中考复习:两圆的公切线3
- 格式:ppt
- 大小:815.00 KB
- 文档页数:15
两圆的公切线-教学教案第一课时两圆的公切线〔一〕教学目标:〔1〕理解两圆相切长等有关概念,把握两圆外公切线长的求法;〔2〕培育同学的归纳、总结力量;〔3〕通过两圆外公切线长的求法向同学渗透“转化〞思想.教学重点:理解两圆相切长等有关概念,两圆外公切线的求法.教学难点:两圆外公切线和两圆外公切线长同学理解的不透,简洁混淆.教学活动设计〔一〕实际问题〔引入〕很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.〔这里是一种简洁的数学建模,了解数学产生与实践〕〔二〕两圆的公切线概念1、概念:老师引导同学自学.给出两圆的外公切线、内公切线以及公切线长的定义:和两圆都相切的直线,叫做两圆的公切线.(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.(3)公切线的长:公切线上两个切点的距离叫做公切线的长.2、理解概念:(1)公切线的长与切线的长有何区分与联系(2)公切线的长与公切线又有何区分与联系(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.〔三〕两圆的位置与公切线条数的关系组织同学观看、概念、概括,培育同学的学习力量.添写教材P143练习第2题表.〔四〕应用、反思、总结例1、:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B.一般要把它分解成一个直角三角形和一个矩形,再用其性质.〔组织同学分析,老师点拨,标准步骤〕解:连结O1A、O2B,作O1A⊙AB,O2B⊙AB.过O1作O1C⊙O2B,垂足为C,那么四边形O1ABC为矩形,于是有O1C⊙C O2,O1C= AB,O1A=CB.在Rt⊙O2CO1和.O1O2=13,O2C= O2B- O1A=5AB= O1C= (cm).反思:〔1〕“转化〞思想,构造三角形;〔2〕初步把握添加帮助线的方法.例2*、如图,⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,假设PA=8cm,PB=6cm,求切线AB的长.分析:由于线段AB是⊙APB的一条边,在⊙APB中,PA和PB 的长,只需先证明⊙PAB是直角三角形,然后再依据勾股定理,使问题得解.证⊙PAB是直角三角形,只需证⊙APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,由于AB是两圆的公切线,所以⊙CPB=⊙ABP,⊙CPA=⊙BAP.由于⊙BAP+⊙CPA+⊙CPB+⊙ABP=180°,所以2⊙CPA+2⊙CPB=180°,所以⊙CPA+⊙CPB=90°,即⊙APB=90°,故⊙APB是直角三角形,此题得解.解:过点P作两圆的公切线CD⊙ AB是⊙O1和⊙O2的切线,A、B为切点⊙⊙CPA=⊙BAP⊙CPB=⊙ABP又⊙⊙BAP+⊙CPA+⊙CPB+⊙ABP=180°⊙ 2⊙CPA+2⊙CPB=180°⊙⊙CPA+⊙CPB=90°即⊙APB=90°在Rt⊙APB中,AB2=AP2+BP2说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.〔五〕稳固练习1、当两圆外离时,外公切线、圆心距、两半径之差肯定组成()(A)直角三角形(B)等腰三角形(C)等边三角形(D)以上答案都不对.此题考察外公切线与外公切线长之间的差异,答案(D)2、外公切线是指(A)和两圆都祖切的直线(B)两切点间的距离(C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线直接运用外公切线的定义推断.答案:(D)3、教材P141练习〔略〕〔六〕小结〔组织同学进行〕学问:两圆的公切线、外公切线、内公切线及公切线的长概念;力量:归纳、概括力量和求外公切线长的力量;思想:“转化〞思想.〔七〕作业:P151习题10,11.其次课时两圆的公切线〔二〕教学目标:〔1〕把握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;〔2〕培育的迁移力量,进一步培育同学的归纳、总结力量;〔3〕通过两圆内公切线长的求法进一步向同学渗透“转化〞思想.教学重点:两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.教学难点:两圆内公切线和两圆内公切线长同学理解的不透,简洁混淆.教学活动设计〔一〕复习根底学问〔1〕两圆的公切线概念:公切线、内外公切线、内外公切线的长.〔2〕两圆的位置与公切线条数的关系.〔构成数形对应,且一一对应〕〔二〕应用、反思例1、〔教材例2〕:⊙O1和⊙O2的半径分别为4厘米和2厘米,圆心距为10厘米,AB是⊙O1和⊙O2的一条内公切线,切点分别是A,B.求:公切线的长AB。
怎样确定两圆的内公切线和外公切线答:首先应弄清公切线、内公切线和外公切线等概念.和两个圆都相切的直线,叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线图1(1).两个圆在公切线6d22aeae8db846b70d2b475bba1b063c两旁时,这样的公切线叫做内公切线图1(2).根据定义可以分清什么是两圆的内公切线,什么是两圆的外公切线.由于两圆的位置不同,这两圆的公切线条数也不相同.下面分别讨论.(1)当两圆外离时,可以作两条外公切线和两条内公切线,故共有4条公切线;(2)当两圆外切时,可以作两条外公切线和1条内公切线,故共有3条公切线;(3)当两圆相交时,可以作两条外公切线,而无法作出内公切线,故共有2条公切线;(4)当两圆内切时,只可作1条外公切线,而无法作两圆的内公切线,故共有1条公切线;(5)当两圆内含时,没有公切线.反过来,若两圆有4条、3条、2条、1条、没有公切线时,也可判定两圆的位置关系分别是外离、外切、相交、内切、内含.介绍两圆相外离时公切线的作法如下.作两圆的公切线,关键是作出切点,解决问题的方法是把它转化为过一点作圆的切线问题.可以想像把两圆中较小的一个圆的半径逐渐变小,最后成为一个点的情况;与小圆半径变小的同时,大圆的半径也相应地变小相等的长度,可结合画图,得到作相离两圆的外公切线转化为过圆外一点作圆(辅助圆)的切线.所以得出要先作出和大圆同心,并且半径等于两半径之差的辅助圆.如图2所示,画两个圆的公切线时,总是以较大的圆的圆心为圆心,先画一个辅助圆.如果是画外公切线.那么辅助圆的半径等于两圆半径的差;如果要画的是内公切线,那么辅助圆的半径等于两圆半径的和.辅助圆画好后,再从较小的圆的圆心作辅助圆的切线,连结切点和较大圆的圆心的线段,使之与较大圆相交于一点(画外公切线时要延长),然后过这交点画辅助圆的切线的平行线,就得到要画的公切线.总之,画外公切线和画内公切线的方法是一样的,只是辅助圆的半径不同.当两圆外切、两圆相交时两圆外公切线的作法与两圆外离时的作法基本相同.想一想两圆外切时内公切线的作法(过切点作两圆连心线的垂线).1421-1638-9529-3184。