八年级上学期数学期末考试试题及答案 (15)
- 格式:docx
- 大小:122.39 KB
- 文档页数:15
2021-2022学年八年级上学期期末数学试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.一、选择题(本大题共有8小题,每小题3分,共24分)1.在平面直角坐标系中,点M(2,-1)在(▲)A.第一象限B.第二象限C.第三象限D.第四象限2.在实数0、π、227、3.1 010 010 001中,无理数的个数有(▲)A.1个B.2个C.3个D.4个3.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是(▲)A.B.C.D.4.下列四组线段中,可以构成直角三角形的是(▲)A.3,5,6 B.2,3,4 C.1,3,2 D.3,4,55.一次函数y=kx+b,当k<0,b>0时,它的图象大致为(▲)6.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为(▲)A.(1,﹣2) B.(2,1) C.(﹣1,2) D.(2,﹣1)7.等腰三角形的两边长分别为3 cm和7 cm,则周长为(▲)cm.A.13 B.17 C.13或17 D.17或11A B C D8.甲、乙两人沿同一条路从A 地出发,去往100千米外的B 地,甲、乙两人离A 地的距离s (千米)与时间t (小时)之间的关系如图所示,以下说法正确的是(▲) A .乙的速度是30 km/h B .甲出发1小时后两人第一次相遇 C .甲的速度是60 km/h D .甲乙同时到达B 地(第8题) 二、填空题(本大题共8小题,每小题3分,共24分) 9.若3-x 在实数范围内有意义,则x 的取值范围是 ▲ . 10.比较大小:4 ▲ 7.(填“>”、“=”、“<”)11.小亮的体重为43.85 kg ,若将体重精确到1 kg ,则小亮的体重约 ▲ kg .12. 在Rt △ABC 中,∠C =90°,D 为斜边AB 的中点,AC =6 cm ,BC =8 cm ,则CD 的长为 ▲ cm .13.已知1P (1-,1y )、2P (2,2y )是一次函数b x y +-=的图像上的两点,则1y ▲ 2y (填“>”或“<”或“=”).14.如图,直线y kx b =+与y mx n =+交于32P (1,),则方程组00kx y b mx y n -+=⎧⎨-+=⎩的解是 ▲ .(第14题) (第15题)15.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =10,AC =6,则BD 的长是 ▲ . 16.如图1,△ABC 中,AB >AC ,D 是边BC 上的动点.设B 、D 两点之间的距离为x ,A 、D 两点之间的距离为y , 表示 y 与x 的函数关系的图象如图2所示,则线段AB 的长为 ▲ .3(第16题)三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)16-327(2)求x的值:290x-=.18.(6分)已知:一个正数a的两个不同平方根分别是x+5和4x﹣15.(1)求a的值;(2)求17a+1的立方根.19.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形或四边形.(绘图要求:①所绘图形不得超出正方形网格;②必须用直尺和中性笔绘图,确保所绘图形的顶点必须在格点上)(1)在图中,画一个直角三角形,使它的三边长都是有理数;(2)在图中,画一个等腰三角形,使其至少有一条边的长是无理数.(1)(2)20.(8分)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=D C.(1)求证:△ABE≌△DCE;(2)当∠AEB=68°,求∠EBC的度数.1021.(8分)如图,一个直径为20 cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2 cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.22.(10分)如图所示的正方形网格中,每个小正方形的边长都是1,△ABC顶点都在网格线的交点上,点A坐标为(﹣4,6),点C坐标为(﹣1,4).(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于y轴的对称图形△A1B1C1;(3)请写出点B关于x轴对称点的坐标为▲.23.