七年级数学上册第2课时 去括号
- 格式:doc
- 大小:87.51 KB
- 文档页数:4
整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
人教版七年级数学上册3.3.2《去括号与去分母(第2课时)》说课稿一. 教材分析《去括号与去分母(第2课时)》是人教版七年级数学上册3.3.2的内容,本节课主要讲述了去括号和去分母的方法和技巧。
这部分内容是整式运算的基础,对于学生掌握整式运算非常重要。
在本节课中,学生将学习如何去掉式子中的括号和分母,从而简化运算过程。
教材通过具体的例子和练习题,帮助学生理解和掌握去括号和去分母的规则和方法。
二. 学情分析在七年级的学生中,大部分学生已经掌握了基本的代数知识,如代数式的加减乘除等运算。
但是,对于去括号和去分母这样的复杂运算,学生可能还不太熟悉,需要通过本节课的学习来进一步掌握。
此外,学生在学习过程中可能存在对规则理解不深、运算技巧不熟练的问题,需要教师在教学中进行引导和辅导。
三. 说教学目标1.知识与技能目标:学生能够掌握去括号和去分母的规则和方法,能够独立完成相关的运算题目。
2.过程与方法目标:学生通过参与课堂讨论和练习,培养观察、分析、解决问题的能力。
3.情感态度与价值观目标:学生通过克服困难、解决问题,培养自信心和坚持不懈的精神。
四. 说教学重难点1.教学重点:学生能够掌握去括号和去分母的规则和方法。
2.教学难点:学生能够灵活运用去括号和去分母的方法,解决实际问题。
五. 说教学方法与手段本节课采用讲授法和练习法进行教学。
教师通过讲解和示范,引导学生理解和掌握去括号和去分母的方法。
同时,教师通过设计不同难度的练习题,让学生在练习中巩固知识和提高技能。
此外,教师还鼓励学生进行小组讨论和合作学习,培养学生的团队协作能力。
六. 说教学过程1.导入:教师通过引入一些实际问题,激发学生的兴趣,引导学生思考如何去掉式子中的括号和分母。
2.讲解:教师讲解去括号和去分母的规则和方法,通过具体的例子进行解释和演示。
3.练习:教师设计不同难度的练习题,让学生进行练习,巩固知识和提高技能。
4.讨论:教师学生进行小组讨论,让学生分享自己的解题方法和经验,互相学习和交流。
2.2 整式的加减(第2课时)去括号导学案1. 通过类比讨论、归纳去括号时符号变化的规律.2. 能熟练、准确地应用去括号、合并同类项将整式化简.★知识点:去括号去括号是对多项式变形. 去括号时,括号中符号的处理是难点,也是容易出错的地方,掌握去括号的关键是理解去括号的依据.1. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.2. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度可以达到120km/h,请根据这些数据回答下列问题:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5 h,如果列车通过冻土地段要t h,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少km?追问1:上面的式子①②都带有括号,类比数的运算,它们应如何化简?追问2:比较上面两式,你能发现去括号时符号变化的规律吗?归纳:1. 填空(1)a+(b-c)= ;(2)a-(b+c)= ;(3)a-(b-c)= ;(4)(a+b)-(c+d)= ;(5)(a+b)-(c-d)= .2. 判断:(1)3(x+8)=3x+8(2)-3(x-8)=-3x-24(3)4(-3-2x)=-12+8x(4)-2(6-x)=-12+2x例1:化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).针对训练:化简:(1)3(a2-4a+3)-5(5a2-a+2);(2)3(x2-5xy)-4(x2+2xy-y2)-5(y2-3xy);(3)abc-[2ab-(3abc-ab)+4abc].例2:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少?例3:先化简,再求值:已知x=-4,y=12,求5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.1. 下列去括号中,正确的是()A . a2-(2a-1)=a2-2a-1B . a2+(-2a-3)=a2-2a+3C . 3a-[5b-(2c-1)]=3a-5b+2c-1D . -(a+b)+(c-d)=-a-b-c+d2.不改变代数式的值,把代数式括号前的“-”号变成“+”号,a-(b-3c)结果应是()A. a+(b-3c)B. a+(-b-3c)C. a+(b+3c)D. a+(-b+3c)3. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A. 1B. 5C. -5D. -14. 化简:(1)12(x-0.5);(2)1515x⎛⎫--⎪⎝⎭;(3)-5a+(3a-2)-(3a-7);(4)1(93)2(1)3y y-++.5. 先化简,再求值:2(a+8a2+1-3a3)-3(-a+7a2-2a3),其中a=-2.6. 飞机的无风航速为a km/h,风速为20 km/h. 飞机顺风飞行4 h的行程是多少?飞机逆风飞行3h的行程是多少?两个行程相差多少?化简下列各式:(1)-(a -b )-(-c -d ); (2)(5a +4c +7b )+(5c -3b -6a );(3)(8xy -x 2+y 2)-(x 2-y 2+8xy ); (4)221123422x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭; (5)3x 2-[7x -(4x -3)-2x 2]; (6)3b -2c -[-4a +(c +3b )]+c ;(7)4(a +b )+2(a +b )-(a +b ); (8)3(x +y )2-7(x +y )+8(x +y )2+6(x +y )-11(x +y )2.1.