Haptic Device
- 格式:doc
- 大小:1.60 MB
- 文档页数:7
hid在护理学上的基础hid是指人体的隐藏性感知系统(Haptic Interface Device),在护理学中扮演着重要的角色。
hid可以通过触觉传递信息,使人们能够感知力量、压力、振动和温度等物理刺激。
本文将探讨hid在护理学上的基础,并介绍hid在不同护理领域的应用。
一、hid的基本原理hid通过模拟人体皮肤的感知能力,使用触觉技术来传递信息。
它由多个传感器、执行器和控制系统组成。
传感器可以感知外部刺激,如力量、压力和振动等,而执行器则通过提供适当的反馈来模拟触觉感受。
控制系统则负责解读传感器的信号并控制执行器的运行。
二、hid在护理学中的应用1. 康复护理:hid可以被用于康复治疗中,帮助患者恢复运动功能。
通过hid,患者可以感受到肌肉的收缩和放松,从而更好地控制运动。
此外,hid还可以模拟日常生活中的活动,如握手、抓取物体等,帮助患者恢复日常生活能力。
2. 疼痛管理:hid可以通过传递适当的压力和振动来缓解患者的疼痛。
例如,在进行手术或治疗过程中,hid可以模拟手术刀的触感,帮助患者减轻焦虑和疼痛感。
3. 护理培训:hid可以用于护理学生的培训中。
通过模拟真实的临床场景,hid可以让学生练习操作技能,如静脉穿刺、救护操作等。
这种虚拟实践可以增加学生的经验和自信心,提高护理质量。
4. 患者安全:hid可以在患者监测中起到重要作用。
通过hid,护士可以远程监测患者的体温、心率和呼吸等生理指标。
一旦发现异常情况,护士可以立即采取措施,保护患者的安全。
5. 心理护理:hid还可以用于心理护理中。
通过hid,护士可以传递温暖和安慰的触感,帮助患者减轻焦虑和压力。
这种人性化的护理方式可以增强患者的信任感和安全感。
三、总结hid作为人体的隐藏性感知系统,在护理学中具有广泛的应用前景。
它可以用于康复护理、疼痛管理、护理培训、患者安全和心理护理等方面。
hid的应用可以提升护理质量,改善患者的体验,并促进护理学的发展。
Interactive Molecular Dynamics for Nanomechanical and Nanochemical ExperimentsAxel KohlmeyerMolecular Dynamics●Simulate motion of atoms and molecules according to physical models: classical (empirical) or quantum (electrons and/or core)●Microscopic look into the atomic scale;simulated experiment with perfect control.●Connection to macroscopic world throughstatistical mechanics or thermodynamics:=> molecular level interpretation of thermodynamic quantities●Beyond two particles chaotic => coupled differential equations, solved numerically => model and CPU determine time scalesTypical Molecular Dynamics Work Flow●Setup: construct initial geometry, idealized or assembled pieces ●Equilibration: relax and propagate until the desiredthermodynamical state is reached (or close enough)●Production: propagate atoms and record statisticallyrelevant data of system evolution while equilibrium is maintained ●Analysis & Visualization: done “off-line” (i.e. after production)●Statistical analysis to derive structural or thermodynamicalproperties to confirm, guide or predict experiment(s).●Visual inspection of structural changes or “special” eventsStudying 'Rare Events' in Molecular Dynamics●Time scales in MD simulations are limited by the fastest motion => total time that can be studied is restricted.●Size of system is finite => large (local) energy fluctuations rare => events that have (free) energy barriers are often 'impossible'●Various 'biasing methods' exist to make those events possible=> biasing needs to be programmed, cannot “just play around”●Programmed biasing or steering works best for simple moves: 'collective variables' => well defined for statistical analysis●Difficult to study “What would happen if?”-scenarios on the flyEvolution of Interactive MD (IMD)●Origin in steered molecular dynamics (SMD) by adding run-time visualization to monitor the progress of steering●Next step: Interactive determination of steering forces through a pointer device (2d: mouse, 3d: 3d-joystick, 3d-mouse, WiiMote)●Then: better visual feedback with stereo displayeven better with 'immersive visualization', e.g. CAVE●Full IMD framework with support for haptic devicesadding force feedback to 3d tracking => VMD●Limited adoption due to cost and disruptive nature (VR facility)Interactive MD Applications Examples●Education and Outreach:Unique experience through immersive visualizationand force feedback allows students to “grasp” MD simulations●Simulation Monitoring:Visualization can be connected to ongoing production run●Simulation Preparation:Components of an MD simulation system can be interactivelyrearranged (“sculpting”) as needed while close to equilibrium●Nano-mechanical or -chemical experimentsThe IMD Infrastructure in VMDMD Engine:NAMD,Gromacs,HOOMD-blue,LAMMPS, ...Visualization& VR Client:VMDCoords FeedbackTrackerForcesVR Server:VRPN(-ICMS),Haptic deviceSocketSocketTime Scale Issues with IMDSimulated System:●Atom velocity: ~100 m/s●MD Time step: ~10-15 sTime and length scales of simulation & visualization are coupled Typical parameters for a smooth IMD configuration:Tangible System:●Compute time: ~1 ms / step●Atom movement: ~10-10 m / s Newton's second law: F = m a=> faster running MD=> less IMD force needed=> objects appear to be lighterTo move large object:=> run MD faster (parallel,GPU)=> or scale applied IMD force=> or change particle massMore Time Scale Issues with IMD●How realistic should an IMD simulation/visualization be?If too large IMD force, too small particle mass => unphysicalmay be tolerated for educational use, unacceptable for research●Local movements (solvent) limit length of time step●Compute capability limits speed of MD code●Visualization update rate limits position update frequency=> At higher MD speed, less frequent IMD position updates => position data becomes more “noisy”, need denoising filter●What if I want to look at “slow” processes? Move large objects?Recorded IMD Demos with “Falcon” Controller●“Stick the buckyballs intothe nanotube demo●Virtual vacuum AFM demowith 3 types of LJ particlesRevived Interest in Interactive MD●A smooth IMD visualization needs about 20-30 frames/s●Significant compute power for fast MD on all but the smallest systems●A powerful graphics workstation with stereo capability is required=> a dedicated and expensive facility was needed that few locations could afford and that would require to schedule access ahead of time ●3d screens affordable (3d-TVs, Scanline polarized LCD)●High performance graphics with 3d capability available (games)●Multi-core CPUs and GPUs turn workstations into clusters●Affordable controllers (Falcon (gaming), smartphones (6DOF))VRPN and VMD Enhancements●Support in VRPN for Novint Falcon as haptic 