(10分)已知y﹣2与x成正比,且当x=﹣2时,y=4.(1)求y与x的函数表达式;(2)在坐标系中画出(1)中的函数图象;(3)当y>0时,直接写出x的取值范围内▲.24.(10分)我区某中学计划举办以“百年党史学习”为主题的知识竞赛,并对获奖的同学给予奖励,现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共50件,设购买两种奖品总费用为y(元),甲种奖品x (件),写出y与x的函数关系式;(3)在(2)的条件下,乙种奖品数量不大于甲种奖品的数量2倍,如何购买才能使总费用最少?并求出最少费用.25.(10分)已知正比例函数x y 34-=与一次函数53--=x y 的图象交于点A ,且OA OB =.(1)求点A 坐标; (2)求△AOB 的面积;(3)已知在x 轴上存在一点P ,能使△AOP 是等腰三角形,请问这样的点P 有几个不同的位置?简述理由.26.(12分)数学中,常对同一图形的面积用两种不同的方法计算,从而建立相等关系,这是一种重要的数学方法.如图1,两个直角边分别为a 、b 、斜边长为c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个梯形.解:有三个直角三角形其面积分别为ab 21,ab 21和221c , 直角梯形的面积为))(21b a b a ++(.由图形可知:))(21b a b a ++(=ab 21+ab 21+221c .整理得222)c ab b a +=+(,ab c ab b a 22222+=++.∴222c b a =+. 故结论为:直角边长分别为a 、b 斜边为c 的直角三角形中222c b a =+.图1 图2 图3[类比尝试](1)如图2,在4×4的正方形网格中,每个小正方形的边长均为1,点A 、B 、C 都在格点上,若BD 是△ABC 的边AC 上的高,求:①△ABC 的面积;②BD 的长. [拓展探究](2)如图3坐标系中,直线1l :643+=x y 与x 轴、y 轴分别交于点A 和B ,直线2l 经过坐标原点,且2l ⊥1l ,垂足为C ,求:①写出点A 和点B 的坐标.②点C 到x 轴的距离.27.(14分)如图1,直线1l 与x 轴交于点A (-6,0)、与y 轴交于点B (0,-3).(1)直线1l 的表达式为 ▲ ;(2)若直线1l 上有一点M (-2,-2),y 轴上有一点N ,当△AMN 周长最小时,求点N 的坐标;(3)如图2,直线2l :12y x =与直线1l 交于点C ,点D (0,3),直线2l 上是否存在一点G ,使得ACD CDG S S ∆∆=32?若存在,请求出点G 的坐标;若不存在,请说明理由.参考答案一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9. 3≥x 10. < 11. 44 12. 513. > 14. ⎪⎩⎪⎨⎧==231y x 15. 5 16. 17三、解答题(共102分)17.(每题3分,共6分) (1)1 (2) 3x =± 18.(每题3分,共6分) (1)49 (2)2 19.(本题共8分)(1) 略……(4分) (2)略……(4分) 20.(每小题4分,共8分) 证明:在△ABE 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DC AB DEC AED DA , ∴△ABE ≌△DCE ;683422ABE DCE ACB DBCAEB ACB DBCAEB EBC ∆≅∆∴∠=∠∠=∠+∠∠︒∴∠===︒21.(本题8分)解:设EF =x ,则EG =ED =2+x222222112010229010(2):24224226F AD FD AD EF AD EFD EF FD ED x x x EG x ∴==⨯=⊥∴∠=︒∴+=∴+=+=∴=+=+=是的中点解得 22.(本题10分)(1)略 ―――4分 (2)略 ―――3分(3)(-2,-2) ―――3分 23. (本题10分)(1)解:212244222+-=∴-=-=-=-==-∴-x y k k :,y x kx y x y 得时当设成正比与 ………………………………………………………………(4分)(2)图略………………………………(3分)(3)x 〈2………………………………………………………………………………………(3分)24.