等可能事件的概率
- 格式:pdf
- 大小:489.62 KB
- 文档页数:9
《等可能事件的概率》典型例题在实际生产、生活中经常会遇到一些与概率相关的问题,如何运用概率知识解释在实际生产、生活中的问题,以及解决概率问题,下面通过具体例子进行说明。
一.随机事件的判断例1在下列试验中,哪些试验给出的随机事件是等可能的?(1)投掷一枚均匀的硬币,“出现正面”与“出现反面”;(2)一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一球,“取出的是红球”,“取出的是黄球”,“取出的是黑球”;(3)一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球,“取出的是红球",“取出的是黄球",“取出的是黑球”;分析:随机事件是否等可能,要看这一事件在此试验中的所有可能结果中地位是否平等。
解:(1)中给出的随机事件“出现正面”与“出现反面"是等可能的.(2)中给出的三个随机事件:“取出的是红球",“取出的是黄球”,“取出的是黑球",由于球的大小、个数相同,因此这三个事件是等可能的。
(3)中给出的随机事件:“取出的是红球",“取出的是黄球”,“取出的是黑球”,由于三种球的数量不同,因此这三个事件不是等可能的。
点评:本题是关于随机试验结果出现的等可能性的探讨,在试验过程中,由于某种对称性条件,使得若干个随机事件中每个事件发生的可能性在客观上是完全相同的,则称它们是等可能事件. 在一次试验中出现的随机事件是否等可能的关键是看这一试验中所有可能出现的结果中各种结果出现的机会是否均等.二.随机试验中条件和结果的判断例2 做试验“从一个装有标号为1,2,3,4的小球的盒子中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第一次取到的小球上的数字,y为第二次取到的小球上的数字”.(1)求这个试验结果的个数;(2)写出“第一次取出的小球上的数字是2”这一事件.分析:首先弄清试验的结果是由两次取出小球的标号构成有序实数对构成,利用枚举列出即可.解:(1)当x=1时有,(1,2),(1,3),(1,4);当x=2时有,(2,1),(2,3),(2,4),当x=3时有(3,1),(3,2),(3,4)当x=4时有(4,1),(4,2),(4,3),所以共有12个不同的有序实数对。