3DOF device●Implement Tracker and Button classes as sending devices●Implement ForceDevice class as receiving device●Use libnifalcon ( ) to access Falcon●Implement damping scheme for smooth force constraint updates(force update in device at 1000Hz, update from VMD less frequent)●Enhancements in VMD●Support for enforced TCP only communication with VRPN server forusing remote visualization facility via VirtualGL (LRZ Munich)●Support for whole residue mode with “tug” toolLAMMPS Enhancements●OpenMP (LAMMPS-ICMS) and GPU (GPULAMMPS) acceleration for non-bonded interactions=> faster MD for smaller (OpenMP) or larger (GPU) systems●Improvements in IMD module (fix imd):●Listening for IMD force input in separate thread.No more need to “drain” all incoming IMD communication data●Sending of coordinate data in separate threadNo more need to wait when large IMD data is sent over slow link●Addition of Savitzky-Golay filtering of coordinate dataDenoises coordinate updates with large Δt with minimal distortionIMD Appliance Concept●Combines:●Multi-core/CPU/GPU compute●Stereo capable visualization●3d display●Haptic device●Software●No special facility needed●Commodity components●Kiosk mode for educationPerspectives●Advances in GPU acceleration will expand applicability●GPU acceleration more effective in compute intense models=> nano-mechanics (Tersoff, Stillinger-Weber, AIREBO)=> nano-chemistry (Reaxx)●More approximate models for large changes(temporary coarse graining)●More experiments with example applications or demos needed ●IMD protocol expansions and optimizations●VRPN-ICMS improvements (multi-Falcon support, alternate grip)References●VMD: /Research/vmd●LAMMPS: /LAMMPS-ICMS (code gets merged to LAMMPS when stable): /site/akohlmey/software/lammps-icms●VRPN: /Research/vrpn/VRPN-ICMS (code will be merged into VRPN when stable): /site/akohlmey/software/vrpn-icms●GPULAMMPS (GPU acceleration with CUDA for LAMMPS):/p/gpulammps/●Michael L. Klein (freedom and funding, NSF CHE 09-46358)●John Stone, Klaus Schulten (VMD and much more)●Steve J. Plimpton, Paul S. Crozier and many others (LAMMPS)●Russ Taylor (VRPN), Kyle Machulis (libnifalcon)●Tom Anderson, Brandon Williams, Novint, (free Falcons) ...and...●Greg & Gary Scantlen, Creative Consultants,(contacts, encouragement, perseverance, 3D-buckyballs) Make sure you try out the “Nano Dome”, Booth 29/30.Acknowledgements。
一、听力选择题二、听力选择题1. What will Jack’s father do ?A .Ask for a day off.B .Join the family trip.C .Look after kids at home.2.A .Where the woman heard the news.B .How the woman feels about the news.C .If the woman is going to lose her job.D .What the woman is going to buy in the store.3. How often will Jocelyn take dance lessons next month?A .Three times a week.B .Twice a week.C .Once a week.4. Where does the man probably want to go first?A .The restaurant.B .The parking lot.C .The changing room.5. Where will the woman go tomorrow night?A .To the man’s house.B .To a cinema.C .To a restaurant.6. 听下面一段较长对话,回答以下小题。
1. Where does David stay during his summer camp?A .In a tent.B .In a hotel.C .In a cabin.2. What may David do in the afternoon?A .Go fishing.B .Go hiking.C .Draw pictures.3. What food did David finally make for dinner yesterday?A .Salad.B .Hamburgers.C .Hot dogs.4. When will David arrive home tomorrow?A .At 2:00 p.m.B .At 6:30 p.m.C .At 7:00 p.m.7. 听下面一段较长对话,回答以下小题。
机器人触感装置力位解耦控制策略研究张海滨【摘要】通过将触感装置关节处的摩擦计入到系统的动力学模型中,在现有的力位补偿方法基础上分别建立摩擦力、重力、惯性力补偿模型进行附加力补偿,对于附加位移也通过建立附加位移模型进行了补偿,从而有效地提高了系统透明性及稳定性,使触感装置的控制精度更高,抗干扰能力更强。
%In this article, through the haptic device friction joints in to the system dynamics model, based on the force of the existing compensation methods respectively to establish the friction,gravity,inertia force additional forcecompensation,compensation model for additional displacement is through the establishment of additional displacement model compensation, so as to effectively improve the system stability,transparency and higher control precision of the haptic device,stronger anti-interference ability.【期刊名称】《机电工程技术》【年(卷),期】2015(000)006【总页数】3页(P56-58)【关键词】触感装置;补偿;附加位移【作者】张海滨【作者单位】鹤壁煤业技师学院,河南鹤壁 458030【正文语种】中文【中图分类】TP242随着虚拟现实技术和交互式遥操作机器人技术的快速发展及广泛应用,可作为人机接口装置的触感装置的需求量逐年攀升。
Guidance System Based on Image ProcessingDahai Yu and Manman ShenSchool of electrical information of Changchun Guanghua University, Changchun, China, 130031 Abstract—To solve the problem of blind travel, a guidesystem based on image processing is designed. The visualinformation collected by a CCD camera. The voice information isused to communicate with the user. The overall design of thissystem is given. Recognize the zebra line by the bipolar systemvalue. Recognize the blind road using saturation histogram andGaussian function.Keywords—blind identification; zebra crossing recognition;image processing; guideI I NTRODUCTIONAccording to the World Health Organization (WHO)statistics in 2010, the total number of people in the world with vision impairment is estimated to be 285 million. 