一维非定常对流扩散方程非均匀网格上的高阶紧致差分格式
- 格式:pdf
- 大小:290.92 KB
- 文档页数:6
非均匀结构网格上MUSCL和WENO格式的精度
刘君;刘瑜
【期刊名称】《气体物理》
【年(卷),期】2024(9)3
【摘要】基于一维均匀网格条件下构造的差分格式,在实际应用中须推广到非均匀或者曲线网格上,坐标变换过程引入几何诱导误差。
目前常用收敛解误差随着网格细化变化的精度测试方法评估差分格式的精度。
在二维柱坐标均匀网格上,采用1阶迎风、2阶MUSCL和5阶WENO计算流场参数为常数的自由流问题,按照精度测试方法比较收敛曲线斜率,发现1阶迎风的网格收敛精度是2阶的,5阶WENO 的网格收敛精度不到1阶。
理论分析表明,这种精度测试方法与差分格式精度定义不等价,而且所采用的数据无法反映差分格式的固有缺陷,因此,不能用来作为差分格式精度评价指标。
很多研究WENO的文献经常模拟双Mach反射问题、二维Riemann问题等经典算例,把接触间断是否演变成不稳定涡结构作为特征,理论上可以证明涡结构是非物理现象,因此用是否出现涡结构作为算法高精度的论据并不合适。
【总页数】11页(P66-76)
【作者】刘君;刘瑜
【作者单位】宁波大学机械与力学学院
【正文语种】中文
【中图分类】O35
【相关文献】
1.一维非定常对流扩散方程非均匀网格上的高精度紧致差分格式
2.二维非结构网格上的高精度有限体积WENO格式
3.一种非均匀网格上的高精度紧致差分格式
4.二维泊松方程非均匀网格上的高精度紧致差分格式
5.非结构网格上求解二维H-J方程的一种WENO格式
因版权原因,仅展示原文概要,查看原文内容请购买。
一维非稳态对流-扩散方程的隐式中心差分格式一维非稳态对流-扩散方程描述了在一维空间中同时存在对流和扩散过程的物理现象。
这个方程在很多工程和科学领域都有广泛的应用,如热传导、质量传输和流体力学等。
对方程进行数值求解可以得到物理现象的定量解,进而对系统行为进行预测和优化。
对于一维非稳态对流-扩散方程的数值解法中,中心差分格式是一种常用的方法。
中心差分格式是基于中心差分近似的方法,该方法精确地处理了对流和扩散效应,并适用于广泛的问题。
其中,隐式格式是一种特殊的中心差分格式,它在处理高度非稳态情况下的数值解具有优势。
在一维非稳态对流-扩散方程的隐式中心差分格式中,我们假设空间网格的节点为x_i,时间步长为Δt。
方程的解u(x,t)在网格节点x_i处的近似值为u_i^n,其中n表示时间步数。
根据对流和扩散项的中心差分近似,方程可以离散为如下的格式:(u_i^{n+1}-u_i^n)/Δt=α(u_{i-1}^{n+1}-2u_i^{n+1}+u_{i+1}^{n+1})/(Δx^2)-β(u_{i+1}^{n+1}-u_{i-1}^{n+1})/(2Δx)其中,α表示扩散系数,β表示对流系数,Δx表示空间步长。
在隐式中心差分格式中,时间步n+1的解u_i^{n+1}是未知的,我们将其视为待求解的值。
通过将方程的右侧扩散和对流项全部取为n+1步的值,从而得到一个关于u_i^{n+1}的线性方程。
因此,我们可以得到如下的表达式:u_i^{n+1}=(αΔt/(Δx^2)-βΔt/(2Δx))u_{i-1}^{n+1}+(1-2αΔt/(Δx^2))u_i^{n+1}+(αΔt/(Δx^2)+βΔt/(2Δx))u_{i+1}^{n+ 1}这个方程可以用矩阵的形式表示为:AU^{n+1}=BU^n其中,U^{n+1}是一个列向量,包含了所有网格节点i处的解u_i^{n+1};U^n是一个列向量,包含了所有网格节点i处的解u_i^n;A和B是相关系数矩阵,具体的表达式为:A=[1-2αΔt/(Δx^2),αΔt/(Δx^2)+βΔt/(2Δx),0, 0[αΔt/(Δx^2)-βΔt/(2Δx),1-2αΔt/(Δx^2),αΔt/(Δx^2)+βΔt/(2Δx), 0[0,αΔt/(Δx^2)-βΔt/(2Δx),1-2αΔt/(Δx^2), 0...[0,...,0,αΔt/(Δx^2)-βΔt/(2Δx),1-2αΔt/(Δx^2)]B = identity matrix通过求解这个线性方程组,就可以得到隐式中心差分格式下的数值解。
求解一维扩散反应方程的隐式高精度紧致差分格式1概述一维扩散反应方程是描述许多物理过程的数学方程之一,如化学反应、热传导等。
在求解这样的方程时,我们需要寻找适合的数值解法。
本文将介绍一种隐式高精度紧致差分格式,用于求解一维扩散反应方程。
