对流-扩散方程的离散格式
- 格式:ppt
- 大小:1.62 MB
- 文档页数:59
对流扩散方程解析解对流扩散方程(Convection-DiffusionEquation,CDE)是描述物理系统中物质扩散和热对流运动的方程。
它源于20世纪30年代真空磁体理论中发现的电子运动方程,在50年代被普及应用于各种工程、物理学和化学领域,如电子、热传输、水力学等,具有不可缺少的重要意义。
一般来说,对流扩散方程可以被描述为:$$frac{partial y}{partial t}=afrac{partial^2 y}{partial x^2}+bfrac{partial y}{partial x}+cfrac{partial y}{partial y}+d$$其中,a、b、c和d是常数,t和x分别代表时间和物理位置。
若把空间坐标投射到它们的平面上,则可以用更具体的形式表述为: $$frac{partial y}{partial t}=afrac{partial^2 y}{partial x^2}+bfrac{partial y}{partial x}+cfrac{partial y}{partial y}+d+frac{partial y}{partial z}$$其中,z是投射后的空间坐标,a、b、c和d也可以改变以适合不同的实际应用场景。
对于对流扩散方程的解析解,有两种基本方法:一种是用不定积分法;另一种是用微分平面法,也称作渐进分析方法。
从一般的原理上来看,不定积分法是把对流扩散方程拆解成多个简单的可求解的微分方程,然后分别求解它们,最后再综合求得总解。
此外,它还可以运用标准积分法来近似求解,特别有利于解复杂的多变量方程。
而渐进分析(Perturbation Analysis)是把复杂的问题划分成几个渐进步骤,每一步把问题简化为可以近似解决的状态,依此不断迭代,最终求得近似解。
这种技术通常用来求解非线性方程,对于对流扩散方程求解也非常有效,能有效地提高准确度和计算速度。
此外,还有其他一些求解方法,比如拉格朗日法(Lagrange Method)、拉普拉斯正则化(Laplace Regularization)以及偏微分方程的泛函理论方法(Functional Theory of Partial Differential Equations)等。
6-3 试在直角坐标系的交错网格上,写出动量离散方程式(6-5)、(6-6)中的系数nb a (即S N W E a a a a ,,,),n n e e A a A a ,,,的表达式。
为简便起见,设(1)流体物性为常数;(2)在x, y 方向上网格各自均匀划分。
速度e u 的邻点可参阅图6-5, 速度n υ的邻点参见图6-32.对流、扩散项的离散可采用五种三点格式之一。
解:根据课本P145式(5-13)、(5-16)、(5-18),对流、扩散项采用指数格式计算本题 在二维直角坐标系中,对流—扩散方程的通用形式为:()()()φφφφφρυφφρρφS y y x x y u x t +⎪⎪⎭⎫⎝⎛∂∂Γ∂∂+⎪⎭⎫ ⎝⎛∂∂Γ∂∂=∂∂+∂∂+∂∂ 对于动量方程,把压力梯度项放到源项中了。
引入在x 及y 方向的对流—扩散总通量密度,上式可改写为:()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=⎪⎪⎭⎫⎝⎛∂∂Γ-∂∂+⎪⎭⎫ ⎝⎛∂∂Γ-∂∂+∂∂y p x p S y y x u x t φρυφφφρρφφφ 即:()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=∂∂+∂∂+∂∂y p x p S y J x J t yx ρφ (1) 其中:yJ xu J y x ∂∂Γ-=∂∂Γ-=φρυφφφρφφ将(1)式对P 控制容积做时间与空间上的积分得:e E P p P c s n w e pp A P P V S S J J J J V t)()()()()()(0-+∆+=-+-+∆∆-φρφρφ将通用变量φ换成速度u ,相应的其控制容积变为:所以上式可改写为:e E P p p c s n w e ee A P P V S S J J J J V t u u )()()()()()(0-+∆+=-+-+∆∆-φρρ (2)式(6-5)为:()e E P nb nbe e A p p b u au a -++=∑对上式用界面总通量表达式为:ee E e e EE e u a u F a J -+=)( (3)e w W w W w u F a u a J )(--= (4)n N e n N n u a u F a J -+=)( (5)e s S s S s u F a u a J )(--= (6) 把以上方程代入方程(2)得:e E p e p c e s S s S n N en N w w e w W ee E e e EE ee A P P V u S S u F a u a u a u F a u a u F a u a u F a V tu u )()()()()()(0-+∆+=-+--++--+-++∆∆-ρρ整理得:eE p ec s S n N w W ee E ep s S n N w W e EE A P P u tVV S u a u a u a u a u V S F a F a F a F a tV)(])()()()([0-+∆∆+∆++++=∆--+++-+++∆∆ρρ当对流、扩散项的离散采用指数格式时, 则上式中的系数分别为:1)ex p()(-==∆∆e ee e EE P F P A D a 1)e x p ()e x p ()(-==∆∆∆w w w w w W P P F P B D a1)ex p()(-==∆∆n n n n N P F P A D a 1)e x p ()e x p ()(-==∆∆∆s s s s s S P P F P B D a tVa e ∆∆=ρ0V S a F F F F a a a a a p e s n w e S N W EE e ∆-+-+-++++=00e e c u a V S b +∆=y A e ∆=同理对(6-6)()n N P nb nbn n A p p b aa -++=∑υυ,类似地有:1)ex p()(-==∆∆n n n n NN P F P A D a 1)e x p ()e x p ()(-==∆∆∆s s s s s S P P F P B D a 1)ex p()(-==∆∆e e e e E P F P A D a 1)e x p ()e x p ()(-==∆∆∆ww w w w W P P F P B D atVa n ∆∆=ρ0V S a F F F F a a a a a p n s e w n S E W NN n ∆-+-+-++++=000n n c u a V S b +∆=x A n ∆=6-4 对图6-11所示的二维流动情形,已知:10,0,20,50====E N s w p p v u 流动是稳态的,且密度为常数。