39 million arewhole blind. While China has the most people, the number of blind people is also the most. There is about 5 million blindpeople in China. Due to the physiological defects and the increasingly complex living environment, it brings manyinconveniences to the blind people's life. In view of theinconvenience of blind people, guide dog and guide stick gradually become tools to help blind people travel. However, the guide dog is not easy to train and the cost is high, so the detection range of the blind guide rod is limited.H Wang has designed an interactive guide robot. The robot is composed of haptic device and human-computer interaction system. Analyze the 2D information through the haptic system and transmits the information to the user. But the robot can only detect the surrounding obstacles, not the main effective identification the traffic signs. Zhang Ying designed a guide robot based on embedded technology to identify obstacles and traffic signs. But the robot will not receive the voice message to the blind, which caused a lot of inconvenience to the blind. Han Xuefeng designed an interactive guide robot, through the sensor detection of the external environment, and transfer in the form of voice for the blind. But the robot of traffic sign recognition effect is poor, which can’t meet the actual needs of the blind. Zhang Zhimei et al designed a crawler type guide robot. Use ultrasonic sensor to track the trajectory of black ground preset to avoid obstacles. But it can’t work in no-black environment.In view of the deficiency of the blind guiding technology atpresent, the design of intelligent guide system has greatpractical significance.II S TRUCTURE OF GUIDANCE SYSTEM According to the restriction of the activity of the blind, the function of the guide robot is confirmed, and the overall scheme of the guide system is worked out. As shown in Figure I.FIGURE I.O VERALL SCHEME DESIGNA camera is used to collect the image information of the environment. The data are transferred to DSP. GPS module is used to position the user. Voice module is used to receive or play voices for users. The data are also transferred to DSP. Do some calculate in DSP including traffic signal recognition, Blind identification, zebra crossing recognition and so on.III Z EBRA LINE RECOGNITIONThe zebra belt consists of a group of parallel strips with alternate black and white intervals. The difference of color between black and white stripes is very obvious. Gray contrast is very strong. The rule of black and white alternating is strong. So we can use the bipolar coefficient of the image to characterize and quantify the intensity of the intensity contrast of the zebra line region. Analyze and judge the region with strong gray contrast in the road image by the bipolar system value. If the test area is in the zebra line region, the value of the bipolar system is very high. Otherwise, if the region to be inspected i s not a zebra region, its gray value is basically the same, and the value of the bipolar system is small.First we can use a threshold to segment the image.(a) O RIGIN IMAGE(b) T HRESHOLD SEGMENTATIONFIGURE II.I MAGE SEGMENTATIONThen suppose (μ1,σ1)is the average value of density distribution function of black pixels. (μ2,σ2)is the average2018 International Conference on Advanced Control, Automation and Artificial Intelligence (ACAAI 2018)value of density di stribution function of whith pixels. n1,n2 presents the pixel number of black and white.α=n1n1+n2(1)σ02=ασ12+(1−α)σ22+a(1−α)(μ1−μ2)2(2) The bipolar coefficient γisγ=1σ02[α(1−α)(μ1−μ2)2](3)γ is a value between 0 and 1. When γis 0 , the image is not zebra area. And when γis 1, the image must be zebra area.Then search the edge of the zebra. When there are parallel lines in the image. It could be recognized as zebra lines.(a) T HRESHOLD SEGMENTATION(b) R EGIONS USING BIPOLARITYFIGURE III. R ESULT OF BIPOLAR COEFFICIENT At the end, use the edge of the zebra line. Then we can get the zebra lines info rmation.FIGURE IV. R ESULT OF ZEBRA CROSSING RECOGNITIONIV B LIND ROAD RECOGNITIONThe color of b lind road is usually very bright. So the colors can be used to detect the characteristics of the blind road. This paper gets the blind area using image segmentation. Extract the edge of blind road. First, convert the image from RGB to HSI color space. HSI has three color components. Use the saturation histogram to segment image.(a)O RIGINAL IMAGE(b)H ISTOGRAM OF SATURATION(c) THE SEGMENT IMAGEFIGURE V. R ESULT OF IMAGE SEGMENTATION However, sometimes the color histogram will appear "jagged" shape. It is difficult to divide the image through the peaks and troughs in the histogram. So in order to determine the segmentation point, first use the Gauss smoothing filter to smooth the original color histogram. Suppose S L(x)is the histogram of saturation. The processed color histogram function is:F(x,σ)=S L(x)∗G(x,σ)(4) Here, G(x,σ)is the Gauss function. * presents convolution.This operation not only reduces noise, but also eliminates some tiny saw teeth.FIGURE VI. R ESULT OF BLIND ROAD RECOGNITIONV GPS RECOGNITIONThe remote positioning function can send the blind people to the blind's relatives and friends in real time, strengthen the connection between the blind and relatives and friends, and ensure the safety of the blind. Using SIM808 module and SIM telephone card to realize GPS remote positioning. Through the GPRS flow data of SIM808 GPS upload module programming through the SIM card to the China Mobile networking platform, open platform (OneNET) by computer through the GPS data from the OneNET platform and processed, displayed on the map to achieve GPS remote location positioning module.VI C ONCLUSIONSAiming at the needs of the blind, a guide system is designed. According to the confirmation of the blind activities restrict the function of the system and established the general scheme of the robot; then the realization of recognition, such as the zebra and blind important traffic signs. However, the system needs to be further improved, then to realize traffic lights recognition, intelligent guide system development.R EFERENCES[1]Meng Xiangwei, Yan Xijun, Ouyang, stars, et al. Design of guide barbased on ultrasonic sensors [J]. electronic design engineering, 2012, 20(17): 11-14.