2一维扩散反应方程一维扩散反应方程可表示为:$$\frac{\partial u}{\partial t}=D\frac{\partial^2u}{\partial x^2}+\rho u(1-u)$$其中,$u(x,t)$表示物理量的变量,$D$为扩散系数,$\rho$为反应速率常数。
初始条件为$u(x,0)=u_0(x)$,边界条件为$u(0,t)=u(L,t)=0$,其中$L$为区间长度。
3差分方法为了求解上述方程的数值解,我们需要使用差分方法。
差分方法可以将连续的偏微分方程转化为离散的方程,从而得到数值解。
这里我们采用一阶差分法和二阶差分法分别对时间和空间进行离散化。
时间离散化:$$\frac{\partial u(x,t)}{\partialt}\approx\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}$$空间离散化:$$\frac{\partial^2u(x,t)}{\partialx^2}\approx\frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Deltax,t)}{\Delta x^2}$$将上述两个式子带入到原方程中,得到离散化形式:$$\frac{u_i^{n+1}-u_i^n}{\Delta t}=D\frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}+\rho u_i^n(1-u_i^n)$$其中,$n$表示时间步长,$i$表示空间位置。
4隐式高精度紧致差分格式在上述差分方法中,我们采用了一阶差分法和二阶差分法,这种方法的精度有限。
为了提高求解的精度,可以采用更高阶的差分方法。
应用数学MATHEMATICA APPLICATA2019,32(3):635-642求解一维对流方程的高精度紧致差分格式侯波,葛永斌(宁夏大学数学统计学院,宁夏银川750021)摘要:本文提出数值求解一维对流方程的一种两层隐式紧致差分格式,采用泰勒级数展开法以及对截断误差余项中的三阶导数进行修正的方法对时间和空间导数进行离散.格式的截断误差为O(τ4+τ2h2+h4),即该格式在时间和空间上均可达到四阶精度.利用von Neumann方法分析得到该格式是无条件稳定的.通过数值实验验证了本文格式的精确性和稳定性.关键词:对流方程;高精度;紧致格式;无条件稳定;有限差分法中图分类号:O241.82AMS(2000)主题分类:65M06;65M12文献标识码:A文章编号:1001-9847(2019)03-0635-081.引言对流方程在生物数学、能源开发、空气动力学等许多领域都具有十分广泛的应用,因此求解该类方程具有非常重要的理论价值和实际意义.然而,由于实际问题通常十分复杂,往往难以求得精确解,因此研究其精确稳定的数值解法是十分必要的.针对对流方程国内外很多学者提出了很多的数值方法.如张天德和孙传灼[1]针对一维对流方程采用待定系数法,得到了两层四点格式和四阶六点格式,并且是无条件稳定的,该方法适用于在点数确定的前提下,得到精度高的差分格式;于志玲和朱少红[2]针对一维问题建立了中间层为两个节点的三层显格式,其截断误差为O(τ2+h2);曾文平[3]针对一维对流方程推导出了一种两层半显式格式,其截断误差为O(τ2+h2),该格式是无条件稳定的.姚朝辉等人[5]将二阶的迎风格式和中心差分格式进行加权得到了WSUC格式,该格式是无条件稳定的;但该格式时间方向和空间方向仅有二阶精度.汤寒松等人[6]通过立方插值拟质点方法(CIP方法),给出了一些保单调的CIP格式;Erdogan[9]针对一维的对流方程推导出了一种指数拟合的差分格式,其截断误差为O(τ2+h2);Bourchtein[10]构造了对流方程的三层五点中心型蛙跳格式,该格式的截断误差为O(τ4+h4);即该格式时间和空间均具有四阶精度,但是该格式是三层的,空间方向需要五个点,并且是条件稳定的;Kim[11]构造了多层无耗散的迎风蛙跳格式,即时间和空间分别具有二阶、四阶、六阶精度,但格式为三层甚至是四层的,并且六阶格式空间方向最多需要五个点,给靠近边界的内点的计算带来困难.综上所述,文献中已经有的数值计算方法大多为低阶精度的,而高精度方法涉及多个时间层,需要一个或多个时间启动步,或者空间方向的网格节点多于三个,这都给计算造成困难或不便.为此本文将构造一种紧致格式,这里紧致格式的定义为对时间导数项的离散采用不超过∗收稿日期:2018-08-10基金项目:国家自然科学基金(11772165,11361045),宁夏自然科学基金重点项目(2018AAC02003),宁夏自治区重点研发项目(2018BEE03007)作者简介:侯波,男,汉族,河南人,研究方向:偏微分方程数值解法.