(共10分)解:(1)设每个甲种奖品的价格为x 元,每个乙种奖品的价格为y 元,依题意,得:⎩⎨⎧=+=+7032402y x y x ,解得: ⎩⎨⎧==1020y x .………………………………………………(3分)答:每个甲种奖品的价格为20元,每个乙种奖品的价格为10元.(2)设学校购买x 个甲种奖品,则购买)50(x -个乙种奖品,依题意,得:50010)50(1020+=-+=x x x y .………………………………(3分) (3)依题意,得:x x 250≤- 解得:350≥x 17670x x y ∴==是正整数当时,购买总费用最少…………………………………………(4分)25.(共10分)(1))4,3(-A ;………………………………………………………………………………(3分) (2)215=∆AOB S ;………………………………………………………………………………(3分) (3)4个…………………………………………………(4分) 26.(本题共12分)(1)①213;②513=BD …………………………………………………………………………(6分)(2)①()()8006A B -,,,;②2596………………………………………………………………(6分)27.(本题共14分) (1)321--=x y …………………………………………………………………………………(4分)(2)⎪⎭⎫⎝⎛-23,0N ………………………………………………………………………………………(4分)(3)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--21127,7,G 或…………………………………………………………(6分)。
2024年初中学业质量抽样监测(第一次)八年级数学试题注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 7的相反数是( )A. B. 7C. D.【答案】A 【解析】【分析】本题考查相反数的定义,根据只有符号不同的两个数互为相反数,即可判定选择项.【详解】解:∵符号相反,绝对值相等的两个数互为相反数,∴7的相反数是;故选A .2. 2023年8月29日华为公司上市的手机搭载的是自主研发的麒麟9000处理器,这款处理器是华为首款采用制程技术的手机芯片,,其中用科学计数法表示为( )A. B. C. D. 【答案】D 【解析】【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故选D .【点睛】题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).7-17-177-Mate605nm 1nm 0.000 000 001m =5nm 9510⨯100.510-⨯8510-⨯9510-⨯10n a -⨯95nm 50.000000001m=510-=⨯⨯10n a -⨯1||10a ≤<3. 下列根式是最简二次根式的是( )A.B.C.D.【答案】C 【解析】【分析】根据最简二次根式:“被开方数不含开方开的尽的因数或因式,被开方数不含分母”,逐一进行判断即可.【详解】解:A,不是最简二次根式,不符合题意;B,不是最简二次根式,不符合题意;C是最简二次根式,符合题意;D,不是最简二次根式,不符合题意;故选C .4.)A. 2与3之间 B. 3与4之间 C. 4与5之间 D. 5与6之间【答案】D 【解析】【分析】根据“”即可求解.【详解】解:∵∴故选:D【点睛】本题考查算术平方根的估值.找到与被开方数相邻的完全平方数是解题关键.5. 下列因式分解,正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了因式分解.熟练掌握提公因式法、公式法,十字相乘法分解因式是解题的关键.3===253136<<253136<<56<<()()22999a b a b a b -=+-()()22842x x x x --=-+()222x y x y -=-()21a a a a -+=-+根据提公因式法、公式法,十字相乘法分解因式对各选项进行判断作答即可.【详解】解:,错误,故A 不符合要求;,正确,故B 符合要求;,错误,故C 不符合要求;,错误,故D 不符合要求;故选:B .6. 若分式有意义,则的取值范围是( )A. B. C. D. 【答案】B 【解析】【分析】根据分式有意义的条件可得,再解即可.【详解】解:,,故选:B .