[2]Zhang Zhimei, C heng Liying, Zhao Yiheng, et al. Study of guide rob otbased on fuzzy PID control alg orithm [J]. Journal of Shenyang Normal University (NATURAL SCIENCE EDITION), 2015, 33 (1): 81-85. [3]Tang Zhichao, Su Lin, He Chao, et al. Research on traffic sign visualrecognition technology of guide rob ot [J]. compu ter technology and development, 2014 (9): 23-27.[4]Yang Wanhai. Multisensor data fusion and its application [M].Northwest University of Electronic Science and Technology Press, 2004. [5]Xu Yan, Wei Zhen Yu. An improved traffic sign image recognitionalgorithm [J]. laser and Optoelectronics Progress, 2017 (2): 118-125. [6]Khatib O. Real-Time Obstacle Avoidance for Manipulators and MobileRobots[C]// IEEE International C onference on Rob otics and Automation.Proceedings. IEEE, 1986:500-505.[7]Huang Yanbiao, Lu o Guangyue, ho ho. Application of B P neuralnetwork in multisensor data fusion of patrol rob ot [J]. Journal of sensing technology, 2016, 29 (12): 1936-1940.[8]Otsu N. A Threshold Selection Method from Gray-Level Histograms [J].IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1):62-66.。
Haptic Device Abstraction Layer(HDAL)API ReferenceVERSION 2.1.3August 14, 2008Novint Technologies IncorporatedAlbuquerque, NM USACopyright Notice©2005-2008. Novint Technologies, Inc. All rights reserved.Printed in the USA.Except as permitted by license, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, recording or otherwise, without prior written consent of Novint Technologies.TrademarksNovint, Novint Technologies, e-Touch, Falcon, and HDAL are trademarks or registered trademarks of Novint Technologies, Inc. Other brand and product names are trademarks of their respective holders. Warranties and DisclaimersNovint Technologies does not warrant that this publication is error free. This publication could include technical or typographical errors or other inaccuracies. Novint may make changes to the product described in this publication or to this publication at any time, without notice.Questions or CommentsIf you have any questions for our technical support staff, please contact us atsupport@. You can also phone 1-866-298-4420.If you have any questions or comments about the documentation, please contact us atsupport@.Corporate HeadquartersNovint Technologies, Inc.PO Box 66956Albuquerque, NM 87193Phone: 1-866-298-4420E-mail: support@Internet: PrefaceThis manual is a reference to the Haptic Device Abstraction Layer produced by Novint Technologies. It contains reference pages to all the HDAL API functions, constants, and types. This manual was current as of the release of the corresponding version of HDAL.The technical content of this document was mechanically generated from HDAL source code by Doxygen, a general-purpose utility for documenting C and C++ code. For more information on Doxygen, see ..Table of Contents Preface (3)Table of Contents (4)Overview (5)Files (5)Units (5)Coordinate Frame (5)HDAL Reference (6)include/hdl/hdl.h File Reference (6)Defines (6)Typedefs (7)Functions (7)Detailed Description (9)Typedef Documentation (9)Function Documentation (9)include/hdl/hdlConstants.h File Reference (16)Defines (16)Typedefs (16)Enumerations (17)Detailed Description (17)Typedef Documentation (17)Enumeration Type Documentation (17)include/hdl/hdlErrors.h File Reference (17)Defines (17)Typedefs (18)Detailed Description (19)Typedef Documentation (19)include/hdlu/hdlu.h File Reference (19)Functions (19)Detailed Description (19)Function Documentation (19)HDAL API Page Documentation (20)Deprecated List (20)Index (21)OverviewFilesThe HDAL API is represented in two files. include\hdl\hdl.h is the primary interface to HDAL’s functionality. It is complete, in that entire applications can be built from it. include\hdlu\hdlu.h is a utility interface, presenting functions that may be useful to the developer. HDAL can be used effectively without these utility interface functions. UnitsThe units of measure for the HDAL interface are:Distance metersForce newtonsTime secondsThe nominal cycle time is approximately one millisecond. However, since operating systems are not able to control intervals with precision adequate to many applications, a more precise time measure may be needed. For precise time calculations, the application should use some precision clock, such as the Windows QueryPerformanceCounter function.Coordinate FrameThe coordinate system used by HDAL is a right hand coordinate system:X increases to the rightY increases upwardZ increases toward the user.The origin (X = 0, Y = 0, Z = 0) is approximately at the center of the device workspace.HDAL Referenceinclude/hdl/hdl.h File ReferenceMain API for HDAL services.#include <hdl/hdlExports.h>#include <hdl/hdlErrors.h>#include <hdl/hdlConstants.h>Defines#define false 0#define HDAL_ISREADY 0Normal hdlGetStatus return code.#define HDAL_NOT_CALIBRATED 0x04hdlGetStatus code indicating motors not homed#define HDAL_SERVO_NOT_STARTED 0x02hdlGetStatus code indicating servo loop net yet started#define HDAL_UNINITIALIZED 0x01hdlGetStatus code indicating HDAL not yet initialized#define HDL_BUTTON_1 0x00000001Mask for button 1.#define HDL_BUTTON_2 0x00000002Mask for button 2.#define HDL_BUTTON_3 0x00000004Mask for button 3.#define HDL_BUTTON_4 0x00000008Mask for button 4.#define HDL_BUTTON_ANY 0xffffffffMask for any button.#define HDL_DEFAULT_DEVICE_ID 0ID for the default haptic device (usually one installed).#define HDL_INVALID_HANDLE -1Handle indicating invalid device handle.