。
在结论部分,将对激光器光路系统的重要性进行总结,展望未来的发展趋势,并以简洁的结束语来概括文章的主要内容,为读者留下深刻的印象。
整个文章结构清晰,逻辑性强,希望能给读者带来新的启发和认识。
1.3 目的激光器光路系统作为激光器的核心部件,其设计和优化对于激光器性能的提升至关重要。
本文的目的在于深入探讨激光器光路系统的组成要素及优化设计策略,帮助读者更好地理解和应用激光器光路系统,提高激光器的输出功率、波长稳定性和光束质量,推动激光技术在各个领域的应用和发展。
同时,本文旨在引起更多研究者对激光器光路系统的关注,促进相关领域的研究和合作,为激光技术的进步和创新做出贡献。
2.正文2.1 激光器的基本原理激光器是一种能够产生聚焦、一定波长和相干性极高的光束的装置。
其基本原理是通过对物质进行激发,使之产生受激辐射,从而产生激光。
在激光器中,主要有三个要素:激发源、增益介质和谐振腔。
首先,激发源通常是一种能够提供能量的装置,例如激光二极管、氙灯等。
激光增益介质的主要作用是放大光信号,使其达到足够强度的激光。
具体来说,增益介质是一种可以被激发并产生受激辐射的物质,通常是气体、液体或固体。
在激光器中,增益介质会吸收泵浦源提供的能量,然后将其转化为光能。
当增益介质中的粒子受到激发时,它们会从低能级跃迁到高能级,形成粒子数反转。
当这些粒子遇到与其能级差相等的光子时,会受到激发而跃迁到低能级,并同时辐射出与原来光子频率、相位、偏振态以及传播方向都相同的光子。
这个过程称为受激辐射。
受激辐射产生的光子又可以继续激发其他粒子产生更多相同特征的光子,形成一个连锁反应。
这样,在共振腔内就形成了一个强度不断增加、特征高度一致的光束,即激光。
因此,增益介质在激光器中起着至关重要的作用,是实现激光输出的关键因素之一。