七年级数学去括号练习题.
- 格式:doc
- 大小:47.00 KB
- 文档页数:6
一、选择题(每题2分,共10分)1. 去括号后,下列各式中正确的是()A. 5x - (2x + 3) = 5x - 2x - 3B. -3(x - 4) = -3x + 12C. (3x - 5) + 2 = 3x - 3D. 2(x + 3) - 5 = 2x + 6 - 52. 去括号后,下列各式中正确的是()A. (a - b) × 3 = 3a - bB. (a + b) × 3 = 3a + 3bC. (a - b) × 3 = 3a - 3bD. (a + b) × 3 = 3a - 3b3. 去括号后,下列各式中正确的是()A. (2x - 3) ÷ 3 = 2x - 1B. (2x + 3) ÷ 3 = 2x + 1C. (2x - 3) ÷ 3 = 2x - 0.1D. (2x + 3) ÷ 3 = 2x - 0.14. 去括号后,下列各式中正确的是()A. (a + b) ÷ (a - b) = a + bB. (a + b) ÷ (a - b) = a - bC. (a - b) ÷ (a + b) = a - bD. (a - b) ÷ (a + b) = a + b5. 去括号后,下列各式中正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²二、填空题(每题2分,共10分)6. 去括号后,3(x - 2) + 5 = ______7. 去括号后,-2(x + 3) - 4 = ______8. 去括号后,(4x - 5) ÷ 2 = ______9. 去括号后,(a - b) × (a + b) = ______10. 去括号后,(a + b)² = ______三、解答题(每题5分,共20分)11. 去括号并合并同类项:3(x - 2) + 4(2x + 1) - 5x12. 去括号并合并同类项:-2(x - 3) + 5(2x + 1) - 3x13. 去括号并合并同类项:(4x - 5) ÷ 2 + (2x + 3) ÷ 214. 去括号并合并同类项:(a + 2b) × (a - 2b)四、应用题(10分)15. 小明去商店买文具,买了一个笔记本和一个钢笔,笔记本比钢笔贵2元。
《去括号》课堂练习基础训练1.去括号:a+(b-c)= ; a-(b-c)= .2.去括号:4(a+b)-3(2a-3b)=( )-( )= .3.下列各式中正确的是( )A.4a-(3b+c)=4a+3b-cB.4a-(3b+c)=4a-3b+cC.4a-(3b+c)=4a+3b+cD.4a-(3b+c)=4a-3b-c4. -x+y-z的相反数是( )A.-x-y+zB.x-y+zC.x+y-zD.x+y+z5.下列运算正确的是( )A.-2(3x-1)=-6x-1B.-2(3x-1)=-6x+1C.-2(3x-1)=-6x-2D.-2(3x-1)=-6x+26. 下列去括号错误的共有( )①a+(b+c)=a+b+c;②a-(b+c-d)=a-b-c+d;③a+2(b-c)=a+2b-c;④a2-[-(a+b)]=a2-a+b.A.1个B.2个C.3个D.4个7. 化简-2a+(2a-1)的结果是( )A.-4a-1B.4a-1C.1D.-18. 化简a-[b-2a-(a-b)]的结果是( )A.2aB.-2aC.2a-2bD.4a-2b9.化简(-4x+8)-3(4-5x)的结果为( )A.-16x-10B.-16x-4C.56x-40D.14x-1010. 化简:(1)a+(-3b-2a)= ;(2)(x+2y)-(-2x-y)= ;(3)6m-3(-m+2n)= ;(4)a2+2(a2-a)-4(a2-3a)= .11.化简多项式:(3x2+4x)-(2x2+x)+(x2-3x-1).12.计算(8x2-5y2)-3(2x2-y2).提升训练13. 先化简,再求值:(1)-x2+(2x2-3x)-5(x2+x-2),其中x=-;(2)2-4(a2+ab-0.25b2),其中a=-3,b=4.14.已知(2x2+ax-y+b)-(2bx2-3x+5y-1)的值与字母x的取值无关,求3(a2-ab-b2)-(4a2+ab+b2)的值.15.已知有理数a,b,c在数轴上的位置如图所示,化简:|a+b|+|a-c|+2|a-b|.(第15题)16.已知m-n=5,mn=-3,求-(m+4n-mn)-(2mn-2m-3n)+(2n-2m-3mn)的值.17.已知|m+n-2|+(mn+3)2=0.求3(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.18.下列运算正确是( )①-[5a-(3a-4)]=2a+4;②a-3b+c-3d=(a+c)-3(b+d);③a-3(b-c)=a-3b+c;④(x-y+z)(x+y-z)=[x-(y-z)][x+(y-z)].A.①②B.①②④C.①③④D.②④19.不改变5a2-2b2-b+a+ab的值,把二次项放在前面带有“+”号的括号里,一次项放在前面带有“-”号的括号里,下面各式正确的是( )A.+(5a2+2b2+ab)-(b+a)B.+(-5a2-2b2-ab)-(b+a)C.+(5a2-2b2+ab)-(b-a)D.+(5a2+2b2+ab)-(b-a)20. 三个连续奇数,其中最小的一个是2n+1(n为自然数),则这三个连续奇数的和为( )A.6n+6B.2n+9C.6n+9D.6n+321. 一个两位数交换十位上与个位上的数字之后,得到一个新的两位数,试说明:这两个两位数之和一定能被11整除.参考答案基础训练1.a+b-c;a-b+c2.4a+4b;6a-9b;-2a+13b3.D4.B5.D6.B解析:错误的有③④.7.D8.D解析:a-[b-2a-(a-b)]=a-(b-2a-a+b)=a-b+2a+a-b=4a-2b.9.D解析:(-4x+8)-3(4-5x)=(-x+2)-(12-15x)=-x+2-12+15x=14x-10.10.(1)-a-3b;(2)3x+3y;(3)9m-6n;(4)-a2+10a11.错解:原式=3x2+4x-2x2+x+x2-3x-1=2x2+2x-1.诊断:错解中-(2x2+x)去括号时,只改变2x2项的符号,而没有改变x项的符号,这是去括号时最容易犯错误之一,做题时一定要注意.正解:原式=3x2+4x-2x2-x+x2-3x-1=2x2-1.12.错解1:原式=8x2-5y2-6x2+y2=2x2-4y2.错解2:原式=8x2-5y2-6x2-3y2=2x2-8y2.诊断:去括号时,若括号前的因数不是1,则要按乘法分配律来计算,即要用括号外的因数乘括号内的每一项,错解是常见的错误,“变符号”与使用“分配律”顾此失彼.正解:原式=8x2-5y2-6x2+3y2=2x2-2y2.提升训练13.解:(1)原式=-4x 2-8x+10,当x=-时,原式=13;(2)原式=-2a2-6ab,当a=-3,b=4时,原式=54.14.解:(2x2+ax-y+b)-(2bx2-3x+5y-1)=2x2+ax-y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x+(-y-5y+b+1).由题意可知2-2b=0,a+3=0,所以b=1,a=-3.3(a2-ab-b2)-(4a2+ab+b2)=3a2-3ab-3b2-4a2-ab-b2=-a2-4ab-4b2.