#define HDL_SERVOOP_CONTINUE 1Return code for continuing servo loop.#define HDL_SERVOOP_EXIT 0Return code for exiting servo loop.#define true 1Typedefstypedef unsigned char booldefine bool type and values for C programmers to use with certain functionstypedef int HDLDeviceHandleHandle to differentiate between multiple installed devices.typedef int HDLDeviceIDID to differentiate between multiple installed devices.typedef int HDLOpHandleType for Servo loop operation handle.typedef HDLServoOpExitCode __cdecl HDLServoOp (void *pParam)Prototype for Servo operation function.typedef int HDLServoOpExitCodeType for Servo loop operation exit code.FunctionsHDLAPI __int64 HDLAPIENTRY HDL_BUILD_VERSION (HDL_VERSION_INFO_TYPEversionInfo)Return Build component of version struct.HDLAPI int HDLAPIENTRY HDL_MAJOR_VERSION (HDL_VERSION_INFO_TYPEversionInfo)Return Major component of version struct.HDLAPI int HDLAPIENTRY HDL_MINOR_VERSION (HDL_VERSION_INFO_TYPE versionInfo) Return Minor component of version struct.HDLAPI int HDLAPIENTRY hdlCountDevices ()Count connected devices.HDLAPI HDLOpHandle HDLAPIENTRY hdlCreateServoOp (HDLServoOp pServoOp, void*pParam, bool bBlocking)Schedule an operation (callback) to run in the servo loop.HDLAPI void HDLAPIENTRY hdlDestroyServoOp (HDLOpHandle hServoOp)Remove an operation (callback) from the servo loop.HDLAPI const char *HDLAPIENTRY hdlDeviceModel ()Return the device model string.HDLAPI void HDLAPIENTRY hdlDeviceWorkspace (double workspaceDimensions[6])Retrieve the workspace of the device, measured in meters.HDLAPI HDLError HDLAPIENTRY hdlGetError ()Return the current error code from the error stack.HDLAPI unsigned int HDLAPIENTRY hdlGetState ()Query HDAL state.HDLAPI bool HDLAPIENTRY hdlGetVersion (HDL_VERSION_REQUEST requestType,HDL_VERSION_INFO_TYPE *versionInfo)Get version information.HDLAPI HDLDeviceHandle HDLAPIENTRY hdlInitDevice (HDLDeviceID deviceID)Initialize a haptic device.HDLAPI HDLDeviceHandle HDLAPIENTRY hdlInitIndexedDevice (const int index, const char*configPath)Initialize a specific indexed haptic device.HDLAPI HDLDeviceHandle HDLAPIENTRY hdlInitNamedDevice (const char *deviceName, const char *configPath)Initialize a specific named haptic device.HDLAPI void HDLAPIENTRY hdlMakeCurrent (HDLDeviceHandle hHandle)Make a specific haptic device current (Allows application to send forces to a specific device).HDLAPI void HDLAPIENTRY hdlSetToolForce (double force[3])Set the force to be generated by the device, measured in newtons.HDLAPI void HDLAPIENTRY hdlStart ()Start servo and all haptic devices.HDLAPI void HDLAPIENTRY hdlStop ()Stop servo and all haptic devices.HDLAPI void HDLAPIENTRY hdlToolButton (bool *pButton)Return current state of tool button(s).HDLAPI void HDLAPIENTRY hdlToolButtons (int *pButton)Return current state of tool buttons.HDLAPI void HDLAPIENTRY hdlToolPosition (double position[3])Return current tool position.HDLAPI void HDLAPIENTRY hdlUninitDevice (HDLDeviceHandle hHandle)Uninitializes a haptic device.Detailed DescriptionMain API for HDAL services.Copyright 2005-2008 Novint Technologies, Inc. All rights reserved. Available only under license from Novint Technologies, Inc.Haptic Device Abstraction Layer Low level, cross-platform, general purpose interface. Definition in file hdl.h.Typedef Documentationtypedef int HDLDeviceHandleHandle to differentiate between multiple installed devices.Handle is an abstraction returned by the initialization routine.Definition at line 46 of file hdl.h.typedef HDLServoOpExitCode __cdecl HDLServoOp(void *pParam)Prototype for Servo operation function.Parameters:pParam Pointer to data required by operationReturns:Exit codeErrors: NoneDefinition at line 403 of file hdl.h.Function DocumentationHDLAPI __int64 HDLAPIENTRY HDL_BUILD_VERSION (HDL_VERSION_INFO_TYPE versionInfo)Return Build component of version struct.Parameters:versionInfo HDL_VERSION_INFO_TYPE struct returned from hdlGetVersion() Returns:Build componentSee also:hdlGetVersion().Errors: None.HDLAPI int HDLAPIENTRY HDL_MAJOR_VERSION (HDL_VERSION_INFO_TYPE versionInfo)Return Major component of version struct.Parameters:versionInfo HDL_VERSION_INFO_TYPE struct returned from hdlGetVersion() Returns:Major componentSee also:hdlGetVersion(). Errors: None.HDLAPI int HDLAPIENTRY HDL_MINOR_VERSION (HDL_VERSION_INFO_TYPE versionInfo)Return Minor component of version struct.Parameters:versionInfo HDL_VERSION_INFO_TYPE struct returned from hdlGetVersion() Returns:Minor componentSee also:hdlGetVersion().Errors: None.HDLAPI int HDLAPIENTRY hdlCountDevices ()Count connected devices.Parameters:NoneReturns:Number of connected devicesErrors: NoneNote:Only valid for Novint Falcon devicesHDLAPI HDLOpHandle HDLAPIENTRY hdlCreateServoOp (HDLServoOp pServoOp, void * pParam, bool bBlocking)Schedule an operation (callback) to run in the servo loop.Operation is either blocking (client waits until completion) or non-blocking (client continues execution).Parameters:pServoOp Pointer to servo operation functionpParam Pointer to data for servo operation functionbBlocking Flag to indicate whether servo loop blocksReturns:Handle to servo operation entryErrors: NoneSee also:hdlDestroyServoOp, hdlInitNamedDevice, hdlInitIndexedDeviceHDLAPI void HDLAPIENTRY hdlDestroyServoOp (HDLOpHandle hServoOp) Remove an operation (callback) from the servo loop.Parameters:hServoOp Handle to servo op to removeReturns:NothingErrors: None.Note:hdlDestroyServoOp() should be called at application termination time for any servo operation that was added with bBlocking = false.See also:hdlCreateServoOp, hdlInitNamedDevice, hdlIndexedDeviceHDLAPI const char* HDLAPIENTRY