通讯作者:葛永斌.636应用数学2019三个时间层,而对空间导数项的离散采用不超过三个网格点,时间和空间即可以达到高阶精度(三阶及三阶以上)的格式.本文拟构造的格式时间方向仅用到两个时间层上的函数值,在每个时间层上仅涉及到三个空间网格点,格式时间和空间具有整体的四阶精度.该格式的优点是无须启动步的计算,并且在对靠近边界点的计算时,不会用到计算域以外的网格节点.此外该格式为无条件稳定的,可以采用比较大的时间步长进行计算.最后通过数值实验验证本文格式的精确性和稳定性.2.差分格式的建立考虑如下一维对流方程:∂u ∂t +a∂u∂x=f,b≤x≤c,t≥0,(2.1)给定初始条件为:u(x,0)=φ(x),b≤x≤c,(2.2)给定周期性边界条件为:u(b,t)=u(c,t),t≥0,(2.3)其中,u(x,t)为未知函数,f为非齐次项,a为对流项系数,φ(x)为已知函数.将求解区域[b,c]等距剖分为N个子区间:b=x0,x1,···,x N−1,x N=c,并且定义h=c−bN,时间也采用等距剖分,步长用τ表示.在本文中,我们利用u ni ,u n+1i,u n+12i分别表示u在(x i,t n),(x i,t n+1)和(x i,t n+12)点处的函数值.假设方程(2.1)在点(x i,t n+12)成立,简写表示为:(∂u ∂t )n+12i+a(∂u∂x)n+12i=f n+12i.(2.4)将u n+1i 和u ni在点(x i,t n+12)处做泰勒级数展开,可得:u n+1i=u n+12i+τ2(∂u∂t)n+12i+(τ2)22!(∂2u∂t2)n+12i+(τ2)33!(∂3u∂t3)n+12i+O(τ4),(2.5)u ni=u n+12i−τ2(∂u∂t)n+12i+(τ2)22!(∂2u∂t2)n+12i−(τ2)33!(∂3u∂t3)n+12i+O(τ4).(2.6)(2.5)-(2.6)可得:(∂u∂t)n+12i=δt u n+12i−τ224(∂3u∂t3)n+12i+O(τ4),(2.7)其中,δt u n+12i =u n+1i−u n iτ.同理可得:(∂u∂x)n+12i=δx u n+12i−h26(∂3u∂x3)n+12i+O(h4),(2.8)其中,δx u n+12i =un+12i+1−u n+12i−12h.将(2.7)和(2.8)代入(2.4)整理可得:δt u n+12i −τ224(∂3u∂t3)n+12i+aδx u n+12i−ah26(∂3u∂x3)n+12i=f n+12i+O(τ4+h4).(2.9)为了使该格式在时间方向和空间方向上均达到四阶精度,须对(2.9)式中的∂3u∂t3和∂3u∂x3项进行二阶的离散,同时为了保证本文格式的紧致性,即空间方向不超过三个网格点,我们对(2.1)式进行如下变形:∂u ∂t =−a∂u∂x+f,∂2u∂t2=a2∂2u∂x2−a∂f∂x+∂f∂t,第3期侯波等:求解一维对流方程的高精度紧致差分格式637∂3u ∂t 3=a 2∂3u ∂x 2∂t −a ∂2f ∂x∂t +∂2f ∂t 2,∂3u ∂x 3=−1a ∂3u ∂x 2∂t +1a ∂2f ∂x 2.(2.10)将上述∂3u ∂t 3和∂3u∂x 3的表达式(2.10)代入(2.9)并整理可得:δt u n +12i+aδx u n +12i +124(4h 2−a 2τ2)(∂3u ∂x 2∂t)n +12i −τ224(∂2f ∂t 2)n +12i −h 26(∂2f ∂x 2)n +12i +aτ224(∂2f ∂x∂t)n +12i =f n +12i +O (τ4+h 4).(2.11)如果对上式中的δx u n +12i 项采用时间方向算术平均,即δx u n +12i =δx u n +1i+u n i 2,则会导致格式时间退化为二阶精度,为此利用(2.5)+(2.6)可得:u n +12i =12(u n +1i +u n i )−τ28(∂2u ∂t2)n +12i +O (τ4).(2.12)从而可得:δx u n +12i =12δx (u n +1i +u n i )−τ28δx (∂2u ∂t2)n +12i +O (τ4).