高等数学-格林公式
- 格式:ppt
- 大小:3.91 MB
- 文档页数:49
§11.3 格林公式及其应用授课次序69教 学 基 本 指 标教学课题 §11.3 格林公式及其应用 教学方法 当堂讲授,辅以多媒体教学 教学重点 格林公式及其应用教学难点 各种不同情况下的计算 参考教材 同济大学编《高等数学(第6版)》 自编教材《高等数学习题课教程》作业布置 《高等数学》标准化作业双语教学 微分 :differential calculus ;全微分:total differential ;偏微分:partial differential ;积分:integral ;重积分:multiple integral ;二重积分:double integral ;三重积分:threefold integral课堂教学目标1. 掌握格林公式;2. 会运用平面曲线积分与路径无关的条件; 3. 会求全微分的原函数。
教学过程 1.格林公式(45min );2.平面曲线积分与路径无关的条件(20min ); 3.全微分的原函数(25min )教 学 基 本 内 容§11.3 格林公式及其应用一、格林公式单连通与复连通区域:设D 为平面区域,如果D 内任一闭曲线所围的部分都属于D ,则称D 为平面单连通区域,否则称为复连通区域.对平面区域D 的边界曲线L , 我们规定L 的正向如下: 当观察者沿L 的这个方向行走时,D 内在他近处的那一部分总在他的左边.区域D 的边界曲线L 的方向:定理1设闭区域D 由分段光滑的曲线L 围成,函数P (x ,y )及Q (x ,y )在D 上具有一阶连续偏导数,则有⎰⎰⎰+=∂∂-∂∂L DQdy Pdx dxdy yPx Q )(,其中L 是D 的取正向的边界曲线.简要证明:备注栏仅就D 即是X -型又是Y -型的情形进行证明. 设D ={(x ,y )|ϕ1(x )≤y ≤ϕ2(x ),a ≤x ≤b }.因为yP ∂∂连续,所以由二重积分的计算法有 dx x x P x x P dx dy y y x P dxdy y P b ax x b a D)]}(,[)](,[{}),({12)()(21ϕϕϕϕ-=∂∂=∂∂⎰⎰⎰⎰⎰.另一方面,由对坐标的曲线积分的性质及计算法有⎰⎰⎰⎰⎰+=+=abb aL L Ldx x x P dx x x P Pdx Pdx Pdx )](,[)](,[2121ϕϕdx x x P x x P ba )]}(,[)](,[{21ϕϕ-=⎰.因此⎰⎰⎰=∂∂-L DPdx dxdy yP .设D ={(x ,y )|ψ1(y )≤x ≤ψ2(y ),c ≤y ≤d }.类似地可证⎰⎰⎰=∂∂L DQdx dxdy x Q.由于D 即是X -型的又是Y -型的,所以以上两式同时成立,两式合并即得⎰⎰⎰+=⎪⎭⎫⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q . 应注意的问题:对复连通区域D ,格林公式右端应包括沿区域D 的全部边界的曲线积分,且边界的方向对区域D 来说都是正向.设区域D 的边界曲线为L , 取P =-y ,Q =x ,则由格林公式得⎰⎰⎰-=L Dydx xdy dxdy 2, 或⎰⎰⎰-==LDydx xdy dxdy A 21.例1.椭圆x =a cos θ,y =b sin θ所围成图形的面积A . 分析:只要1=∂∂-∂∂y P x Q , 就有A dxdy dxdy yP x QDD==∂∂-∂∂⎰⎰⎰⎰)(. 解:设D 是由椭圆x =a cos θ,y =b sin θ所围成的区域. 令y P 21-=,x Q 21=, 则12121=+=∂∂-∂∂y P x Q .于是由格林公式,例2 设L 是任意一条分段光滑的闭曲线,证明⎰=+L dy x xydx 022.证:令P =2xy ,Q =x 2,则022=-=∂∂-∂∂x x yPx Q . 因此,由格林公式有0022=±=+⎰⎰⎰dxdy dy x xydx DL . (为什么二重积分前有“±”号? )3.计算⎰⎰-Dy dxdy e 2,其中D 是以O (0, 0),A (1, 1),B (0, 1)为顶点的三角形闭区域.分析: 要使2y e yP x Q -=∂∂-∂∂,只需P =0,2y xe Q -=.解:令P =0,2y xe Q -=,则2y e yP x Q -=∂∂-∂∂. 因此,由格林公式有⎰⎰⎰++--=BOAB OA y Dy dy xe dxdy e 22)1(2111022----===⎰⎰e dx xe dy xe x OAy . 