当a=-3,b=1时,原式=-(-3)2-4×(-3)×1-4×12=-1.15.解:由题图知,c<0<a<b.两个正数相加仍为正数,正数减去负数等于加上这个负数的相反数,小的正数减去大的正数结果为负数.因此a+b>0,a-c>0,a-b<0.所以|a+b|+|a-c|+2|a-b|=(a+b)+(a-c)+2[-(a-b)]=a+b+a-c-2a+2b=3b-c.16.解:-(m+4n-mn)-(2mn-2m-3n)+(2n-2m-3mn)=-m-4n+mn-2mn+2m+3n+2n-2m-3m n=-m+n-4mn=-(m-n)-4mn.当m-n=5,mn=-3时,原式=7.17.解:由题意得:m+n-2=0,mn+3=0,所以m+n=2,mn=-3.3(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]=3(m+n)-2mn-2(m+n)-6(m+n)+9mn=-5(m+n)+7mn.当m+n=2,mn=-3时,原式=-5×2+7×(-3)=-31.18.D 19.C20.C解析:因为最小的一个是2n+1,所以另外两个数分别为2n+3,2n+5,因此这三个数的和为(2n+1)+(2n+3)+(2n+5)=6n+9.21.解:设这个两位数十位上的数字为a,个位上的数字为b,则此两位数为(10a+b),新两位数为(10b+a),其中a,b为正整数.因为(10a+b)+(10b+a)=11a+11b=11(a+b).又因为a,b为正整数,所以a+b为正整数.所以(10a+b)+(10b+a)是11的倍数.所以这两个两位数的和一定能被11整除.。
七年级数学⼈教版⼀元⼀次⽅程(去括号)练习题⼀元⼀次⽅程——去括号练习题学习要求掌握去括号法则,能⽤去括号的⽅法解⼀元⼀次⽅程.⼀、选择题1.今年哥哥的年龄是妹妹年龄的2倍,4年前哥哥的年龄是妹妹年龄的3倍,若设妹妹今年x岁,可列⽅程为().(A)2x+4=3(x-4) (B)2x-4=3(x-4)(C)2x=3(x-4) (D)2x-4=3x2.将3(x-1)-2(x-3)=5(1-x)去括号得()(A)3x-1-2x-3=5-x (B)3x-1-2x+3=5-x(C)3x-3-2x-6=5-5x (D)3x-3-2x+6=5-5x3.解⽅程2(x-2)-3(4x-1)=9正确的是()(A)2x-4-12x+3=9,-10x=9-4+3=8,故x=-0.8(B)2x-2-12x+1=9,-10x=10,故x=-1(C)2x-4-12x-3=9,-10x=16,故x=-1.6(D)2x-4-12x+3=9,-10x=10,故x=-14.已知关于x的⽅程(a+1)x+(4a-1)=0的解为-2,则a的值等于().(A)-2 (B)0 (C) (D)5.已知y=1是⽅程的解,那么关于x的⽅程m(x-3)-2=m(2x-5)的解是()(A)x=10 (B)x=0 (C) (D)练合、运⽤、诊断⼆、解答题6.解下列⽅程(1)3(x-1)-2(2x+1)=12 (2)5(x+8)-5=6(2x-7)(3)(4)3(y-7)-2[9-4(2-y)]=22拓展、探究、思考7.已知关于x的⽅程27x-32=11m多x+2=2m的解相同,求的值.8.解关于y的⽅程-3(a+y)=a-2(y-a).去分母练习题学习要求掌握去括号法则,能利⽤等式的性质,把含有分数系数的⽅程转化为含整数的⽅程.⼀、选择题1.⽅程的解是().(A) (B) (C) (D)2.⽅程的解为()(A) (B) (C) (D)3.若关于x的⽅程的解为x=3,则a的值为().(A)2 (B)22 (C)10 (D)-24.⽅程的解为().(A)-9 (B)3 (C)-3 (D)95.⽅程去分母,得().(A)3-2(5x+7)=-(x+17) (B)12-2(5x+7)=-x+17(C)12-2(5x+7)=-(x+17) (D)12-10x+14=-(x+17)6.四位同学解⽅程去分母分别得到下⾯的四个⽅程:①2x-2-x+2=12-3x;②2x-2-x-2=12-3x;③2(x-1)-(x+2)=3(4-x);④2(x-1)-2(x+2)=3(4-x).其中解法有错误的是().(A)①② (B)①③ (C)②④ (D)①④7.将的分母化为整数,得().(A) (B)(C) (D)8.下列各题中:①由得x=1;②由得x-7=10,解得x=17;③由6x-3=x+3,得5x=0;④由得12-x-5=3(x+3).出现错误的个数是().(A)1个 (B)2个 (C)3个 (D)4个综合、运⽤、诊断⼆、解答题9.解⽅程.(1) (2)(3) (4)(5) (6)。
一、选择题(每题3分,共15分)1. 下列去括号后表达式正确的是()A. 3(a + b) = 3a + 2bB. 2(a - b) = 2a - bC. 4(a - b) = 4a + 2bD. 5(a + b) = 5a - 5b2. 去括号后,下列表达式等于原表达式的是()A. 2(x - y) = 2x - 2yB. 3(x + y) = 3x + 2yC. 4(x - y) = 4x - 4yD. 5(x + y) = 5x - 5y3. 去括号后,下列表达式等于原表达式的是()A. 2(x - y) = 2x + 2yB. 3(x + y) = 3x - 3yC. 4(x - y) = 4x - 4yD. 5(x + y) = 5x + 5y4. 去括号后,下列表达式等于原表达式的是()A. 2(x + y) = 2x + 2yB. 3(x - y) = 3x - 3yC. 4(x + y) = 4x + 4yD. 5(x - y) = 5x + 5y5. 去括号后,下列表达式等于原表达式的是()A. 2(x - y) = 2x - 2yB. 3(x + y) = 3x + 2yC. 4(x - y) = 4x + 4yD. 5(x + y) = 5x - 5y二、填空题(每题5分,共20分)6. 去括号后,表达式 3(a + 2b) 等于 _______。
7. 去括号后,表达式 4(x - 3y) 等于 _______。
8. 去括号后,表达式 5(a + b - c) 等于 _______。
9. 去括号后,表达式 2(x - y + z) 等于 _______。
10. 去括号后,表达式 3(a + 2b - c) 等于 _______。
三、解答题(每题10分,共30分)11. 去括号并合并同类项:2(a + 3b) - 3(a - 2b)。
12. 去括号并合并同类项:4(x - y) + 5(y - x)。