(4分)(2020•重庆B 卷5/26)已知a +b =4,则代数式的值122a b ++为( ) A .3 B .1 C .0 D .-12.(4分)(2020•广东14/25)已知x =5-y ,xy =2,计算3x +3y -4xy 的值为 .1. 本节课你学习的主要内容是什么?这些内容中体现了哪些数学思想方法?2. 推导与理解去括号法则的基本依据是什么?利用去括号法则简化运算时,重点要关注什么?3. 本节课你还有哪些收获与感受?①去括号时要将括号前的符号和括号一起去掉;②去括号时首先弄清括号前是“+”还是“-”;③去括号时当括号前有数字因数应用乘法分配律,切勿漏乘.【参考答案】1. 正数;相同;2. 负数;相反.问题:100t +120(t -0.5);100t -120(t -0.5).追问1:100t +120(t -0.5)=100t +120t -120×0.5=220t -60;100t -120(t -0.5)=100t -120t +120×0.5=-20t +60.追问2:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(1)a+b-c;(2)a-b-c;(3)a-b+c;(4)a+b-c-d;(5)a+b-c+d.2.(1)错;(2)错;(3)错;(4)对;例1:解:(1)8a+2b+(5a-b)= 8a+2b+5a-b=13a+b;(2)(5a-3b)-3(a2-2b)= 5a-3b-3a2+6b=-3a2+5a +3b.针对训练:解:(1)原式=3a2-12a+9-25a2+5a-10=-22a2-7a-1;(2)原式=3x2-15xy-4x2-8xy+4y2-5y2+15xy=-x2-8xy-y2;(3)原式=abc-(2ab-3abc+ab+4abc)=abc-3ab-abc=-3ab.例2:解:(1)2(50+a)+2(50-a)=100+2a+100-2a=200(km);(2)2(50+a)-2(50-a)=100+2a-100+2a=4a(km).答:两小时后两船相距200千米,两小时后甲船比乙船多航行4a千米.例3:解:原式=5xy2-(-xy2+2x2y)+2x2y-xy2 =5xy2.当x=-4,y=12时,原式=5×(-4)×2 1 2⎛⎫⎪⎝⎭=-5.1.C;2.D ;3.B ;4. 解:(1)12(x -0.5)=12x -12×0.5=12x -6;(2)1515x ⎛⎫-- ⎪⎝⎭=151(5)55x x ⎛⎫-⨯+-⨯-=-+ ⎪⎝⎭; (3)-5a +(3a -2)-(3a -7)= -5a +3a -2-3a +7=-5a +5;(4)1(93)2(1)3y y -++=119(3)2233y y ⨯+⨯-++=3y -1+2y +2=5y +1.5. 解:原式=-5a 2+5a +2.当a =-2时,原式=-8.6. 解:飞机顺风飞行的速度是(a +20) km/h ,顺风飞行4h 的行程(单位:km )为: 4(a +20)=4a +80.飞机逆风飞行的速度是(a -20) km/h ,逆风飞行3h 的行程(单位:km )为: 3(a -20)=3a -60.两个行程相差的里程(单位:km )是:4(a +20)- 3(a -20)= 4a +80-3a +60=a +140.解:(1)-a +b +c +d ;(2)-a +4b +9c ;(3)-2x 2+2y 2; (4)2562x x --; (5)5x 2-3x -3; (6)4a -2c ; (7)5a +5b ; (8)-x -y .1.【解答】解:当a +b =4时,原式111()1422a b =++=+⨯=1+2=3,故选:A .2.【解答】解:因为x =5-y ,所以x +y =5,当x +y =5,xy =2时,原式=3(x +y )-4 xy =3×5-4×2=15-8=7,故答案为:7.。
第2课时去括号1.三角形的第一条边长是(a+b),第二条边比第一条边长(a+2),第三条边比第二条边短3,这个三角形的周长为()A.5a+3bB.5a+3b+1C.5a-3b+1D.5a+3b-12.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.83.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,则空格中的一项是()A.-7xyB.7xyC.-xyD.xy4.化简(3x2+4x-1)+(-3x2+9x)的结果为.5.若一个多项式加上(-2x-x2)得到(x2-1),则这个多项式是.6.把3+[3a-2(a-1)]化简得.★7.某轮船顺水航行了5 h,逆水航行了3 h,已知船在静水中的速度为a km/h,水流速度为b km/h,则轮船顺水航行的路程比逆水航行的路程多.8.先化简,再求值.(1)(x2-y2)-4(2x2-3y2),其中x=-3,y=2;(2)a-2[3a+b-2(a+b)],其中a=-16,b=1 000.9.已知A=2x2+3xy-2x-1,B=-x2+kxy-1,且A+B的值与y无关,求k的值.★10.由于看错了符号,某学生把一个多项式减去x2+6x-6误当成了加法计算,结果得到2x2-2x+3,则正确的结果应该是多少?★11.有理数a,b,c在数轴上的位置如图所示,试化简|a-b|-|c-a|+|b-c|-|a|.参考答案能力提升1.B三角形的周长为a+b+(a+b+a+2)+(a+b+a+2-3)=a+b+a+b+a+2+a+b+a+2-3=5a+3b+1.2.D由a-3b=-3,知-(a-3b)=3,即-a+3b=3.所以5-a+3b=5+3=8.3.C4.13x-1(3x2+4x-1)+(-3x2+9x)=3x2+4x-1-3x2+9x=13x-1.5.2x2+2x-1(x2-1)-(-2x-x2)=x2-1+2x+x2=2x2+2x-1.6.5+a按照先去小括号,再去中括号的顺序,得3+[3a-2(a-1)]=3+(3a-2a+2)=3+3a-2a+2=5+a.7.(2a+8b)km轮船在顺水中航行了5(a+b)km,在逆水中航行了3(a-b)km,所以轮船顺水航行的路程比逆水航行的路程多5(a+b)-3(a-b)=5a+5b-3a+3b=(2a+8b)km.8.解:(1)原式=-x2+y2.当x=-3,y=2时,原式=-.(2)原式=2b-a.当a=-16,b=1000时,原式=2016.9.解:A+B=(2x2+3xy-2x-1)+(-x2+kxy-1)=2x2+3xy-2x-1-x2+kxy-1=x2+(3+k)xy-2x-2.因为A+B的值与y无关,所以3+k=0,解得k=-3.10.解:2x2-2x+3-2(x2+6x-6)=-14x+15.创新应用11.解:由题意知a-b<0,c-a>0,b-c<0,a<0,所以原式=-(a-b)-(c-a)-(b-c)-(-a)=-a+b-c+a-b+c+a=a.。