例4计算⎰+-L y x ydxxdy 22,其中L 为一条无重点、分段光滑且不经过原点的连续闭曲线,L 的方向为逆时针方向.解: 令22y x y P +-=,22y x x Q +=.则当x 2+y 2≠0时,有yP y x x y x Q ∂∂=+-=∂∂22222)(. 记L 所围成的闭区域为D . 当(0, 0)∉D 时,由格林公式得022=+-⎰L y x ydx xdy ;当(0, 0)∈D 时, 在D 内取一圆周l :x 2+y 2=r 2(r >0). 由L 及l 围成了一个复连通区域D 1,应用格林公式得02222=+--+-⎰⎰l L y x ydxxdy y x ydx xdy ,其中l 的方向取逆时针方向.于是⎰⎰+-=+-l L y x ydxxdy y x ydx xdy 2222⎰+=πθθθ2022222sin cos d r r r =2π.二、平面上曲线积分与路径无关的条件曲线积分与路径无关:设G 是一个开区域,P (x ,y )、Q (x ,y )在区域G 内具有一阶连续偏导数.如果对于G 内任意指定的两个点A 、B 以及G 内 从点A 到点B 的任意两条曲线L 1、L 2,等式⎰⎰+=+21L L Qdy Pdx Qdy Pdx恒成立,就说曲线积分⎰+L Qdy Pdx 在G 内与路径无关,否则说与路径有关.设曲线积分⎰+L Qdy Pdx 在G 内与路径无关,L1和L 2是G 内任意两条从点A 到点B 的曲线,则有⎰⎰+=+21L L Qdy Pdx Qdy Pdx ,因为⎰⎰+=+21L L Qdy Pdx Qdy Pdx ⇔021=+-+⎰⎰L L Qdy Pdx Qdy Pdx⇔021=+++⎰⎰-LL Qdy Pdx Qdy Pdx ⇔0)(21=+⎰-+L L Qdy Pdx ,在L 所围成的区域内时, 结论未必成立. 三、二元函数的全微分求积曲线积分在G 内与路径无关, 表明曲线积分的值只与起点从点(x 0,y 0)与终点(x ,y )有关. 如果⎰+LQdy Pdx 与路径无关,则把它记为⎰+),(),(00y x y x Qdy Pdx即⎰⎰+=+),(),(00y x y x L Qdy Pdx Qdy Pdx .若起点(x 0,y 0)为G 内的一定点,终点(x ,y )为G 内的动点,则u (x ,y )⎰+=),(),(0y x y x Qdy Pdx为G 内的的函数.二元函数u (x ,y )的全微分为du (x ,y )=u x (x ,y )dx +u y (x ,y )dy .表达式P (x ,y )dx +Q (x ,y )dy 与函数的全微分有相同的结构,但它未必就是某个函数的全微分.那么在什么条件下表达式P (x ,y )dx +Q (x ,y )dy 是某个二元函数u (x ,y )的全微分呢?当这样的二元函数存在时怎样求出这个二元函数呢?定理 3 设开区域G 是一个单连通域,函数P (x ,y )及Q (x ,y )在G 内具有一阶连续偏导数,则P (x ,y )dx +Q (x ,y )dy 在G 内为某一函数u (x ,y )的全微分的充分必要条件是等式xQ y P ∂∂=∂∂在G 内恒成立.简要证明:必要性:假设存在某一函数u (x ,y ),使得du =P (x ,y )dx +Q (x ,y )dy ,则有y x u x u y y P ∂∂∂=∂∂∂∂=∂∂2)(,xy u y u x x Q ∂∂∂=∂∂∂∂=∂∂2)(.因为y P y x u ∂∂=∂∂∂2、x Q x y u ∂∂=∂∂∂2连续, 所以xy u y x u ∂∂∂=∂∂∂22,即x Q y P ∂∂=∂∂.充分性:因为在G 内xQ y P ∂∂=∂∂, 所以积分⎰+L dy y x Q dx y x P ),(),(在G 内与路径无关.考虑函数u (x ,y )⎰+=),(),(0),(),(y x y x dy y x Q dx y x P .因为 u (x ,y )⎰+=),(),(0),(),(y x y x dy y x Q dx y x P ⎰⎰+=xx y y dx y x P dy y x Q 0),(),(0,所以),(),(),(000y x P dx y x P x dy y x Q x x u x x y y =∂∂+∂∂=∂∂⎰⎰.类似地有),(y x Q yu =∂∂,从而du =P (x ,y )dx +Q (x ,y )dy .即P (x ,y )dx +Q (x ,y )dy 是某一函数的全微分. 求原函数的公式:⎰+=),(),(0),(),(),(y x y x dy y x Q dx y x P y x u ,⎰⎰+=y y xx dy y x Q dx y x P y x u 0),(),(),(0,⎰⎰+=xx y y dx y x P dy y x Q y x u 0),(),(),(0.例6 验证:22yx ydxxdy +-在右半平面(x >0)内是某个函数的全微分,并求出一个这样的函数. 解: 这里22y x y P +-=,22y x x Q +=.。
