高等数学第三节格林公式及其应用
- 格式:ppt
- 大小:1.35 MB
- 文档页数:24
第三节_格林公式及其应用
格林公式是一个重要的微积分计算工具,用于计算微分方程在给定边
界条件下的解。
它可以用来解决一类非常有用的问题,例如求解复杂的微
分方程组、积分变分形式的物理问题。
此外,格林公式还可以应用于计算
微分函数在任意区间上的有限性以及在一些特定情况下的无穷性。
格林公式的主要思想是,给定边界以及满足一些条件的控制变量,可
以将一个微分方程组的解表示为不同常量的线性组合。
因此,可以通过解
决有限个简单的常系数非齐次线性微分方程来求解更复杂的微分方程组。
其中,常系数非齐次线性微分对应的格林公式是:
y(t) = A*exp(αt) + B*exp(βt)
其中,A、B是常数,α、β是解的根。
这个公式可以用来求解不同
类型的微分方程,包括拉普拉斯方程、伯努利方程、线性齐次微分方程组等。
应用:
1、求解拉普拉斯方程
拉普拉斯方程是一类重要的常微分方程,它可以用来描述物理系统的
传播过程以及电、热等物理场的扩散等现象。
拉普拉斯方程的一般形式为:y"+αy'+βy=f(t)
这里,α、β是常数,f(t)是一个任意函数。
可以用格林公式来求
解这个方程的解:
y(t) = A*exp(αt) + B*exp(-αt) + [1/α]*∫exp(-αt)f(t)dt
其中,A、B是常数,α是解的根。
2、求解伯努利方程。
第三节 格林公式及其应用 ㈠.本课的基本要求掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数 ㈡.本课的重点、难点格林公式、平面上的曲线积分与路径无关的条件为本课重点,求全微分为难点 ㈢.教学内容一.格林公式及其应用微积分基本定理——牛顿-莱布尼兹公式确立了函数f(x)在闭区间上的定积分与它的原函数F(x)在这个区间的端点上的值之间的关系。
相仿的,在平面闭区域D 上的二重积分与沿区域D 的边界曲线L 上的曲线积分之间也有类似的关系。
格林(Green )公式就是阐明它们之间关系的一个重要公式。
定义(单连通域) 一个平面区域D ,如果全落在此区域内的任何一条封闭曲线都可以不经过D 以外的点而连续地收缩为一点,则称此区域D 为单连通的,否则为复连通的。
(如图) 我们首先规定区域D 的边界曲线L 的正向:当观察者沿L 的某个方向行走时,区域D 总在它的左边(如图),则该方向即为L 的正方向。
定理1(格林定理) 设D 是以分段光滑曲线L 为边界的平面有界闭区域,函数P(x,y)及Q(x,y)在D 上具有一阶连续的偏导数,则⎰⎰⎰+=∂∂-∂∂LQdy Pdx d yPx Q σ)(⑴其中符号⎰L表示沿L 正方向的曲线积分。
公式⑴称为格林公式。
证 先假设穿过区域D 内部且平行坐标轴的直线与D 的边界曲线L 的交点恰好为两点,即区域D 既是X ─型又是Y ─型的情形。
设}),()(|),{(21b x a x y x y x D ≤≤≤≤=ϕϕ。
因为yP∂∂连续,所以由二重积分的计算法有 ⎰⎰⎰⎰⎰-=∂∂=∂∂b a x x b a Ddx x x P x x P dy y y x P dx dxdy y P))}(,())(,({),(12)()(21ϕϕϕϕ 另一方向,由对坐标的曲线积分的性质及计算法有⎰⎰⎰⎰⎰+=+=abbaL L Ldx x x P dx x x P Pdx Pdx Pdx ))(,())(,(2121ϕϕ⎰⎰-=babadx x x P dx x x P ))(,())(,(21ϕϕ因此,=∂∂-⎰⎰Ddxdy y P⎰L Pdx ⑵ 设}),()(|),{(21d y c y x y y x D ≤≤≤≤=ψψ,类似地可证=∂∂⎰⎰Ddxdy x Q⎰LQdy ⑶由于D 既是X ─型又是Y ─型的,⑵、⑶同时成立,合并后即得公式⑴。
格林公式及其应用格林公式格林公式是向量分析中的一个重要定理,也被称为格林-斯托克斯定理。
它是由爱尔兰数学家乔治·格林在19世纪提出的,用于计算一个曲线或曲面上的环流和散度之间的关系。
格林公式的应用非常广泛,可以用来求解流体力学、电磁学和热力学等领域的问题。
下面将介绍格林公式的表达形式,以及它在常见问题中的具体应用。
1.格林公式的表达形式格林公式有两种常见的表达形式,一种是针对平面区域的格林公式,另一种是针对空间曲线的格林公式。
下面将分别介绍这两种格林公式的表达形式。
1.1平面区域的格林公式若D是一个紧致的平面区域,边界为C(C是一个简单、逐段光滑的曲线),向量函数F(x,y)=(P(x,y),Q(x,y))在区域D中具有二阶连续偏导数,则有如下格林公式:∬D(∂Q/∂x-∂P/∂y)dxdy=∮C(Pdx+Qdy)其中,∂P/∂y和∂Q/∂x分别表示P和Q对y和x的偏导数,dxdy表示在D中的面积元素,Pdx+Qdy表示沿着边界C的曲线元素。