人教版七年级上册第2课时去括号(376)1.老师在黑板上布置的作业中有这样一道题:“先化简,再求值:(−x3+3x2y−.”小东将x=2007错写成y3)−(x3−2xy2+y3)+(2x3−3x2y−2xy2),其中x=2007,y=−12x=2017,但他求得的结果却是正确的,请你说明其中的原因.2.下面的去括号正确的是()A.x2−(3x−2)=x2−3x−2B.7a+(5b−1)=7a+5b+1C.2m2−(3m+5)=2m2−3m−5D.−(a−b)+(ab−1)=a−b+ab−13.填空:(1)8a+2b+(5a−b)= = ;(2)a+(5a−3b)−(a−2b)= = .4.化简(−m+n)−(−m−n)等于()A.2mB.2nC.2m−2nD.−2n−2m5.化简下列各式:(1)−3(1−1a);3(2)5b−(2a−4b);(3) 2x2+3(2x−x2);(4)5(3a2b−ab2)−4(−ab2+3a2b).6.大客车上原有(3a−b)人,中途下去一半人,又上来若干人,此时车上共有乘客(8a−5b)人,则中途上车乘客有人,当a=10,b=8时,中途上车乘客有人.7.当a是整数时,试说明(a3−3a2+7a+7)+(3−2a+3a2−a3)一定是5的倍数.8.去括号:(1)x+(−y+3)=;(2)x−(−3−y)=;(3)−(x−y)+3=;(4)3−(x+y)=.参考答案1.【答案】:解:(−x3+3x2y−y3)−(x3−2xy2+y3)+(2x3−3x2y−2xy2) =−x3+3x2y−y3−x3+2xy2−y3+2x3−3x2y−2xy2=(−x3−x3+2x3)+(3x2y−3x2y)+(−y3−y3)=−2y3因为原多项式化简的结果为−2y3,不含字母x,故原多项式的值与x无关.2.【答案】:C【解析】:x2−(3x−2)=x2−3x+2,故A错误;7a+(5b−1)=7a+5b−1,故B错误;2m2−(3m+5)=2m2−3m−5,故C正确;−(a−b)+(ab−1)=−a+b+ab−1,故D错误3(1)【答案】8a+2b+5a−b;13a+b(2)【答案】a+5a−3b−a+2b;5a−b4.【答案】:B5(1)【答案】解:原式=−3×1−3×(−13a)=−3+a(2)【答案】原式=5b−2a+4b=9b−2a(3)【答案】原式=2x2+3×2x−3×x2=2x2+6x−3x2=6x−x2(4)【答案】原式=15a2b−5ab2+4ab2−12a2b=3a2b−ab26.【答案】:(132a−92b);297.【答案】:解:(a3−3a2+7a+7)+(3−2a+3a2−a3)=a3−a3−3a2+3a2+7a−2a+7+3=5a+10,当a是整数时,5a是5的倍数,10是5的倍数,故它们的和是5的倍数.8(1)【答案】x−y+3(2)【答案】x+3+y(3)【答案】−x+y+3(4)【答案】3−x−y。
七年级数学上册去括号和绝对值专项练习【1】1.先去括号,再合并同类项:(1)a-(2a+b)+2(a-2b) (2)3(5x+4)-(3x-5)(3)x+[x+(-2x-4y)] (4) (a+4b)- (3a-6b)(5)8x +2y +2(5x -2y ) (6)(x 2-y 2)-4(2x 2-3y 2)2.如果关于字母x 的代数-3x 2+mx+nx 2-x+10的值与x 的取值无关,求m,n 的值.2、求代数式的值:3m 2n-mn 2-1.2mn+mn 2-0.8mn-3m 2n,其中m=6,n=2.4.已知2x 2+xy=10,3y 2+2xy=6,求4x 2+8xy+9y 2的值.5.已知:|x-y-3|+(a+b+4)2=0,求)(22)(3)(2b a b a x y y x +-+---6.化简求值.(1)5a 3-2a 2+a -2(a 3-3a 2)-1,a =-1.(2)(2)4a 2b -[3ab 2-2(3a 2b -1)],其中a =-0.1,b =1.7.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .8.化简:)32()54(722222ab b a ab b a b a --+-+. 9.已知a =1,b =2,c =21,计算2a -3b -[3abc -(2b -a )]+2abc 的值.10.已知2x m y 2与-3xy n 是同类项, 计算m -(m 2n +3m -4n )+(2nm 2-3n )的值.11.如果关于x 的多项式:-2x 2+mx +nx 2-5x -1的值与x 的取值无关,求m 、n 的值.12.先化简,再求值(1)4(y +1)+4(1-x )-4(x +y ),其中,x =71,y =314.(2)4a 2b -[3ab 2-2(3a 2b -1)],其中a =-0.1,b =1.13.求值:(1)x x x x 45222++-,其中3-=x .(2) 先化简,后求值:y y x 32)2(31++-,其中1,6-==y x . 14.如果|a|=4,|b|=3,且a>b ,求a ,b 的值.15.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值. 16.若2<a<4,化简|2-a|+|a -4|.17.(1)已知|x|=3 ,|y|=1,且x -y <0, 求x +y.(2)已知|a|=3, |b|=5 ,且a<b, 求a-b(3)已知∣a-4∣+∣B-2∣=0,求a,b的值(4)已知|4+a|+|2-5b|=8, 求a+b18.已知a<b<0<c,化简:(1)|2a-b|+2|b-c|-2|c-a|+3|b|(2)|a-b|+|b|+|c-a|19.已知c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|20.已知b<c<0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|。
去括号练习题及答案篇一:七年级数学去括号练题】1.去括号的法则是什么?2.去括号:1) a-b+c-d;2) a+b-c+d;3) -p-q+m-n;4) r+s-p+q。
3.下列去括号是否正确?若有错误,请改正:1) a^2-2a+b-c;(2) -x-y+xy-1.3) (y-x)^2=(x-y)^2;4) (-y-x)^2=(x+y)^2;5) y-x=x-y。
4.化简:1) 7x+y;2) 4a-2b;3) -b-a;4) 18x+11;5) 4x-3y+z;6) 9x-5;7) x^2+x;8) 2a+4.1.根据去括号法则,在空格上填上“+”号或“-”号:1) a-(-b+c)=a+b-c;2) a-(-b+c-d)=a+b-c+d;3) -(a-b)-(c+d)=-a+b-c-d。
2.已知x+y=2,则3x-2y=2.3.去括号:1) a+6b+3c-3d;2) 3x-6y-4z;3) a+2b-4a-2b;4) -10x+5y。
4.化简:1) 3a+2b;2) 7b-4a+c;3) -3a-b;4) 45x+29;5) x-y+4z;6) -8x^2+18x+5;7) x^2+2x+1;8) 3a。
1.化简2-[2(x+3y)-3(x-2y)]的结果是()。
b.x-12y+2.2.已知:x÷(1+x)=1/3,求{x-[x^2-(1-x)]}-1的值。
1/3.1.根据去括号法则,在空格上填上“+”号或“-”号:1) a-(-b+c)=a+b-c;2) a-(b-c-d)=a-b+c+d;3) -(a-b)-(c+d)=-a+b-c-d2.已知x+y=2,则x-y=2x-2.3.去括号:1) a+6b+3c-3d;2) 3x-6y-4z;3) a+2b;4) -10x+5y。
4.化简:1) 3a+2b;2) 5b-2a+2c。
5.化简2-[2(x+3y)-3(x-2y)]的结果是c。