(2.13)将(2.13)代入(2.11)得:δt u n +12i +a 2δx (u n +1i +u n i )−aτ28δx (∂2u ∂t 2)n +12i +124(4h 2−a 2τ2)(∂3u ∂x 2∂t )n +12i −τ224(∂2f ∂t 2)n +12i −h 26(∂2f ∂x 2)n +12i +aτ224(∂2f ∂x∂t)n +12i =f n +12i +O (τ4+h 4).(2.14)由于δx (∂2u ∂t 2)n +12i =(∂3u ∂x∂t 2)n +12i+O (h 2),所以可得:δt u n +12i +a 2δx (u n +1i +u n i )−aτ28(∂3u ∂x∂t 2)n +12i +124(4h 2−a 2τ2)(∂3u ∂x 2∂t)n +12i −τ224(∂2f ∂t 2)n +12i −h 26(∂2f ∂x 2)n +12i +aτ224(∂2f ∂x∂t)n +12i =f n +12i +O (τ4+τ2h 2+h 4).又因为∂3u ∂x∂t 2=−a ∂3u∂x 2∂t +∂2f ∂x∂t ,所以有:δt u n +12i +a 2δx (u n +1i +u n i )−aτ28(−a ∂3u ∂x 2∂t +∂2f ∂x∂t )n +12i +124(4h 2−a 2τ2)(∂3u ∂x 2∂t )n +12i −τ224(∂2f ∂t 2)n +12i −h 26(∂2f ∂x 2)n +12i +aτ224(∂2f ∂x∂t)n +12i =f n +12i +O (τ4+τ2h 2+h 4),即,δt u n +12i +a 2δx (u n +1i +u n i )+(a 2τ212+h 26)(∂3u ∂x 2∂t )n +12i −τ224(∂2f ∂t 2)n +12i −h 26(∂2f ∂x 2)n +12i −aτ212(∂2f ∂x∂t )n +12i =f n +12i +O (τ4+τ2h 2+h 4).由于(∂3u ∂x 2∂t )n +12i=δ2x (∂u ∂t )n +12i +O (h 2),所以有:u n +1i −u n i τ+a 4h(u n +1i +1−u n +1i −1+u ni +1−u n i −1)+(h 26+a 2τ212)δ2x u n +1i −u n i τ−τ224(f n +1i −2f n +12i +f n −1i (τ2)2)−h 212[(∂2f ∂x 2)n +1i +(∂2f ∂x 2)n −1i ]−aτ12[(∂f ∂x )n +1i −(∂f ∂x)n −1i ]=f n +12i +O (τ4+τ2h 2+h 4),其中,δ2xu i =u i +1−2u i +u i −1h 2,舍去O (τ4+τ2h 2+h 4),等式两边同时乘以τ,并令λ=τ/h ,整理可得:u n +1i +aλ4(u n +1i +1−u n +1i −1)+(16+a 2λ212)(u n +1i +1−2u n +1i +u n +1i −1)638应用数学2019=u n i−aλ4(u n i +1−u n i −1)+(16+a 2λ212)(u n i +1−2u n i +u ni −1)+τ6(f n +1i −2f n +12i +f n i )+τ12(f n +1i +1−2f n +1i +f n +1i −1+f n i +1−2f n i +f n i −1)+aτλ24(f n +1i +1−f n +1i −1−f n i +1+f ni −1)+τf n +12i,即,(23−a 2λ26)u n +1i +(16+aλ4+a 2λ212)u n +1i +1+(16−aλ4+a 2λ212)u n +1i −1=(23−a 2λ26)u n i +(16−aλ4+a 2λ212)u n i +1+(16+aλ4+a 2λ212)u n i −1+(τ12+aλτ24)f n +1i +1(τ12−aλτ24)f n +1i −1+(τ12−aλτ24)f n i +1+(τ12+aλτ24)f n i −1+2τ3f n +12i .(2.15)由推导过程可知,该格式的截断误差为O (τ4+τ2h 2+h 4),即格式(2.15)在时间和空间上均可达到四阶精度.我们注意到,格式为两层格式,并且格式每层仅用到三个网格点,形成的代数方程组系数矩阵为循环三对角矩阵,可采用追赶法进行求解[8],同时由于要求未知时间层上(第n +1层)中间点的系数不能等于0,即23−a 2λ26=0,因此aλ=2.3.稳定性分析下面采用von Neumann 方法分析本文所推导的差分格式(2.15)的稳定性.