编号:76854125658544289374459234
学校:麻阳市青水河镇刚强学校*
教师:国敏*
班级:云云伍班*
第2课时去括号
【知识与技能】
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
【过程与方法】
经过类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
【情感态度】
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
【教学重点】
去括号法则,准确应用法则将整式化简.
【教学难点】
括号前面是“-”号去括号时,括号内各项变号容易产生错误.
一、情境导入,初步认识
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要uh,那么它通过非冻土地段的时间为(u-0.5)h,于是,冻土地段的路程为100ukm,非冻土地段的路程为120(u-0.5)km,因此,这段铁路全长(单位:km)是
100u+120(u-0.5)①
冻土地段与非冻土地段相差
100u-120(u-0.5)②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导、启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100u+120(u-0.5)=100u+120u+120×(-0.5)=220u-60;
100u-120(u-0.5)=100u-120u-120×(-0.5)=-20u+60.
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(u-0.5)=+120u-60 ③
-120(u-0.5)=-120u+60 ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
二、思考探究,获取新知
【教学说明】上一栏目中问题,应鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示.
【归纳结论】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变;要不变,则每一项都不变;另外,括号内原有几项去掉括号后仍有几项.
三、典例精析,掌握新知
例1 化简下列各式:(教材第66页例4)
(1)8a+2b+(5a-b);
(2)(5a-3b)-3(a2-2b).
【教学说明】讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.解答过程按课本,可由学生口述,教师板书.
例2 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h.(教材第67页例5)(1)2h后两船相距多远?
(2)2h后甲船比乙船多航行多少千米?
【教学说明】教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中的速度-水流速度.因此,甲船速度为(50+a)km/h,乙船速度为(50-a)km/h,2h后,甲船行程为2(50+a)km,乙船行程为2(50-a)km.两船从同一港口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
四、运用新知,深化理解
1~2.教材第67页练习.
3.一本书第一天看了x页,第二天看的页数比第一天看的页数的2倍少25页,第三天看的比第一天看的一半多42页,已知三天刚好看完这本书.
(1)用含x的代数式表示这本书的页数;
(2)当x=100,试计算这本书的页数.
4.有这样一道计算题:计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=2012,y=1.甲同学错把x=2012看成x=-2012,但计算结果仍正确,请你说说这是怎么一回事?
【教学说明】本课时的内容是有关于去括号的问题,教师先让学生独立完成,向学生强调去括号时应注意符号的变化.
【答案】1.(1)12x-6 (2)-5+x (3)-5a+5 (4)5y+1
2.解:顺风飞行4小时的行程为4(a+20)千米;逆风飞行3小时的行程为3(a-20)千米;两个行程相差4(a+20)-3(a-20)=4a+80-3a+60=(a+140)千米.
3.(1)x+(2x-25)+(
21x+42)=2
7x+17; (2)将x=100代入原式得27×100+17=367.
因为化简结果与x 的取值无关,所以x=2012与x=-2012对计算结果没有影响,从而结果仍正确.
五、师生互动,课堂小结
学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算.法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号.
1.布置作业:从教材习题
2.2中选取.
2.完成练习册中本课时的练习.
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.本课时教学时教师要通过对这个法则的不断强化,使学生牢牢记住变形时的符号变化.。