【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.7. 若正多边形的一个外角为,则该正多边形为( )A. 正六边形 B. 正八边形C. 正十边形D. 正十二边形【答案】D 【解析】【分析】根据多边形的外角和等于,正多边形的每个外角均相等进行求解即可.【详解】解:正多边形边数为:,∴该多边形正十二边形.故选:D .【点睛】本题主要考查多边形的外角和,解题的关键是熟练掌握多边形的外角和等于.8. 如图,中,,点D 为边上一点,将沿直线折叠后,点C 落到点E 处,若,则的度数为( )为()()()()2293399a b a b a b a b a b -=+-≠+-()()22842x x x x --=-+()()()222x y x y x y x y -=+-≠-()()211a a a a a a -+=--≠-+21x x -+x 2x >1x ≠-2x ≠2x <10x +≠10x +≠ 1x ∴≠-30︒360︒3601230︒=︒360︒ABC 4030B C ∠=︒∠=︒,BC ADC △AD DE AB ∥ADB ∠A. B. C. D. 【答案】C 【解析】【分析】本题考查了翻折变换(折叠问题),三角形的内角和,平行线的性质,熟练掌握折叠的性质是解题的关键.根据三角形的内角和得到,由折叠的性质得到,根据平行线的性质得到,则,根据三角形外角性质即可得到结论.【详解】解:∵由折叠的性质得,故选:C .9. 《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( )A B. C.D.【答案】A【解析】.85︒80︒70︒60︒=110BAC ∠︒30,,E C EAD CAD ADC ADE ∠=∠=︒∠=∠∠=∠30BAE E ∠=∠=︒40CAD ∠=︒40,30,B C BAC ∠=︒∠=︒∠+∠180,B C +∠=︒110,BAC ∴∠=︒30,,,E C EAD CAD ADE ADC ∠=∠=︒∠=∠∠=∠,DE AB ∥Q 30,BAE E ∴∠=∠=︒40,CAD ∴∠=︒70,ADB C CAD ∴∠=∠+∠=︒900900213x x ⨯=+-900900213x x =⨯+-900900213x x ⨯=-+900900213x x =⨯++【分析】根据时间=路程÷速度,列出分式方程计算即可.【详解】根据题意,得:,故选A .【点睛】本题考查了分式方程的应用,找准等量关系,列出方程是解题的关键.10. 如图,在中,,,平分,交的延长线于,为垂足,则结论:①;②;③;④;⑤;其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】D 【解析】【分析】本题主要考查等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质及全等三角形的性质与判定,根据题意易得,然后根据三角形全等的性质及线段的数量关系可进行排除选项.【详解】解:,,平分,,在与中,,,,故①正确.②①中,,故②正确.③①中900900213x x ⨯=+-ABC AC BC =90ACB ∠=︒AD BAC ∠BE AD ⊥AC F E AD BF =CF CD =AC CD AB +=BE CF =2BF BE =Rt Rt ADC BFC ≌,90BC AC ACB =∠=︒ 45CAB ABC ∴∠=∠=︒AD BAC ∠22.5BAE EAF ∴∠=∠=︒ Rt ACD △Rt BFC △90,90EAF F FBC F ∠+∠=︒∠+∠=︒EAF FBC ∴∠=∠BC AC EAF FBC BCF ACD=∠=∠∠=∠ ,,Rt Rt ADC BFC ≌AD BF ∴= Rt Rt ADC BFC ≌CF CD ∴= Rt Rt ADC BFC≌,在中,,,,,即,故③正确.④由③可知,,易知,若,则有,则有,则可得为等边三角形,这与①中矛盾,故④错误.⑤由③可知,,,故⑤正确.四项正确,故选:D .二、填空题:(本大题共8个小题,每小题4分,共32分)将每个小题的答案直接写在答题卡中对应的横线上.11. 计算:______.【答案】【解析】【分析】此题主要考查了零指数幂以及负整数指数幂,正确化简各数是解题关键.直接利用零指数幂的性质以及负整数指数幂的性质分别化简,进而得出答案.【详解】解:原式.故答案为:12. 如图6,AC =AD ,BC =BD ,则△ABC ≌____;应用的判定方法是______.