对于(2.15)式,舍掉非齐次项f ,即假设f 项精确成立,令u n i =ηn e Iσx i,其中,η为振幅,σ为波数,I =√−1为虚数单位,有(23−a 2λ26)ηn +1e Iσx i +(16+aλ4+a 2λ212)ηn +1e Iσx i +1+(16−aλ4+a 2λ212)ηn +1e Iσx i −1=(23−a 2λ26)ηn e Iσx i +(16−aλ4+a 2λ212)ηn e Iσx i +1+(16+aλ4+a 2λ212)ηn e Iσx i −1.(3.1)两边同时约掉e Iσx i ,并整理可得:(23−a 2λ26)ηn +1+(16+a 2λ212)ηn +1(e Iσh +e −Iσh )+aλ4ηn +1(e Iσh −e −Iσh )=(23−a 2λ26)ηn+(16+a 2λ212)ηn (e Iσh +e −Iσh )−aλ4ηn +1(e Iσh −e −Iσh ).(3.2)利用Euler 公式,即e Iσh =cos σh +I sin σh,e −Iσh =cos σh −I sin σh ,可得:(23−a 2λ26)ηn +1+[(13+a 2λ26)cos σh ]ηn +1+(aλI 2sin σh )ηn +1=(23−a 2λ26)ηn +[(13+a 2λ26)cos σh ]ηn −(aλI 2sin σh )ηn .(3.3)对上式进行化简整理有[(23−a 2λ26)+(13+a 2λ26)cos σh +aλI sin σh 2]ηn +1=[(23−a 2λ26)+(13+a 2λ26)cos σh −aλI sin σh 2]ηn .(3.4)从而可得格式(2.15)的误差放大因子为:G =ηn +1ηn =(23−a 2λ26)+(13+a 2λ26)cos σh −aλI sin σh2(23−a 2λ26)+(13+a 2λ26)cos σh +aλI sin σh2.(3.5)由von Numann 稳定性定理可知当|G |≤1时,格式是稳定的,由(3.5)可得|G |=1,因此,格式(2.15)是无条件稳定的.4.数值实验第3期侯波等:求解一维对流方程的高精度紧致差分格式639为了验证本文格式(2.15)的精确性和稳定性,现考虑以下三个具有精确解的初边值问题.分别采用Crank-Nicolson(C-N)格式,文[7]中格式和本文格式(2.15)进行计算;其中,最大绝对误差及收敛阶的定义为:L∞=maxi |u n i−u(x i,t n)|,Rate=log[L∞(h1)/L∞(h2)]log(h1/h2)L∞(h1)和L∞(h2)为空间网格步长分别为h1和h2时的最大绝对误差.问题1[7]:∂u ∂t +∂u∂x=0,0≤x≤2,t>0,u(x,0)=sin(πx),0≤x≤2,u(0,t)=u(2,t),t>0,该问题的精确解为:u(x,t)=sin[π(x−t)].表1问题1当λ=τ/h=0.5,t=1时刻的最大绝对误差及收敛阶h推进步数(n)C-N格式文[7]本文格式L∞误差Rate L∞误差Rate L∞误差Rate 1/510 2.217(-1) 4.865(-2) 1.993(-3)1/1020 5.752(-2) 1.95 1.263(-2) 1.95 1.208(-4) 4.041/2040 1.450(-2) 1.99 3.199(-3) 1.987.490(-6) 4.011/4080 3.631(-3) 2.008.038(-4) 1.99 4.672(-7) 4.001/801609.082(-4) 2.00 2.014(-4) 2.00 2.919(-8) 4.001/160320 2.271(-4) 2.00 5.041(-5) 2.00 1.824(-9) 4.00表2问题1当τ=λh,t=2时刻的最大绝对误差hτλC-N格式文献[7]本文格式1/160.050000000.8 5.290(-2) 1.292(-2) 1.574(-5) 0.10000000 1.69.013(-2) 5.095(-2) 3.198(-3) 0.20000000 3.2 2.307(-1) 1.941(-1) 6.055(-2) 0.40000000 6.4 6.874(-1) 6.597(-1) 1.746(-2)1/320.025000000.8 1.330(-2) 3.230(-3)9.814(-7) 0.20000000 6.4 2.041(-1) 1.950(-1) 1.575(-3) 0.4000000012.8 6.668(-1) 6.601(-1) 1.916(-2)图1问题1当N=32,τ=0.03125,t=0.2时刻的数值解与精确解640应用数学2019表1给出了针对问题1三种格式在不同空间步长h下,当λ=τ/h=0.5,t=1时的最大绝对误差和收敛阶.