格林公式补线法求极限格林公式是高等数学中的一个重要内容,而补线法在求极限时经常能发挥关键作用。
咱先来说说啥是格林公式。
简单来讲,格林公式就是把一个平面区域上的二重积分和沿着这个区域边界的曲线积分联系起来的一个公式。
比如说,有个区域 D ,它的边界是曲线 L ,那么格林公式就告诉咱,在一定条件下,区域 D 上某个二元函数的偏导数的积分,就等于沿着曲线 L 对这个函数的另一种形式的积分。
那补线法又是咋回事呢?有时候,给咱的曲线不是封闭的,这时候就需要咱自己补上一条线,让它变成封闭曲线,这样就能用格林公式啦。
就像我之前教过的一个学生,他在做一道题的时候,就碰到了这种情况。
题目给的曲线是一个半圆弧,从点 A 到点 B 。
这可把他难住了,因为直接用格林公式没办法啊,曲线不封闭。
我就提示他,咱能不能补上一段线段,把这个半圆弧变成一个封闭的图形呢?这孩子一开始还不太明白,瞪着大眼睛一脸懵。
我就耐心地给他画图解释,从点 A 垂直向下画一条线段到 x 轴,再从点 B 垂直向上画一条线段到 x 轴,这样就把原来的半圆弧封闭起来啦。
然后再用格林公式,计算封闭曲线的积分,但是别忘了,咱补的这两条线段的积分也要单独算出来,最后从总的积分里减去。
这孩子恍然大悟,一拍脑门说:“哎呀老师,我懂了!”然后就兴致勃勃地开始计算。
通过这个小例子,咱们就能明白,补线法其实就是一种巧妙的手段,能把原本不好处理的问题变得容易解决。
但是用补线法求极限也不是随随便便补就行的,得注意补的线要简单,计算积分也不能太复杂,不然可就给自己找麻烦啦。
而且在补线的时候,还得注意方向,方向错了,整个计算就全错喽。
再比如说,还有一种情况,给的曲线是一个复杂的折线,这时候也可以考虑补线,把它变成一个规则一点的图形,像矩形啊、圆形啊之类的。
总之,格林公式的补线法求极限是个很实用的技巧,但要想用得好,还得多做练习,多琢磨琢磨。
只有不断地练习和思考,才能在遇到各种复杂的题目时,迅速找到最合适的补线方法,轻松求出极限。
高数考研备战格林公式的应用与解题技巧格林公式(Green's theorem)是高等数学中的一个重要定理,也是考研数学中的重要内容之一。
它在很多场景中有广泛的应用,帮助我们解决各种复杂的问题。
本文将介绍格林公式的基本原理和应用,并提供一些解题技巧,以帮助考生备战高等数学考研。
一、格林公式的基本原理格林公式是由英国数学家格林(George Green)于1828年提出的,它将二维平面上的曲线积分转化为对该曲线所围成的区域的面积积分。
具体地说,设曲线C是一条分段光滑的闭合曲线,曲线C所包围的区域称为D。
如果函数P(x, y)和Q(x, y)在区域D上具有一阶连续偏导数,那么有格林公式的表达式如下:∮C (Pdx + Qdy) = ∬D (Qₓ - Pᵧ)dA其中,∮C表示曲线C上的曲线积分,∬D表示对区域D上的面积积分,Pdx + Qdy表示关于x和y的微分形式,Qₓ和Pᵧ分别表示Q对x求偏导和P对y求偏导。
二、格林公式的应用格林公式在物理、工程和数学等多个领域都有广泛的应用。
下面将介绍几种常见情况下的应用。
1. 曲线积分的计算格林公式可以帮助我们计算曲线C上的曲线积分。
具体操作是,将积分转化为对曲线所包围的区域D上面积积分的计算。
通过求解二重积分,我们可以更简单地计算出原本复杂的曲线积分。
2. 面积的计算格林公式可以通过计算面积积分来帮助我们计算区域D的面积。
通过求解面积积分,我们可以不需要遍历整个区域来计算面积,而是通过对边界曲线上的积分来得到结果。
这在实际问题中十分有用,节省了计算的时间和精力。
3. 流量的计算格林公式还可以用于计算流体力学中的流量。
通过设定P和Q的形式并代入格林公式,我们可以将流量计算问题转化为对面积积分的计算。
这样一来,我们可以更加方便地求解流体力学中的流量问题。
三、解题技巧在考研中遇到格林公式的应用题时,我们可以采取以下的解题技巧:1. 理解问题在开始解题之前,先要完全理解问题的背景和要求。