课时2去括号基础训练知识点1(去括号)1.下列去括号正确的是()A.﹣3a-(2b-c)=﹣3a+2b-cB.﹣3a-(2b-c)=﹣3a-2b-cC.﹣3a-(2b-c)=﹣3a+2b+cD.﹣3a-(2b-c)=﹣3a-2b+c2.下列运算正确的是()A.﹣2(3x-1)=﹣6x-1B.-2(3x-1)=-6x+1C.﹣2(3x-l)=-6x-2D.﹣2(3x-1)=-6x+23.化简-(2x-y)+(-y+3)的结果为()A.﹣2x-2y-3B.﹣2x+3C.2x+3D.﹣2x-2y+34.[2017四川泸州县石马中学期中]下列式子中去括号错误的是()A.5x-(x-2y+5z)=5x-x+2y-5zB.2a2+(﹣3a-b)-(3c-2d)=2a2-3a-b-3c+2dC.3x2-3(x+6)=3x2-3x-6D.-(x-2y)-(-x2+y2)=﹣x+2y+x2﹣y25.利用去括号法则化简求值.(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)-(a2-6ab+9)+2(a2+4ab+92),其中a=6,b=﹣23;(3)3x2y2-[5xy2-(4xy2-3)+2x2y2],其中x=-3,y=2.知识点2(去括号的应用)6.如果某三位数的百位数字是a-b+c,十位数字是b-c+a,个位数字是c-a+b. (1)列出这个三位数的式子,并化简;(2)当a=2,b=5,c=4时,求这个三位数.7.[2017河北承德丰宁期中]某工厂第一车间有x人,第二车间比第一车间人数的45少30人.(1)两个车间共有多少人?(2)如果从第二车间调出10人到第一车间,问第一车间的人数比第二车间的人数多多少人?参考答案1.D2.D3.B【解析】因为﹣(2x-y)+(-y+3)=﹣2x+y-y+3=﹣2x+3,所以B正确.故选B.4.C【解析】C项,3x2-3(x+6)=3x2-3x-18,故C错误.故选C.名师点睛本题考查去括号的方法:去括号时,运用乘法的分配律,把括号前的数字与括号里各项相乘,当括号前是“+”时,去括号后,括号里的各项都不改变符号;当括号前是“-”时,去括号后,括号里的各项都改变符号.5.【解析】(1)﹣(9x3-4x2+5)-(﹣3-8x3+3x2)=﹣9x3+4x2-5+3+8x3-3x2=-x3+x-2.当x=-2时,原式=﹣(-2)3+(-2)2-2=8+4-2=10.(2)﹣(a2-6ab+9)+2(a2+4ab+92)=﹣a2+6ab-9+2a2+8ab+9 =a2+14ab.当a=6,b=﹣23时,原式=62+14×6×(-23)=36-56=-20.(3)3x2y2-[5xy2-(4xy2-3)+2x2y2] =3x2y2-(5xy2-4xy2+3+2x2y2)=3x2y2-(xy2+3+2x2y2)=3x2z2-xy2-3-2x2y2当x=-3,y=2时,原式=(﹣3)2×22-(﹣3)×22-3=36+12-3=45.归纳总结解答此类题,先根据去括号法则去掉括号,再合并同类项,把结果化为没有括号和没有同类项的式子后,再把字母的取值代入这个式子求值.6.【解析】(1)100(a-b+c)+10(b-c+a)+(c-a+b)=100a-100b+100c+10b-10c+10a+c-a+b=109a-89b+91c.(2)当a=2,b=5,c=4时,百位数字是1,十位数字是3,个位数字是7,所以这个三位数是137.7.【解析】(1)第二车间有(45x-30)人,所以两个车间共有x+45x-30=(95x-30)(人).(2)(x+10)-( 45x-30-10)=x+10-(45x-40)=x+10-45x+40=15x+50.所以第一车间的人数比第二车间的人数多(15x+50)人.课时2去括号提升训练1.[2018湖北武汉二中课时作业]下列式子中去括号正确的是()A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c2.[2018天津市南开中学课时作业]当a是整数时,整式a3-3a2+7a+7+(3-2a+3a2-a3)一定是()A.3的倍数B.4的倍数C.5的倍数D.10的倍数3.[2018吉林东北师大附中课时作业]把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和为()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm4.[2018江西上饶二中课时作业]若式子(2x2+3ax-y)-2(bx2-3x+2y-1)的值与字母x的取值无关,则式子(a-b)-(2a+b)的值是________.5.[2018河北张家口五中课时作业]甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累积购买商品超过400元后,超过部分按原价的7折优惠;在乙超市购买商品全部按原价的8折优惠.设顾客累计购物x(x >400)元.(1)用含x的整式分别表示顾客在两家超市购物所付的费用;(2)当x=1100时,顾客到哪家超市购物更划算?6.[2018河南洛阳五中课时作业]有理数a,b,c在数轴上的位置如图所示,化简:|c -a|+|b-c|-|a-b|+|a+b|.7.[2018安徽芜湖二十七中课时作业]有这样一道题:(2x3-3x2y-2xy2+2y3)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=12,y=-1.甲同学把“x=12,y=-1”错抄成“x=-12,y=1”,但他计算的结果也是正确的.你说这是怎么回事?参考答案1.B【解析】选项A,﹣(a+b-c)=﹣a-b+c,所以A错误;选项B,﹣2(a+b-3c)=﹣2a -2b +6c ,所以B 正确;选项C ,﹣(﹣a -b -c)=a +b +c ,所以C 错误;选项D ,﹣(a -b -c)=﹣a +b +c ,所以D 错误.故选B.2.C 【解析】a 3-3a 2+7a +7+(3-2a +3a 2-a 3)=a 3-3a 2+7a +7+3-2a +3a 2-a 3=5a +10=5(a +2),所以该整式一定是5的倍数.故选C.3.B 【解析】设题图1中长方形的长为x cm ,宽为y cm ,则题图2中两块阴影部分的周长和为2[x +(n -2y)]+2[(m -x)+(n -x)]=[4n +2m -2(x +2y)](cm),由题图2,知x +2y=m ,所以4n +2m -2(x +2y)=4n.故选B.4.0【解析】(2x 2+3ax -y)-2(bx 2-3x +2y -1)=2x 2+3ax -y -2bx 2+6x -4y +2=(2-2b)x 2+(3a +6)x -5y +2,因为其值与字母x 的取值无关,所以2-2b=0,3a +6=0,所以a=﹣2,b=1,则(a -b)-(2a +b)=a -b -2a -b=﹣a -2b=﹣(-2)-2×1=0.5.【解析】(1)顾客在甲超市购物所付的费用是400+0.7(x -400)=(0.7x +120)(元), 顾客在乙超市购物所付的费用是0.8x 元(2)当x=1100时,0.7x +120=0.7×1100+120=890,0.8x=0.8×1100=880,因为880<890, 所以当x=1100时,顾客到乙超市购物更划算.6.【解析】由题中数轴,可得b <0<c <a ,∣b ∣<∣a ∣,所以c -a <0,b -c <0,a -b >0,a +b >0,则∣c -a ∣+∣b -c ∣-∣a -b ∣+∣a +b ∣=a -c -(b -c)-(a -b)+(a +b) =a -c -b +c -a +b +a +b=a +b.