我们发现C-N格式在时间和空间上都为二阶精度,由于文[7]格式时间具有二阶精度,空间具有四阶精度,因此当取τ=O(h)时,格式空间仅有二阶精度,而本文格式时间和空间均为四阶精度.图1给出N=32,τ=0.03125,t=0.2数值解与精确解对比图,可以看出数值解与精确解吻合的很好.表2给出了当h=1/16和h=1/32时,τ=λh,t=2时刻对问题1采用三种格式计算的最大绝对误差.可以看出网格比λ最大取到12.8,计算仍然是稳定的,因此本文格式是无条件稳定的.并且本文格式在所有参数下,其计算结果比C-N格式和文[7]格式计算结果更加精确.问题2[7]:∂u ∂t +∂u∂x=0,0≤x≤2,t>0,u(x,0)=e cos(πx),0≤x≤2,u(0,t)=u(2,t),t>0,该问题的精确解为:u(x,t)=e cos[π(x−t)].表3问题2当λ=τ/h=0.5,t=1时刻的最大绝对误差及收敛阶h推进步数(n)C-N格式文[7]本文格式L∞误差Rate L∞误差Rate L∞误差Rate 1/510 6.754(-1) 1.428(-1) 5.567(-2)1/1020 2.310(-1) 1.55 3.099(-2) 2.20 3.041(-3) 4.191/2040 6.027(-2) 1.94 6.825(-3) 2.18 1.904(-4) 4.001/4080 1.492(-2) 2.01 1.658(-3) 2.04 1.165(-5) 4.031/80160 3.705(-3) 2.01 4.115(-4) 2.017.252(-7) 4.011/1603209.250(-4) 2.00 1.028(-4) 2.00 4.527(-8) 4.00表4问题2当τ=λh,t=2时刻的最大绝对误差hτλC-N格式文[7]本文格式1/160.050000000.8 2.171(-1) 5.372(-2) 3.897(-4) 0.10000000 1.6 3.450(-1) 2.056(-1)7.795(-3) 0.20000000 3.2 6.810(-1) 6.111(-1) 3.416(-1) 0.40000000 6.4 1.220 1.198 2.017(-1)1/320.025000000.8 5.575(-2) 1.325(-2) 2.449(-5) 0.20000000 6.4 6.302(-1) 6.109(-1) 2.350(-2) 0.4000000012.8 1.204 1.199 2.201(-1)表3和表4给出了针对问题2利用本文格式和C-N格式以及文[7]格式的计算结果.表3考察了格式的精度,表4验证了格式的稳定性.可以看出本文格式在时间和空间上均可达到四阶精度,并且是无条件稳定的.问题3∂u ∂t +a∂u∂x=f,0≤x≤2,t>0,u(x,0)=cos(πx),0≤x≤2,u(0,t)=u(2,t),t>0,f=π(1−a)sin[π(x−t)],该问题的精确解为:u(x,t)=cos[π(x−t)].第3期侯波等:求解一维对流方程的高精度紧致差分格式641表5问题3当λ=τ/h=0.5,a=0.5,t=1时刻的最大绝对误差及收敛阶h推进步数(n)C-N格式本文格式L∞误差Rate L∞误差Rate1/510 1.124(-1) 4.244(-4)1/1020 3.520(-2) 1.67 2.744(-5) 3.951/20409.957(-3) 1.82 1.739(-6) 3.981/4080 2.551(-3) 1.96 1.134(-7) 3.941/80160 6.413(-4) 1.99 1.351(-8) 3.07问题3为非齐次问题,由于文[7]的方程模型为齐次方程,不能计算非齐次问题,因此该问题我们采用本文格式和C-N进行计算和比较,表5给出了两种格式在不同空间步长h下,当t=1时的最大绝对误差和收敛阶.可以看出当λ=τ/h=0.5,a=0.5时,C-N格式在时间和空间上都为二阶精度,而本文格式时间和空间均为四阶精度.5.结论本文针对一维对流方程提出了一种两层隐式高精度紧致差分格式,时间和空间均采用泰勒级数展开法以及截断误差余项修正法进行处理,格式截断误差为O(τ4+τ2h2+h4),即该格式在时间和空间上均可达到四阶精度.并通过von Neumann方法分析得到该格式为无条件稳定的.