1.2空间曲线的格林公式若S是一个有向光滑曲面,它的边界为C(C是一个简单、光滑的曲线),向量函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))在曲面S内具有连续偏导数,则有如下格林公式:∯S(∂R/∂y-Q)dydz+(∂P/∂z-R)dzdx+(∂Q/∂x-P)dxdy=∮C(Pdx+Qdy+Rdz)其中,∂P/∂z、∂Q/∂x和∂R/∂y分别表示P、Q和R对z、x和y的偏导数,dydz、dzdx和dxdy表示在S内的面积元素,Pdx+Qdy+Rdz表示沿着边界C的曲线元素。
2.格林公式的应用格林公式具有广泛的应用,在流体力学、电磁学、热力学等领域都能够找到它的身影。
下面将以几个例子来说明格林公式的具体应用。
2.1流体力学中的应用格林公式在流体力学中常常用于计算流体的环流和散度。
例如,可以利用格林公式来推导速度势函数和流函数之间的关系,进而求解流场中的速度分布。
格林公式及其应用格林公式是微积分中的一个重要工具,用于计算其中一区域内的面积和体积。
它是由德国数学家格林(Carl Friedrich Gauss)在19世纪初提出的,被广泛应用于物理、工程、经济等领域的计算中。
格林公式的一般形式如下:$$\oint_C (Pdx + Qdy) = \iint_D ( \frac{{\partialQ}}{{\partial x}} - \frac{{\partial P}}{{\partial y}} ) dA $$其中,$C$表示封闭曲线,$D$表示被封闭曲线围成的区域,$P$和$Q$是$D$内的函数,$\frac{{\partial P}}{{\partial y}}$表示$P$对$y$求偏导数,$\frac{{\partial Q}}{{\partial x}}$表示$Q$对$x$求偏导数,$dA$表示面积元素。
格林公式的应用有以下几个方面:1.计算曲线积分:格林公式将曲线积分转化为了面积积分,使得计算曲线积分更加简便。
通过计算封闭曲线上其中一函数和微分形式 $Pdx + Qdy$ 的积分,可以得到围成该区域的面积。
2.计算平面区域的面积:通过格林公式可以计算出封闭曲线围成的平面区域的面积。
将面积元素 $dA$ 替换为 $1$,$Pdx + Qdy$ 替换为$dx$,然后对曲线积分进行计算,即可得到该区域的面积。
3.计算体积:对于封闭曲线$C$,通过格林公式可以计算出围成该曲线的曲面的面积。
再通过计算该曲面旁切平面上函数的面积积分,就可以得到该曲面的体积。
4.计算电场:格林公式在物理学中应用广泛,特别是在电场计算中。
当电场满足一些条件时,可以通过格林公式计算出电场的其中一参数。
例如,在静电学中,可以通过格林公式计算电场的电势差,从而得到电场的分布。
5.计算流体的流量:格林公式在流体力学中也有重要应用。
通过格林公式,可以计算流体从一个闭合曲面流出的流量,从而得到流体的流速和流量。
03第三节格林公式及其应用格林公式是微积分中的一项重要定理,它在多元函数的积分计算以及微分方程的解法中都有广泛的应用。
本文将详细介绍格林公式的概念、表达式以及在实际问题中的应用。
格林公式是由英国数学家格林(George Green)于1828年首次提出的,它是高斯定理在平面上的推广形式。
格林公式用于计算一个平面区域内的一些向量场的闭合曲线积分与该场在该区域内的散度的面积积分之间的关系。
根据格林公式,对于一个平面区域D内的向量场F(x, y) =(P(x, y), Q(x, y)),其中P和Q是函数x和y的偏导数连续的函数,闭合曲线C是D的边界,那么有以下的等式成立:∮C(Pdx + Qdy) = ∬D((∂Q/∂x −∂P/∂y)dA)其中,∮表示沿C的积分,∬表示对D的积分,(Pdx + Qdy)表示场F的微分形式,dA表示平面上的面积元。
格林公式可以看作是微积分中的一个重要结论,在实际应用中有着广泛的应用。
以下将介绍两个格林公式的重要应用。
第一个应用是计算平面区域上面积的问题。
根据格林公式,如果一个平面区域D的边界C是一个简单闭合曲线,那么可以通过计算场F = (0, x)(其中x为函数)沿着C的曲线积分来求解该平面区域的面积。
这是因为根据格林公式,等式可以化简为∮C Qdy = ∬D (∂Q/∂x)dA。
由于场F的向量值为(0, x),所以Q = x,那么上述等式可以进一步化简为∮C xdy = ∬D (∂Q/∂x)dA。
由于场F的x分量为0,所以x的偏导数等于0,那么上述等式可以进一步化简为∮Cxdy = 0。
由于dy在曲线C上的积分等于0,所以有∮Cxdy = ∫Cxdy = ∫(xdy + 0dx) = ∫xdy,即通过计算∫xdy可以得到平面区域D的面积。
第二个应用是计算其中一区域内的散度。
根据格林公式,可以通过计算场F = (P, Q)的闭合曲线积分∮C(Pdx + Qdy)来求解场F在区域D内的散度。