技巧点拨解答此类题,关键是根据数轴提供的信息,确定各个绝对值符号内式子的正负性,再根据绝对值的意义去掉绝对值符号,然后利用去括号和合并同类项进行化简.7.【解析】(2x 3-3x 2y -2xy 2+2y 3)-(x 3-2xy 2+y 3)+(﹣x 3+3x 2y -y 3)=2x 3-3x 2y -2xy 2+2y 3-x 3+2xy 2-y 3-x 3+3x 2y -y 3=(2x 3-x 3-x 3)+(-3x 2y +3x 2y)+(﹣2xy 2+2xy 2)+(2y 3-y 3-y 3)=0.可见原式的值与x ,y 的取值无关,所以甲同学计算的结果也是正确的技巧点拨通过换一种说法来考查学生是否真正形成了先化简再求值的意识,因此当遇到复杂的式子时,应先化简再来分析、解决剩下的有关问题.去括号的技巧在进行含有括号的整式加减运算时,若能根据算式的特点,灵活去括号,就能减少运算环节,提高解题效率.下面介绍几种技巧,供同学们学习时参考.一、先局部合并,再去括号例1.计算222222123(0.5)32a b ab a b ab a b a b ----+.解:原式22253()a b ab ab =---22253a b ab ab =-+2252a b ab =-.二、先整体合并,再去括号例2.计算223153(1)(1)(1)x x x x x x +---++-+-.分析:若按常规思路先去括号再合并,不但运算量很大,而且也容易出错.将2(1)x x -+看作一个整体,先合并,然后再去括号,则显得简捷明快.解:原式2231533(1)(1)x x x x x x =+---++-+-3183x x =--.三、由外向里去括号例3.计算23222318[6(12)]x y xy xy x y ---.分析:去括号通常是由里向外去括号,即先去掉小括号,再去掉中括号,最后再去掉大括号,但对于本题来说,若先去掉中括号,则小括号前的“-”变为“+”号,再去小括号时,括号内的各项都不用变号,这样就减少了某些项的反复变号,从而不易出错.解:原式232223186(12)x y xy xy x y =-+-23222318612x y xy xy x y =-+-23265x y xy =-.四、一次去掉多重括号例4.计算5{4[3(21)]}a a a a ----.分析:根据某项前面各层括号前“-”的个数来决定去掉括号后该项的符号.具体地说,若负号的个数是偶数个,则该项保持原来的符号,若负号的个数为奇数个,则改变该项原来的符号.只要掌握了这一法则,就可以一次去掉多重括号.解:原式54321a a a a =-+-+21a =+.。
人教版七年级数学第二章 2.2.2去括号 同步测试题一、选择题1.去括号的依据是(C )A .乘法交换律B .乘法结合律C .分配律D .乘法交换律与分配律2.下列计算中去括号正确的是(A)A .-(5-2x )=2x -5B .-(a +3)=-a +3C .-(a -b )=-a -bD .-(2x -5)=2x -53.化简-16(x -0.5)的结果是(D )A .-16x -0.5B .-16x +0.5C .16x -8D .-16x +84.化简13(9x -3)-2(x +1)的结果是(D ) A .2x -2 B .x +1 C .5x +3 D .x -35.长方形的一边等于3m +2n ,另一边比它大m -n ,则这个长方形的周长是(A )A .14m +6nB .7m +3nC .4m +nD .8m +2n6.化简5(2x -3)+4(3-2x)的结果为(A)A .2x -3B .2x +9C .8x -3D .18x -37.下列各组整式:①a -b 与-a -b ;②a +b 与-a -b ;③a +1与1-a ;④a -b 与b -a ,其中互为相反数的有(B )A .①②④B .②④C .①③D .③④8.若|x +3|+(y -12)2=0,则整式4x +(3x -5y)-2(7x -32y)的值为(C) A .-22 B .-20 C .20 D .22二、填空题9.去掉下列各式中的括号:(1)a -(-b +c)=a +b -c ; (2)a +(b -c)=a +b -c ;(3)(a -2b)-(b 2-2a 2)=a -2b -b 2+2a 2; (4)x +3(-2y +z)=x -6y +3z ;(5)x -5(2y -3z)=x -10y +15z .10.船在静水中的速度为a km/h ,水速为10 km/h ,船顺流航行5 h 的行程比逆流航行3 h 的行程多(80+2a)__km.11.计算:(1)3(2x +1)-6x =3;(2)(1+m 2)-(1-m 2)=2m 2.12.三个课外兴趣小组,A 组有x 人,B 组的人数比A 组人数的2倍多8人,C 组的人数比B 组人数的12少6人,则三个小组共有(4x +6)人. 13.如果a -b -2=0,那么式子1+2a -2b 的值是5.三、解答题14.化简下列各式:(1)-(x +y)+(3x -7y);解:原式=-x -y +3x -7y=(-x +3x)+(-y -7y)=2x -8y.(2)2a +2(a +1)-3(a -1).解:原式=2a +2a +2-3a +3=(2a +2a -3a)+(2+3)=a +5.15.一个三角形的第一条边长为(x +2)cm ,第二条边长比第一条边长小5 cm ,第三条边长是第二条边长的2倍.(1)用含x 的式子表示这个三角形的周长;(2)当x =6时,这个三角形的周长是多少?解:(1)第二条边长为(x +2)-5=(x -3)cm ,第三条边长为2(x -3)=(2x -6)cm ,则三角形的周长为(x +2)+(x -3)+(2x -6)=(4x -7)cm.(2)当x =6时,这个三角形的周长为4×6-7=17(cm).16.化简:4a 2-3a +3-3(-a 3+2a +1).解:原式=4a 2-3a +3+3a 3-6a -3=3a 3+4a 2+(-3a -6a)+(3-3)=3a 3+4a 2-9a.17.化简求值:(1)4x -[3x -2x -(x -3)],其中x =12; 解:原式=4x -(3x -2x -x +3)=4x -3.当x =12时,原式=-1.(2)2(a2-ab)-3(2a2-ab),其中a=-2,b=3.解:原式=2a2-2ab-6a2+3ab=-4a2+ab.当a=-2,b=3时,原式=-22.18.如图是两种长方形铝合金窗框.已知窗框的长都是y米,窗框的宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?解:由题意可得:做2个(1)型的窗框需要铝合金2(3x+2y)米;做5个(2)型的窗框需要铝合金5(2x+2y)米.所以共需铝合金:2(3x+2y)+5(2x+2y)=(16x+14y)米.19.有这样一道题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x =2,y=-1.甲同学把x=2误抄成x=-2,但他计算的结果也是正确的,试说明理由,并求出这个结果.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简的结果中不含x,所以原式的值与x的取值无关.当y=-1时,原式=-2×(-1)3=2.20.观察下列各式:①-a+b=-(a-b);②2-3x=-(3x-2);③5x+30=5(x+6);④-x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-1,求-1+a2+b+b2的值.解:因为a2+b2=5,1-b=-1,所以-1+a2+b+b2=-(1-b)+(a2+b2)=-(-1)+5=6.。