最后通过三个数值算例验证了格式的精确性和稳定性.通过上述研究,我们可以得出如下结论:1.文献(如[10-11])中的高精度格式往往是时间多层格式,需要另外构造启动步的计算格式,如果采用低精度格式启动,必然会影响以后时间层的计算精度.而本文格式仅为两层格式,无须启动步的计算,时间即可达到四阶精度.2.文献(如[1,10-11])中的高精度格式空间方向上往往超过三个网格节点,导致靠近边界的内点计算困难,需要采用特殊处理,而本文格式仅用到三个网格节点,可以有效避免这一问题.3.尽管本文格式要求aλ=2,这是本文格式的一个缺陷,但是由于本文格式是无条件稳定的,从理论上讲可以采用任意网格比,因此可以很容易避开aλ=2的条件限制,使得这一缺陷并不太影响格式的使用.4.由于本文方法推导过程中涉及到∂2u∂t2,∂3u∂t3,∂3u∂x3的计算,需要用原方程进行多次求导并进行反复代入计算,在考虑对流项为变系数问题时,将涉及到a(x,t)关于x和t的二阶导数,由于我们考虑在时间半点处,即(x i,t n+12)处的函数值,即要用到(∂2a∂t2)n+12i,如果采用中心差分,则时间仅具有二阶精度,因此本文方法不适用于变系数问题.5.本文方法可直接推广到二维和三维问题中去,我们将另文报道.参考文献:[1]张天德,孙传灼.对流方程的差分格式[J].计算物理,1995,12(2):191-195.[2]于志玲,朱少红.关于对流方程一类三层显格式[J].南开大学学报(自然科学版),1998,31(3):27-30.[3]曾文平.解对流方程的加耗散项的差分格式[J].应用数学,2001,14(S1):154-158.[4]陆金甫,关治.偏微分方程数值解法[M].北京:北京大学出版社,1987.[5]姚朝晖,张锡文,任玉新等.一种低耗散、无伪振荡的实用差分格式[J].水动力学研究与进展(A辑),2001,16(02):195-199.[6]汤寒松,张德良,李椿萱.对流方程保单调CIP格式[J].水动力学研究与进展(A辑),1997(02):181-187.[7]赵飞,蔡志权,葛永斌.一维非定常对流扩散方程的有理型高阶紧致差分公式[J].江西师范大学学报(自然科学版),2014,38(4):413-418.642应用数学2019[8]李青,王能超.解循环三对角线性方程组的追赶法[J].小型微型计算机系统,2002(23):1393-1395.[9]ERDOGAN U.Improved upwind discretization of the advection equation[J].Numer.Meth.PartDiffer.Equ.,2014,30:773-787.[10]BOURCHTEIN A,BOURCHTEIN L.Explicitfinite schemes with extended stability for advectionequations[J]put.Appl.Math.,2012,236:3591-3604.[11]KIM C.Accurate multi-level schemes for advection[J].Int.J.Numer.Methods Fluids.,2003,41:471-494.A High-Order Compact Difference Scheme for Solving the1DConvection EquationHOU Bo,GE Yongbin(School of Mathematics and Statistics,Ningxia University,Yinchuan750021,China)Abstract:In this paper,a two-level implicit compact difference scheme for solving the one-dimensional convection equation is proposed.Taylor series expansion and correction for the third derivative in the truncation error remainder of the central difference scheme are used for the discretization of time and space.The local truncation error of the scheme is O(τ4+τ2h2+h4),i.e.,it has the fourth-order accuracy in both