hdlDeviceModel ()Return the device model string.Parameters:NoneReturns:Device model stringErrors: NoneHDLAPI void HDLAPIENTRY hdlDeviceWorkspace (double workspaceDimensions[6]) Retrieve the workspace of the device, measured in meters.Call this function to retrieve the workspace of the current device. Since not all devices have the same physical workspace dimensions, the application must account for different device workspaces. The workspace is defined in the device reference coordinate frame. It is up to the user to transform positions in this coordinate frame into the application's coordinate frame.See hdluGenerateHapticToAppWorkspaceTransform for a utility function to assist in this.Dimension order: minx, miny, minz, maxx, maxy, maxy (left, bottom, far, right, top, near) (minx, miny, minz) are the coordinates of the left-bottom-far corner of the device workspace.(maxx, maxy, maxz) are the coordinates of the right-top-near corner of the device workspace.Parameters:workspaceDimensions See explanation above.Returns:NothingErrors:manufacturer specificno current deviceHDLAPI HDLError HDLAPIENTRY hdlGetError ()Return the current error code from the error stack.Returns:Error code on the top of the error stack.HDL_NO_ERROR if the error stack is empty.HDLAPI unsigned int HDLAPIENTRY hdlGetState ()Query HDAL state.Parameters:NoneReturns:NothingErrors: manufacturer specificNote:If return == HDAL_ISREADY, device is ready. Otherwise, test to see reason:return && XXXX != 0, where XXXX isHDAL_UNINITIALIZED hdlInitNamedDevice failed earlierHDAL_SERVO_NOT_STARTED hdlStart() not called earlierHDAL_NOT_CALIBRATED needs autocalibrationHDLAPI bool HDLAPIENTRY hdlGetVersion (HDL_VERSION_REQUEST requestType, HDL_VERSION_INFO_TYPE * versionInfo)Get version information.Parameters:requestType Type of version information requestedversionInfo Requested infoReturns:Success or failureErrors: None.Typical usage:HDL_VERSION_INFO_TYPE deviceVersion;int deviceMajor;int deviceMinor;__int64 deviceSerialNumber;if (hdlGetVersion(HDL_DEVICE, &deviceVersion)){deviceMajor = HDL_MAJOR_VERSION(deviceVersion);deviceMinor = HDL_MINOR_VERSION(deviceVersion);deviceSerialNumber = HDL_BUILD_VERSION(deviceVersion);}HDLAPI HDLDeviceHandle HDLAPIENTRY hdlInitDevice (HDLDeviceID deviceID) Initialize a haptic device.deviceID ID of haptic deviceReturns:Handle to haptic deviceErrors:manufacturer specificcould not load device specific dllDeprecated:Only supports a single device, deviceID is ignored. Included to support older apps. UsehdlInitNamedDevice instead.See also:hdlInitNamedDeviceHDLAPI HDLDeviceHandle HDLAPIENTRY hdlInitIndexedDevice (const int index, const char * configPath)Initialize a specific indexed haptic device.Parameters:index Index of haptic device.configPath Path/file for ini file.configPath search order:See also:hdlInitNamedDeviceReturns:Handle to haptic deviceErrors:manufacturer specificcould not load device specific dllNote:Support only Falcon devices via indexIndex refers to alphabetical sort order by serial numberSee also:hdlInitNamedDevice, hdlStart, hdlStop, hdlCreateServoOp, hdlDestroyServoOp, hdlUninitDevice Note:In C++ programs, configPath is optional, with a default value of (const char *) 0.C programs must pass (const char *) 0 to use default configPathHDLAPI HDLDeviceHandle HDLAPIENTRY hdlInitNamedDevice (const char * deviceName, const char * configPath)Initialize a specific named haptic device.deviceName Name of haptic device.configPath Path/file for ini file.configPath search order:1. relative to executable directory2. relative to executable directory's parent if executable directory is Debug or Release3. config directory in path specified by NOVINT_DEVICE_SUPPORTReturns:Handle to haptic deviceErrors:manufacturer specificcould not load device specific dllNote:Support multiple devices via deviceName string.See also:hdlInitIndexedDevice, hdlStart, hdlStop, hdlCreateServoOp, hdlDestroyServoOp,hdlUninitDeviceNote:In C++ programs, configPath is optional, with a default value of (const char *) 0.C programs must pass (const char *) 0 to use default configPathHDLAPI void HDLAPIENTRY hdlMakeCurrent (HDLDeviceHandle hHandle) Make a specific haptic device current (Allows application to send forces to a specific device).Parameters:hHandle Haptic device handleReturns:NothingErrors:manufacturer specifichHandle invalidHDLAPI void HDLAPIENTRY hdlSetToolForce (double force[3])Set the force to be generated by the device, measured in newtons.Forces are in device coordinates. Dimension order: x, y, zParameters:force Measured in Newtons; x, y, z orderReturns:NothingErrors:manufacturer specificno current devicemax force exceededHDLAPI void HDLAPIENTRY hdlStart ()Start servo and all haptic devices.Parameters:NoneReturns:Handle to haptic deviceErrors:manufacturer specificservo could not startNote:Starts servo and all haptic devices. Call after all devices are initialized. Start is separated fromhdlInitNamedDevice to allow all devices to be initialized before servo operations are started.Currently, only one Falcon at a time is supported, but this restriction will be lifted in the future.Other device types supported by HDAL may already allow multiple devices to be connected.See also:hdlStop, hdlInitNamedDevice, hdlInitIndexedDeviceHDLAPI void HDLAPIENTRY hdlStop ()Stop servo and all haptic devices.Parameters:NoneReturns:NothingSee also:hdlStart, hdlInitNamedDevice, hdlInitIndexedDeviceHDLAPI void HDLAPIENTRY hdlToolButton (bool * pButton)Return current state of tool button(s).For multi-button devices, if any button is pressed, pButton* is set to true.Parameters:pButton