七年级数学上册《去括号》同步练习题(附答案)课前练习一、知识回顾1、所含字母相同,并且相同字母的指数也相同的项叫做__________.把多项式中的同类项合并成一项,叫做____________.合并同类项后,所得项的系数是合并前各同类项的系数的______,且字母连同它的指数_________.二、学习新知识例12. 学校图书馆内起初有a位同学,后来某年级组织阅读,第一批来了b位同学,第二批来了c位同学,则图书馆内共有______________位同学.我们还可以这样理解:后来两批一共来了________位同学,因而,图书馆内共有_____________位同学.由于________和________均表示同一个量,于是得到:a+(b+c)=a+b+c例23. 若学校图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,那么可以得到:____________.4. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.三、课前小练习5. 下列去括号中,正确的是()A. a2-(2a-1)=a2-2a-1B. a2+(-2a-3)=a2-2a+3C. 3a-[5b-(2c-1)]=3a-5b+2c-1D. -(a+b)+(c-d)=-a-b-c+d6. 下列各式中,与a-b-c的值不相等的是()A. a-(b+c)B. a-(b-c)C. (a-b)+(-c)D. (-c)+(-b+a)7. 已知a−b=−3,c+d=2,那么(b+c)−(a−d)的值为()B. 5C. -1D. 1A. 58. 去括号:(1)-(2m-3);(2)n-3(4-2m);(3)16a-8(3b+4c);(4)(2x2+x)−[4x2−(3x2−x)]课前练习参考答案1. ①. 同类项②. 合并同类项③. 和④. 不变2. ①. a+b+c②. b+c③. a+(b+c)④. a+(b+c)⑤. a+b+c3.a-(b+c)=a-b-c4. ①. 相同②. 相反【解析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为相同,相反.5.C【解析】根据添括号的法则,即可作出判断.【详解】A. a2-(2a-1)=a2-2a+1,故错误;B. a2+(-2a-3)=a2-2a-3,故错误;C. 3a-[5b-(2c-1)]= 3a-[5b-2c+1]=3a-5b+2c-1 ,正确;D. -(a+b)+(c-d)=-a-b+c-d,故错误;故选:C.6.B7.B【解析】先将代数式(b+c)−(a−d)化成只含有(a-b)和(c+d)的形式,最后代入求值即可.【详解】解:∵a−b=−3,c+d=2∴(b+c)−(a−d)=b+c−a+d=−(a−b)+(c+d)=−(−3)+2=3+2=5.故答案为B.8.(1)-2m+3;(2)n-12+6m;(3)16a-24b-32c;(4)2x【详解】(1)原式=-2m+3;(2)原式=n-12+6m;(3)原式=16a-24b-32c;(4)原式=(2x2+x)−(4x2−3x2+x)=2x2+x−(x2+x)=2x2+x−x2−x=2x课堂练习知识点1 去括号1.下列去括号正确的是( )A .﹣(a +b ﹣c )=a +b ﹣cB .﹣2(a +b ﹣3c )=﹣2a ﹣2b +6cC .﹣(﹣a ﹣b ﹣c )=﹣a +b +cD .﹣(a ﹣b ﹣c )=﹣a +b ﹣c2.式子a −(b −c +d )去括号后得___________.3.计算(1﹣2a )﹣(2﹣2a )=___.知识点2 添括号4.不改变多项式3223324b ab a b a -+-的值,把后三项放在前面是“—”号的括号中,正确的是()A .3b 3−(2ab 2−4a 2b +a 3)B .3b 3−(2ab 2+4a 2b +a 3)C .3b 3−(−2ab 2+4a 2b −a 3)D .3b 3−(2ab 2+4a 2b −a 3)5.添括号:(1)−9a 2+16b 2=−(________);(2)b −a +3(a −b)2=−(________)+3(a −b)2.6.下列各式中,去括号或添括号正确的是( )A .a 2−(−b +c)=a 2−b +cB .−2x −t −a +1=−(2x −t)+(a −1)C .3[5(21)]3521x x x x x x ---=--+D .321(321)a x y a x y -+-=+-+-课堂练习7.下列去括号正确的是( )A .(2)2a b c a b c --=--B .(2m +n)−3(p −1)=2m +n +3p −1C .−(m +n)+(x −y)=−m −n +x −yD .a −(3x −y +z)=a −3x −y −z8.下列选项中,等式成立的是( )A .a −b −c −d =a −(b +c −d)B .2x +3y −4z =2x −(−3y +4z)C .3x −2y +4z =3x −2(y −4z)D .3m −n +2t =−(3m +n −2t)9.已知a 2+3a =1,则代数式2a 2+6a −3的值为( )A .−1B .0C .1D .210.化简:(1)3a 2+2a −4a 2−7a ;(2)13(9x −3)+2(x +1).11.已知|a +4|+(b ﹣2)2=0,数轴上A ,B 两点所对应的数分别是a 和b ,(1)填空:a = ,b = ;(2)化简求值2a 2b +3ab 2−2(−a 2b +3ab 2−2)+7ab 2.课堂练习参考答案1.B【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.2.a−b+c−d【分析】先去括号,再合并同类项即可得出答.【详解】解:a−(b−c+d)=a-b+c-d,故答案为:a-b+c-d.3.﹣1.【解析】原式去括号合并即可得到结果.【详解】原式=1﹣2a﹣2+2a=﹣1,故答案为﹣1.4.A【分析】根据添括号法则来具体分析.【详解】解:3b3-2ab2+4a2b-a3=3b3-(2ab2-4a2b+a3);故选:A.5.9a2−16b2a−b【分析】(1)(2)利用添括号法则计算得出答案.【详解】解:(1)−9a2+16b2=−(9a2−16b2),(2)b−a+3(a−b)2=−(a−b)+3(a−b)2,故答案为:(1)9a2−16b2;(2)a−b.6.D【分析】利用去括号法则和添括号法则即可作出判断.【详解】解:A、a2−(−b+c)=a2+b−c,故错误;B、−2x−t−a+1=−(2x+t)−(a−1),故错误;C、3x−[5x−(2x−1)]=3x−5x+2x−1,故错误;D 、321(321)a x y a x y -+-=+-+-,故正确;故选:D .7.C【分析】利用去括号添括号法则计算.根据去括号时,前面是负号的括号里的每项符号都改变,前面是正号的符号不变.