3.如图,图中的抛物线是把抛物线 2 y=-x 经过平移而得到的.这条抛物 线通过原点O和x轴正 y P 半轴上一点A,它的顶 点为P,∠OPA=900,求 点P的坐标和二次函 o A x 数的解析式.
3.如图,图中的抛物线是把抛物线 2 y=-x 经过平移而得到的.这条抛物 线通过原点O和x轴正 y P 半轴上一点A,它的顶 点为P,∠OPA=900,求 点P的坐标和二次函 o A x 数的解析式.
复习十二
二次函数应用(二)
复习目标:
通过复习进一步理解并掌握 二次函数有关性质,提高对二 次函数综合题的分析和解答 的能力.
2 1.设二次函数y=ax +bx+c的图象
与y轴交于点C(如图),若
AC=20,BC=15, 0 ∠ACB=90 ,求这个 二次函数的解析式.
A
y C
o
Bx
2.抛物线y x px q与x轴
2
交于A, B两点, 交y轴负半 轴交于C点, ACB 90 ,
0
1 1 2 且 , 求P, q及 OA OB OC ABC的外接圆的面积。
O1
Q B
P O2
⑵若R1=5cm, R2=3cm,PQ⊥AB于Q, 求PQ的长 .
引伸1.如图, ⊙O1与⊙O2外切于点P, AB是两圆的公切线,切点为B,A.连结 BP并延长交⊙O2于C,过C作AB的平行 线交⊙O1于D,E. ⑴求证:AC是 ⊙O1的直径; ⑵试判断线段BD、 E BA、BE的大小关系, 并证明.
5、已知二次函数y=ax2+bx+c的图象与x 轴交于A、B两点(A在原点左侧,B在 原点右侧),与y轴交于C点,若AB=4, OB>OA,且OA、OB是方程x2+kx+3=0 的两根. 1)求A、B两点的坐标;2)若点O 3 2 到BC的的距离为 , 求此二次函 2 数的解析式. 3)若点P的横坐标为2,且⊿PAB的 外心为M(1,1),试判断点P是否在2) 中所求的二次函数图象上.