Pointer to bool to hold button stateReturns:NothingErrors: NoneHDLAPI void HDLAPIENTRY hdlToolButtons (int * pButton)Return current state of tool buttons.Returned value is a bitmask of buttons, with the least significant bit associated with button "0".Parameters:pButton Pointer to an int to hold button statesReturns:NothingErrors: NoneHDLAPI void HDLAPIENTRY hdlToolPosition (double position[3]) Return current tool position.Parameters:position In x, y, z order, measured in meters.Returns:NothingErrors: NoneHDLAPI void HDLAPIENTRY hdlUninitDevice (HDLDeviceHandle hHandle) Uninitializes a haptic device.Parameters:hHandle Handle of haptic deviceReturns:NothingErrors: manufacturer specificSee also:hdlInitNamedDevice, hdlInitIndexedDeviceinclude/hdl/hdlConstants.h File ReferenceConstants for HDAL.Defines#define HDL_VERSION_INVALID -1vesion is invalid#define HDL_VERSION_NOT_APPLICABLE -2version field not applicable#define HDL_VERSION_UNAVAILABLE -3version field not availableTypedefstypedef __int64 HDL_VERSION_INFO_TYPEStructure returned by hdlGetVersion.Enumerationsenum HDL_VERSION_REQUEST { HDL_HDAL = 0x11, HDL_DEVICE = 0x21,HDL_DEVICE_SDK = 0x22, HDL_DEVICE_COMMS = 0x23, HDL_DEVICE_OS = 0x24,HDL_GRIP = 0x33 }Enumeration of version request types.Detailed DescriptionConstants for HDAL.Copyright 2005-2008 Novint Technologies, Inc. All rights reserved. Available only under license from Novint Technologies, Inc.Definition in file hdlConstants.h.Typedef Documentationtypedef __int64 HDL_VERSION_INFO_TYPEStructure returned by hdlGetVersion.See also:hdlGetVersionDefinition at line 39 of file hdlConstants.h.Enumeration Type Documentationenum HDL_VERSION_REQUESTEnumeration of version request types.See also:hdlGetVersionEnumerator:HDL_HDAL version of HDALHDL_DEVICE device hardware in current device contextHDL_DEVICE_SDK SDK version of current device.HDL_DEVICE_COMMS communications version of current deviceHDL_DEVICE_OS version of device OSHDL_GRIP grip in current device contextDefinition at line 22 of file hdlConstants.h.include/hdl/hdlErrors.h File ReferenceError codes returned from HDAL.Defines#define HDL_ERROR_INIT_FAILED 0x10Device initialization error.#define HDL_ERROR_INTERNAL 0x02HDAL internal error>.#define HDL_ERROR_STACK_OVERFLOW 0x01Overflow of error stack.#define HDL_INIT_DEVICE_ALREADY_INITED 0x16Device already initialized.#define HDL_INIT_DEVICE_FAILURE 0x15Failed to initilize device.#define HDL_INIT_DEVICE_NOT_CONNECTED 0x17Requested device not connected.#define HDL_INIT_DLL_LOAD_ERROR 0x14Could not load driver DLL.#define HDL_INIT_ERROR_MASK 0x1FMask for all initialization errors.#define HDL_INIT_INI_DLL_STRING_NOT_FOUND 0x12No DLL name in configuration file.#define HDL_INIT_INI_MANUFACTURER_NAME_STRING_NOT_FOUND 0x13 No MANUFACTURER_NAME value in configuration file.#define HDL_INIT_INI_NOT_FOUND 0x11Could not find configuration file.#define HDL_NO_ERROR 0x0No errors on error stack.#define HDL_SERVO_START_ERROR 0x18Could not start servo thread.Typedefstypedef int HDLErrorHDAL API Errors.Detailed DescriptionError codes returned from HDAL.Copyright 2005-2008 Novint Technologies, Inc. All rights reserved. Available only under license from Novint Technologies, Inc.Definition in file hdlErrors.h.Typedef Documentationtypedef int HDLErrorHDAL API Errors.Client application queries HDAL errors using hdlGetError(). hdlGetError() returns an error type.Definition at line 19 of file hdlErrors.h.include/hdlu/hdlu.h File ReferenceUtility functions for HDAL applications.#include <hdl/hdlExports.h>FunctionsHDLAPI void HDLAPIENTRY hdluGenerateHapticToAppWorkspaceTransform (doublehapticWorkspace[6], double gameWorkspace[6], bool useUniformScale, double tranformMat[16]) Generate transform for mapping between haptic and game workspace.HDLAPI double hdluGetSystemTime (void)Compute a precise time based on CPU high performance timer.Detailed DescriptionUtility functions for HDAL applications.Copyright 2005-2008 Novint Technologies, Inc. All rights reserved. Available only under license from Novint Technologies, Inc.Haptic Device Abstraction Layer Low level, cross-platform, general purpose interface. Definition in file hdlu.h.Function DocumentationHDLAPI void HDLAPIENTRY hdluGenerateHapticToAppWorkspaceTransform (double hapticWorkspace[6], double gameWorkspace[6], bool useUniformScale, double tranformMat[16])Generate transform for mapping between haptic and game workspace.Inputs specify the minimum and maximum coordinate values of rectangular paralleliped bounding boxes, measured in meters. The function computes and returns (in transformMat) the transform matrix that will convert the device position into workspace coordinates. See hdlDeviceWorkspace for the HDAL function to retrieve the device's workspace.Parameters:hapticWorkspace minx, miny, minz, maxx, maxy, maxzgameWorkspace minx, miny, minz, maxx, maxy, maxzuseUniformScale If true, scale uniformly across the workspacetranformMat Transformation from haptic to game workspaceReturns:NothingErrors: NoneHDLAPI double hdluGetSystemTime (void)Compute a precise time based on CPU high performance timer.Parameters:NoneReturns:Current system time, in seconds from start of epochHDAL API Page DocumentationDeprecated ListMember hdlInitDeviceOnly supports a single device, deviceID is ignored. Included to support older apps. Use hdlInitNamedDevice instead.Indexhdl.hHDL_BUILD_VERSION, 9 HDL_MAJOR_VERSION, 10 HDL_MINOR_VERSION, 10 hdlCountDevices, 10 hdlCreateServoOp, 10 hdlDestroyServoOp, 11 HDLDeviceHandle, 9 hdlDeviceModel, 11 hdlDeviceWorkspace, 11 hdlGetError, 12 hdlGetState, 12 hdlGetVersion, 