【详解】解:A 、a -(2b -c )=a -2b +c ,故选项错误;B 、(2m +n )-3(p -1)=2m +n -3p +3,故选项错误;C 、正确;D 、a -(3x -y +z )=a -3x +y -z ,故选项错误.故选:C .8.B【分析】利用添括号的法则求解即可.【详解】解:A 、a −b −c −d =a −(b +c +d),故错误;B 、2x +3y −4z =2x −(−3y +4z),故正确;C 、3x −2y +4z =3x −2(y −2z),故错误;D 、3m −n +2t =−(−3m +n −2t),故错误;故选:B .9.A【分析】先化简原式,再整体代入求值即可.【详解】原式=2(a 2+3a )−3,将 a 2+3a =1代入,得原式=2×1−3=−1,故选:A .10.(1)−a 2−5a ;(2)51x +【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【详解】解:(1)3a 2+2a −4a 2−7a=−a 2−5a ;(2)13(9x −3)+2(x +1)=3x −1+2x +2=51x +.11.(1)-4,2;(2)4a 2b +4ab 2+4,68.【分析】(1)直接利用绝对值及完全平方式的非负性求解即可;(2)先化简整式,再代入(1)的结论即可.【详解】(1)根据绝对值及完全平方式的非负性得:a +4=0,b −2=0,∴a =−4,b =2;(2)原式=2a 2b +3ab 2+2a 2b −6ab 2+4+7ab 2=4a 2b +4ab 2+4,将a =−4,b =2代入得:原式=4×(−4)2×2+4×(−4)×22+4=128−64+4=68.课后练习1.下列等式恒成立的是( )A .7x −2 =5B .m +n −2=m −(−n −2)C .x −2(y −1)=x −2y +1D .2x −3(13x −1)=x +3 2.要使等式4a −2b −c +3d =4a −( )成立,括号内应填上的项为A .2a −c +3dB .2b −c −3dC .2b +c −3dD .2b +c +3d3.下列变形正确的是( )A .−(a +2)=a −2B .−12(2a −1)=−2a +1C .−a +1=−(a −1)D .1−a =−(a +1)4.三个连续的奇数,中间的一个是2n +1,则三个数的和为( )A .6n −6B .3n +6C .66n +D .63n + 5.已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2c −aB .2a −2bC .a -D .a6.去括号:a -(-2b +c )=____.添括号:-x -1=-____.7.计算:2a 2−(a 2+2)=__________.8.小明在计算一个整式加上(xy ﹣2yz )时所得答案是2yz+2xy ,那么这个整式是______.9.已知下面5个式子:① x 2-x +1,② m 2n +mn -1,③x 4+1x +2, ④ 5-x 2, ⑤ -x 2. 回答下列问题:(1)上面5个式子中有 个多项式,次数最高的多项式为 (填序号);(2)选择2个二次多项式..运算......,并进行加法10.化简:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y);(2)2(2x﹣7y)﹣3(3x﹣10y).11.(1)化简:−(x2−2xy−y2)−2(5x2−2xy−3y2).(2)若关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,试求当x=−1时,这个多项式的值.12.已知A=2x2+xy+3y−1,B=x2−xy.(1)若A−2B的值与y的值无关,求x的值.(2)若A−mB−3x的值与x的值无关,求y的值.13.某水果批发市场苹果的价格如下表:千克(x超过20千克但不超过40千克)需要付费_______元(用含x的式子表示)(2)小强分两次共买100千克,第二次购买的数量多于第一次购买数量,且第一次购买的数量为a千克,请问两次购买水果共需要付费多少元?(用含a的式子表示)课后练习参考答案1.D【分析】根据合并同类项,添括号法则,去括号合并同类项的运算法则逐一进行计算,再判断.【详解】A:7x−2 =5x,原计算错误,故本选项不符合题意;B:m+n−2=m−(−n+2),原计算错误,故本选项不符合题意;C:x−2(y−1)=x−2y+2,原计算错误,故本选项不符合题意;x−1)=x+3,原计算正确,故本选项符合题意.D:2x−3(132.C【分析】根据添括号法则解答即可.【详解】解:根据添括号的法则可知,原式=4a-(2b+c-3d),故选:C.3.C【分析】根据去括号和添括号法则解答.【详解】A、原式=−a−2,故本选项变形错误.,故本选项变形错误.B、原式=−a+12C、原式=−(a−1),故本选项变形正确.D、原式=−(a−1),故本选项变形错误.故选:C.4.D【分析】三个连续的奇数,它们之间相隔的数为2,分别表示这三个奇数,列式化简即可.【详解】解:∵中间的一个是2n+1,∴第一个为2n-1,最后一个为2n+3,则三个数的和为(2n-1)+(2n+1)+(2n+3)=6n+3.故选:D.5.C【分析】首先利用数轴得出a+b<0,c-a>0,b+c<0,进而利用绝对值的性质化简求出即可.【详解】解:由数轴可得:b<a<0<c,∴a+b<0,c-a>0,b+c<0,∴|a|−|a+b|+|c−a|+|b+c|=−a+(a+b)+(c−a)−(b+c)=−a+a+b+c−a−b−c=a故选C.6.a+2b-c(x+1)【分析】根据去添括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;如果添括号,括号前为减号,添括号后里面的所有项的符号改变,反之括号前为加号,添括号里面的所有项的符号不变判断即可.【详解】a-(-2b+c)=a+2b-c-x-1=-(1+x)故答案为:a+2b-c;(x+1)7.a2−2【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2a2−a2−2=a2−2,故答案是:a2−2.8.4yz+xy【分析】利用和减去(xy﹣2yz),运用去括号,合并同类项即可得到正确的结果.【详解】解:由题意得:2yz+2xy-(xy﹣2yz)=2yz+2xy-xy+2yz=4yz+xy故答案为:4yz+xy9.(1)3,②;(2)−x+6【分析】(1)根据多项式的概念和次数定义进行解答即可;(2)根据整式的加减法运算法则进行计算即可.【详解】解:(1)①是二次多项式,②是三次多项式,④二次多项式,③是分式,⑤是单项式,故答案为:3,②;(2)选择多项式①和④相加,得(x2−x+1)+(5−x2)=x2−x+1+5−x2=−x+6.10.(1)9x2y﹣9xy2;(2)﹣5x+16y【分析】(1)直接去括号,再合并同类项得出答案;(2)按照去括号,合并同类项的法则计算即可.【详解】解:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y)=4x2y﹣6xy2﹣3xy2+5x2y=9x2y﹣9xy2;(2)2(2x﹣7y)﹣3(3x﹣10y)=4x﹣14y﹣9x+30y=﹣5x+16y.11.