time and space.The unconditional stability is obtained by the von Neumann method. The accuracy and the stability of the present scheme are validated by some numerical experiments.Key words:Convection equation;High accuracy;Compact difference scheme;Unconditional sta-bility;Finite difference method。
《一维Sine-Gordon方程高阶紧致有限体积方法》篇一一、引言一维Sine-Gordon方程是物理学中常见的非线性偏微分方程,广泛应用于描述各种物理现象,如孤立波的传播、非线性振荡等。
求解该方程对于理解这些物理现象具有重要意义。
传统的方法包括有限差分法、有限元法等,但这些方法在处理高阶导数和边界条件时可能存在一定局限性。
近年来,高阶紧致有限体积方法因其良好的数值稳定性和高精度,在求解一维Sine-Gordon方程方面展现出优越性。
本文将介绍一种一维Sine-Gordon方程的高阶紧致有限体积方法。
二、Sine-Gordon方程及其性质一维Sine-Gordon方程是一种非线性偏微分方程,其形式为:U_t = sin(U_xx)其中,U为因变量,t为时间,x为空间坐标。
该方程具有孤立波解和非线性振荡等特性,是研究非线性物理现象的重要工具。
三、高阶紧致有限体积方法高阶紧致有限体积方法是一种基于有限体积的数值方法,其核心思想是将计算区域划分为有限个控制体积,通过在控制体积上对守恒律进行积分来求解偏微分方程。
该方法具有计算精度高、数值稳定性好等优点。
针对一维Sine-Gordon方程,我们采用高阶紧致有限体积方法进行求解。
首先,将计算区域划分为若干个等距的控制体积,每个控制体积的大小根据需求确定。
然后,在每个控制体积上对Sine-Gordon方程进行积分,得到一组离散的有限体积方程组。
接着,利用高阶紧致格式对空间导数进行离散化处理,得到高精度的数值解。
最后,通过时间迭代法求解该数值解。
四、数值实验与结果分析为了验证高阶紧致有限体积方法的有效性,我们进行了一系列的数值实验。
首先,我们设定了一组初始条件和边界条件,然后利用高阶紧致有限体积方法对一维Sine-Gordon方程进行求解。
通过与真实解进行比较,我们发现该方法具有较高的计算精度和良好的数值稳定性。
此外,我们还对不同控制体积大小和时间步长对计算结果的影响进行了分析,发现适当的选择控制体积大小和时间步长可以进一步提高计算精度和稳定性。
紧致差分格式紧致差分格式(Compactly Supported Finite Difference Formulation)是一种常用的数值计算方法,用于求解偏微分方程的数值解。
它的特点是既能有效地处理高阶精度问题,又能保证数值解的稳定性和收敛性。
紧致差分格式最大的特点是它的数值计算节点只限于离散空间范围内的邻近节点。
也就是说,只有最近的节点之间进行计算,而不受整个空间范围的限制。
这种局部性的计算方式使得紧致差分格式具有较高的计算效率和灵活性。
在实际应用中,紧致差分格式广泛应用于流体力学、热传导等领域的数值计算中。
例如,在模拟流体的传输过程中,可以通过紧致差分格式将流体动力学方程转化为有限差分方程,从而得到流体在空间和时间上的数值解。
紧致差分格式的求解过程主要包括两个步骤:离散化和迭代求解。
首先,通过将原始的偏微分方程转化为差分方程,将问题在空间和时间上离散化。
其次,通过迭代求解逼近数值解。
在迭代求解的过程中,需要设置适当的边界条件和初始条件,以确保数值解的准确性。
紧致差分格式的优点是可以获得较高的数值精度和稳定性。
由于它的节点计算只限于离散空间范围内的邻近节点,可以在不增加计算复杂度的情况下提高数值解的精度。
与其他数值方法相比,紧致差分格式更加准确和可靠。
然而,紧致差分格式也有一些限制。
首先,它对初始条件和边界条件较为敏感,不同的条件可能会导致不同的数值解。
其次,紧致差分格式对问题的网格剖分要求较高,过于粗糙或者过于细致的网格都可能导致数值解的不准确性。
总之,紧致差分格式是一种重要的数值计算方法,广泛应用于偏微分方程的数值求解中。
它的局部性计算方式使得其具有较高的计算效率和灵活性,同时能够保证数值解的准确性。
但在使用时需要注意初始条件和边界条件的设置,以及合理选择网格剖分,以获得更为可靠和准确的数值解。