12 hdlInitDevice, 12 hdlInitIndexedDevice, 13 hdlInitNamedDevice, 13 hdlMakeCurrent, 14 HDLServoOp, 9 hdlSetToolForce, 14 hdlStart, 15hdlStop, 15 hdlToolButton, 15 hdlToolButtons, 15 hdlToolPosition, 16 hdlUninitDevice, 16HDL_BUILD_VERSIONhdl.h, 9HDL_DEVICE hdlConstants.h, 17HDL_DEVICE_COMMS hdlConstants.h, 17HDL_DEVICE_OS hdlConstants.h, 17HDL_DEVICE_SDK hdlConstants.h, 17HDL_GRIPhdlConstants.h, 17HDL_HDAL hdlConstants.h, 17HDL_MAJOR_VERSION hdl.h, 10HDL_MINOR_VERSION hdl.h, 10HDL_VERSION_INFO_TYPE hdlConstants.h, 17HDL_VERSION_REQUEST hdlConstants.h, 17 hdlConstants.hHDL_DEVICE, 17HDL_DEVICE_COMMS, 17 HDL_DEVICE_OS, 17HDL_DEVICE_SDK, 17HDL_GRIP, 17HDL_HDAL, 17HDL_VERSION_INFO_TYPE, 17 HDL_VERSION_REQUEST, 17 hdlCountDeviceshdl.h, 10hdlCreateServoOphdl.h, 10hdlDestroyServoOphdl.h, 11HDLDeviceHandlehdl.h, 9hdlDeviceModelhdl.h, 11 hdlDeviceWorkspacehdl.h, 11HDLErrorhdlErrors.h, 19hdlErrors.hHDLError, 19hdlGetErrorhdl.h, 12hdlGetStatehdl.h, 12hdlGetVersionhdl.h, 12hdlInitDevicehdl.h, 12 hdlInitIndexedDevicehdl.h, 13hdlInitNamedDevicehdl.h, 13hdlMakeCurrenthdl.h, 14HDLServoOphdl.h, 9hdlSetToolForcehdl.h, 14hdlStarthdl.h, 15hdlStophdl.h, 15hdlToolButtonhdl.h, 15hdlToolButtonshdl.h, 15hdlToolPositionhdl.h, 16hdlu.hhdluGenerateHapticToAppWorkspaceTransform, 19hdluGetSystemTime, 20 hdluGenerateHapticToAppWorkspaceTransform hdlu.h, 19hdluGetSystemTimehdlu.h, 20 hdlUninitDevicehdl.h, 16include/hdl/hdl.h, 6include/hdl/hdlConstants.h, 16 include/hdl/hdlErrors.h, 17 include/hdlu/hdlu.h, 19。
机器人运动中六维力传感器的重力补偿研究王志军;韩静如;李占贤;刘立伟【摘要】针对六维力传感器在工业机器人运动过程中,受末端工具重力影响而导致其零位值变化的问题,提出了一种能够对传感器的零位值实时更新的重力补偿算法.首先对机器人连杆结构进行分析,推导出重力补偿算法,然后通过MATLAB软件得到运用该算法进行理论计算的结果曲线,并运用Adams软件对机器人相关运动进行仿真,测得末端工具重力在六维力传感器所在坐标系各力/力矩分量的曲线,最终验证了该重力补偿算法理论推导的正确性.运用该重力补偿算法,可有效提高六维力传感器实际应用中的测量精度.【期刊名称】《机械设计与制造》【年(卷),期】2018(000)007【总页数】4页(P252-255)【关键词】工业机器人;六维力传感器;重力补偿;MATLAB;Adams【作者】王志军;韩静如;李占贤;刘立伟【作者单位】华北理工大学机械工程学院,河北唐山 063009;华北理工大学机械工程学院,河北唐山 063009;华北理工大学机械工程学院,河北唐山 063009;华北理工大学机械工程学院,河北唐山 063009【正文语种】中文【中图分类】TH16;TP2421 引言六维力传感器能够检测大小和方向不断变化的三维力和三维力矩信息,一般安装在工业机器人末端,协助机器人完成力/位置控制、轮廓跟踪、轴孔配合等一些精细复杂的操作,在机器人中具有广泛应用[1-3]。
但是,六维力传感器在随机器人运动的过程中,由于其位姿不断发生变化,同时受安装在传感器上的操作工具重力的影响,传感器的零位值也会随之不断变化,这就导致传感器测量上产生一定偏差,降低了其测量精度,进而影响机器人的操作。
因此,有必要对机器人运动中的六维力传感器进行重力补偿。
关于不同情况下的重力补偿,国内一些学者也分别进行过理论算法推导或相关实验研究等,并取得了一定的研究成果。
文献[4]提出了基于最小二乘法的参数识别方法,可用于对机器人臂的重力补偿;文献[5]采用矢量分解的方法推导出一种机器人的重力补偿算法;文献[6]利用拉格朗日方程的方法对机构进行重力补偿的理论计算,实现了对力觉交互设备的重力补偿;文献[7]通过对机器人建立动力学方程,分析得出重力补偿可使控制器克服重力,从而使机器人到达期望位置。
平川中学高2025届下学期期中考试高一英语试卷第一节(共5小题:每小题1. 5分,满分7. 5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where is the woman now?A.In New York. B.In a bookstore. C.At a post office. 2.Where does the conversation probably take place?A.In a supermarket. B.In a restaurant. C.In a hotel.3.What do we know about the man?A.He fought with a cook.B.He made a late delivery.C.He quarreled with the manager4.What are the speakers mainly talking about?A.Supper. B.Cooking. C.Fast food.5.What color is the woman’s umbrella?A.Red. B.Yellow. C.Brown.第二节(共15小题;每小题1. 5分,满分22. 5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.What does the man want to do?A.Play an opera.B.Enjoy a rock concert.C.Watch a movie.7.What are the speakers going to do first?A.Have supper.B.Attend the concert.C.Buy two tickets.听第7段材料,回答第8至10题。
1. 美国Sensable Technologies 公司的PHANTOM 系列触觉设备(国内:北京黎明公司) 1)PHANTOM Omni &PHANTOM Desktop 性能指标比较:
价格情况:
PHANTOM Omni 号称是现今最为经济实惠的触觉交互设备,价格为十几万人民币。
PHANTOM Desktop 的分辨率比PHANTOM Omni 高,运动范围和输出力比PHANTOM Omni 大,价格也比PHANTOM Omni 高,具体价格不详,估计在二三十万人民币。
产品类型
The PHANTOM Desktop The PHANTOM Omni
设备实物图片
力反馈工作空间 ~6.4 W × 4.8 H × 4.8 D in > 160 W × 120 H × 120 D mm
~6.4 W × 4.8 H × 2.8 D in >160 W × 120H × 70 D mm
尺寸:装置所占用的 桌面区域大小 5 5/8 W × 7 1/4 D in ~143 W × 184 D mm 6 5/8 W × 8 D in ~168 W × 203 D mm 重量(装置本身)
6lb 5oz (2.9Kg )
3lb 15oz (1.8Kg ) 运动范围
手腕和前小臂弯曲所导致的
手部运动
手腕弯曲所导致的手部运动
标称位置分辨率 > 1100 dpi~ 0.023 mm >450 dpi ~0.055 mm 摩擦阻力
< 0.23 oz (0.06 N)
<1 oz (0.26 N) 标称(直角连杆)位置处的
最大输出力
1.8 lbf. (7.9 N)
0.75 lbf (3.3 N)
连续输出力(24小时)
0.4 lbf. (1.75 N) >0.2 lbf (0.88 N)
强度 X 轴 > 10.8 lb/in (1.86 N/mm) Y 轴 > 13.6 lb/in (2.35 N/mm) Z 轴 > 8.6 lb/in (1.48 N/mm) X 轴 > 7.3 lb/in (1.26 N/mm) Y 轴 > 13.4 lb/in (2.31 N/mm) Z 轴 > 5.9 lb/in (1.02 N/mm)
惯性: 末端连杆的质量 ~0.101 lbm. (45 g) ~0.101 lbm (45 g) 反馈力方向 x,y,z
x,y,z
位置检测 x,y,z (数字编码) x,y,z (数字编码) 姿态检测 倾斜、摇摆、偏移 (±3%线性电位器)
倾斜、摇摆、偏移 (±5%线性电位器) 接口 并口
IEEE-1394 FireWire? 接口
支持平台
基于Intel 的PC
基于Intel 的PC
2)PHANTOM Premium 1.0, 1.5, 1.5 High Force & 3.0
性能指标比较:
价格情况:
PHANTOM Premium 1.0, 1.5, 1.5 High Force & 3.0系列触觉交互设备具有3 个自由度的力觉反馈,能检测3 个自由度的位置信息,还可以通过另外购买一支带有编码器的铁笔添加检测3 个自由度姿态信息的功能。
具体价格不详,估计在三十万到四十万人民币之间。
Premium 1.0< Premium 1.5< Premium 1.5 High Force <Premium 3.0。
3)PHANTOM Premium 1.5/6DOF & 1.5 High Force/6DOF
性能指标比较:
价格情况:
PHANTOM Premium 1.5/6DOF & 1.5 High Force/6DOF具有6 个自由度的力觉反馈,能检测6 个自由度的位姿信息,具体价格不详,估计在五十万到六十万人民币之间。
4)HANTOM Premium 3.0 /6DOF
性能指标比较:
价格情况:
PHANTOM Premium 3.0 /6DOF是PHANTOM系列触觉交互设备最高端的产品,运动范围大,分辨率高,输出力大,具有6 个自由度的力觉反馈,能检测6 个自由度的位姿信息,价格为六七十万人民币。
2. 法国HAPTION公司的Virtuose系列触觉设备(国内代理:北京朗迪锋公司)1)Virtuose 3D15-25
·工作空间: 250 mm
·最大输出力: 15 N
·连续输出力: 5 N
·刚度: 800 N/m
·反馈力方向:x,y,z (3 个自由度)
·位置检测:x,y,z (3 个自由度)
·价格:$30,000~$40,000
2)Virtuose 6D35-45
·工作空间: 450 mm
·最大输出力: 35 N
·连续输出力: 10 N
·最大输出力矩: 3 Nm
·连续输出力矩: 1 Nm
·反馈力方向:x,y,z (6 个自由度)
·位置检测:x,y,z (6 个自由度)
·价格:不详
3)Virtuose 6D40-40
·工作空间: 400 mm
·最大输出力: 100 N
·连续输出力: 30 N
·最大输出力矩: 10 Nm
·连续输出力矩: 3 Nm
·反馈力方向:x,y,z (6 个自由度) ·位置检测:x,y,z (6 个自由度) ·价格:不详
3.瑞士Force dimension公司的Force dimension系列触觉设备(国内:北京科瑞斯特公司)1)Force dimension Omega 3-DOF
价格:¥210,000
2)Force dimension Delta 3-DOF
价格:¥332,000
3)Force dimension Delta 6-DOF
价格:¥610,000。