(1)−11x2+6xy+7y2;(2)10【分析】(1)先去括号,再合并同类项,即可化简;(2)由题意可得a-2=0,b-1=0,求得a,b的值,进而确定多项式,再代入求值,即可求解.【详解】解:(1)原式=−x2+2xy+y2−10x2+4xy+6y2=−11x2+6xy+7y2;(2)∵关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,∴a-2=0,b-1=0,即:a=2,b=1,∴原式=x4−6x+3,当x=−1时,原式=(−1)4−6×(−1)+3=10.12.(1)x的值为−1;(2)y的值为1.【分析】(1)将A,B代入A-2B,再去括号,再由题意可得x+1=0,求解即可;(2)将A,B代入A−mB−3x,再去括号,再由题意可得2−m=0,y+my−3=0,求解即可;【详解】解:(1)∵A=2x2+xy+3y−1,B=x2−xy,∴A-2B=(2x2+xy+3y−1)−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1=3(x+1)y−1,∵A-2B的值与y的值无关,∴x+1=0,∴x=−1;∴x的值为−1;(2)∵A=2x2+xy+3y−1,B=x2−xy,∴A−mB−3x=(2x2+xy+3y−1)−m(x2−xy)−3x=2x2+xy+3y−1−mx2+mxy−3x=(2−m)x2+(y+my−3)x+3y−1∵A−mB−3x的值与x的值无关,∴2−m=0,y+my−3=0,∴m=2,y=1;∴y的值为1.13.(1)70,6x+20;(2)当a≤20时,2a+560(元);当20<a≤40时,a+580(元);当40<a<50时,620(元)【分析】(1)图中可以知道:10千克在“不超过20千克的总分”按7元/千克收费;x超过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,最后再把2个费用相加.(2)“小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量”可以知道第一次购买的数量要小于50千克;由于a的取值范围不确定,需要用分类讨论的思想进行解答,当a≤20时,分别算第一次和第二次的总费用;当20<a≤40时,注意第一次购买有2段费用,第二次购买有3段费用,然后再相加;当40<a<50时,注意第一次购买有3段费用,第二次购买也有3段费用,然后再相加;记得最后结果要化为最简的形式.【详解】解:(1)∵10千克在“不超过20千克的总分”按7元/千克收费,∴10×7=70元;∵过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,∴20×7+6(x-20)=(6x+20)元故答案为:70,6x+20;(2)∵再次共购买100千克,第二次购买的数量多于第一次购买的数量,∴a<50,当a≤20时,需要付费为:7a+20×7+20×6+5×(100-a-40)=2a+560(元);当20<a≤40时,需要付费为:7×20+6×(a-20)+20×7+20×6+5×(100-a-40)=a+580(元);当40<a<50时,需要付费为:7×20+6×20+5×(a-40)+20×7+20×6+5×(100-a-40)=620(元).第11页共11页。
去括号、添括号
1归纳出去括号的法则了吗?
2. 去括号:
(1)a+(-b+c-d); (2)a-(-b+c-d) ;
(3)-(p+q)+(m-n); (4)(r+s)-(p-q).
3.下列去括号有没有错误?若有错,请改正:
(1)a2-(2a-b+c) =a2-2a-b+c; (2)-(x-y)+(xy-1) =-x-y+xy-1. (3)(y-x) 2 =(x-y) 2 (4) (-y-x) 2 =(x+y) 2
(5) (y-x)3 =(x-y) 3
4.化简:
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5);
(5)(8x-3y)-(4x+3y-z)+2z; (6)-5x2+(5x-8x2)-(-12x2+4x)+2;
(7)2-(1+x)+(1+x+x2-x2); (8)3a2+a2-(2a2-2a)+(3a-a2)。
1.根据去括号法则,在___上填上“+”号或“-”号:
(1) a___(-b+c)=a-b+c; (2)a___(b-c-d)=a-b+c+d;
(3) ___(a-b)___(c+d)=c+d-a+b
2.已知x+y=2,则x+y+3= ,5-x-y= .
3.去括号:
(1)a+3(2b+c-d); (2)3x-2(3y+2z).
(3)3a+4b-(2b+4a); (4)(2x-3y)-3(4x-2y).
4.化简:
(1)2a-3b+[4a-(3a-b)]; (2)3b-2c-[-4a+(c+3b)]+c.
C
1. 化简2-[2(x+3y)-3(x-2y)]的结果是().
A.x+2; B.x-12y+2; C.-5x+12y+2; D.2-5x.
2. 已知:1-
-
x=3,求{x-[x2-(1-x)]}-1的值.
x+2
第7课时去括号(1)
1.下列各式中,与a-b-c的值不相等的是 ( ) A.a-(b+c) B.a-(b-c)
C.(a-b)+(-c) D.(-c)+(-b+a)
2.化简-[0-(2p-q)]的结果是 ( ) A.-2p-q B.-2p+q C.2p-q D.2p+q
3.下列去括号中,正确的是 ( ) A.a-(2b-3c)=a-2b-3c
B.x3-(3x2+2x-1)=x3-3x2-2x-1
C.2y2+(-2y+1)=2y2-2y+1
D.-(2x-y)-(-x2+y2)=-2x+y+x2+y2
4.去括号:
a+(b-c)=; (a-b)+(-c-d)=;
-(a-b)-(-c-d)=;
5x3-[3x2-(x-1)]=.
5.判断题.
(1)x-(y-z)=x-y-z ( )
(2)-(x-y+z)=-x+y-z ( )
(3)x-2(y-z)=x-2y+z ( )
(4)-(a-b)+(-c-d)=-a+b+c+d ( ) 6.去括号:
-(2m-3); n-3(4-2m);
(1) 16a-8(3b+4c);(2)-1
2(x+y)+1
4
(p+q);
(3)-8(3a-2ab+4);(4) 4(rn+p)-7(n-2q).
(5)8 (y-x) 2 -1
(x-y) 2- 4(-y-x) 2-3(x+y) 2+2(y-x) 2
2
7.先去括号,再合并同类项:
-2n-(3n-1); a-(5a-3b)+(2b-a);
-3(2s-5)+6s; 1-(2a-1)-(3a+3);
3(-ab+2a)-(3a-b); 14(abc-2a)+3(6a-2abc).
8.把-︱-[ a-(b-c)]︱去括号后的结果应为 ( ) A.a+b+c B.a-b+c C.-a+b-c D.a-b-c
9.化简(3-π)-︱π-3︱的结果为 ( ) A.6 B.-2π C.2π-6 D.6-2π
10.先去括号,再合并同类项:
ab); 2(2a-b)-[4b-(-2a+b)]
6a2-2ab-2(3a2-1
2
9a3-[-6a2+2(a3-2
a2) ]; 2 t-[t-(t2-t-3)-2 ]+(2t2-3t+1).
3
11.对a随意取几个值,并求出代数式25+3a-{11a-[a-10-7(1-a)]}的值,你能从中发现什么?试解释其中的原因.。