的,CF CD AC CD AC CF AF ∴=+=+=,22.5CBF EAF ∠=∠=︒ Rt AEF 9067.5F EAF ∠=︒-∠=︒45CAB ∠=︒ 18018067.54567.5ABF F CAF ∴∠=︒-∠-∠=︒-︒-︒=︒ABE AFE ∴≌△△AF AB ∴=AC CD AB +=AFAB =22.5CBF EAB ∠=∠=︒BE CF =BCF AEB △≌△AB BF =ABF △45CAB ∠=︒BE EF =2BF BE ∴=∴①②③⑤10120232-⎛⎫+-= ⎪⎝⎭1-12=-1=-1-【答案】 ①. △ABD ②. SSS【解析】【分析】由题意根据全等三角形的判定找对对应点,即A 对应A ,B 对应B ,C 对应D ,即可.【详解】∵AC=AD ,BC=BD ,AB=AB (公共边),∴△ABC ≌△ABD (SSS ).故答案为(1). △ABD (2). SSS.【点睛】本题考查了三角形全等的判定定理,解题的关键是掌握三角形全等的判定方法:即AAS 、ASA 、SAS 、SSS .13. 若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】【详解】14. 若,则______.【答案】1【解析】【分析】本题主要考查了求代数式的值.将代数式适当变形后,利用整体代入的方法解答即可.【详解】解:,,原式.故答案为:1.15.若,则 ________________.【答案】8【解析】225,5a a ==±2320a a --=2625a a -++=2320a a --= 232a a ∴-=∴22(3)5a a =--+225=-⨯+45=-+1=214x x x++=2211x x ++=【分析】先把可化为 ,再将化为,然后代入即可解答.【详解】解:∵可化为,化为∴原式==32-1=8【点睛】本题考查了代数式求值,解题关键在于对等式的变形和完全平方公式的灵活运用.16. 若关于x 一元一次不等式组,至少有2个整数解,且关于y 的分式方程有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:解不等式①得:,解不等式②得:,∴不等式的解集为,∵不等式组至少有2个整数解,∴,解得:;∵关于y 的分式方程有非负整数解,∴解得:,即且,的214x x x ++=13x x +=2211x x ++211x x ⎛⎫+- ⎪⎝⎭214x x x ++=13x x +=2211x x ++211x x ⎛⎫+- ⎪⎝⎭211x x ⎛⎫+- ⎪⎝⎭+34222x x a ⎧≤⎪⎨⎪-≥⎩14222a y y -+=--6a ≤12a y -=+34222x x a ⎧≤⎪⎨⎪-≥⎩①②5x ≤1+2a x ≥1+52a x ≤≤1+42a≤6a ≤14222a y y-+=--()1422a y ---=12a y -=102a -≥122a -≠解得:且∴a 的取值范围是,且∴a 可以取:1,3,∴,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.17. 如图,在中,,点是边上的一点,过点作交的延长线于点,延长至点,使得,连接交于点,连接,若,,则的长度为______.【答案】【解析】【分析】本题考查了全等三角形的判定与性质,直角三角形的性质等知识,过点C 作于M ,先证明得到,,进而证明,得到,则.【详解】解:如图所示,过点C 作于M ,∴,∵,∴,∴,∵,∴,又∵,∴,∴,,∵,1a ≥5a ≠16a ≤≤5a ≠134+=ABC 90,BAC AB AC ∠=︒=D BC B BE AD ⊥AD E EB F EF AE =CF AE H AF 1BE =2.3EH =AE 5.6CM AE ⊥()AAS ABE CAM ≌1BE AM ==AE CM =()AAS FHE CHM ≌2.3EH MH == 5.6AE AM MH HE =++=CM AE ⊥90MAC MCA ∠+∠=︒90BAC ∠=︒90EAB MAC ∠+∠=︒EAB MCA ∠=∠BE AE ⊥90E AMC ∠=∠=︒AB AC =()AAS ABE CAM ≌1BE AM ==AE CM =EF AE =∴,又∵,,∴,∴,∴.故答案为:.18. 已知,在计算:的过程中,如果存在正整数,使得各个数位均不产生进位,那么称这样的正整数为“本位数”.例如:2和30都是“本位数”,因为没有进位,没有进位;15和91都不是“本位数”,因为,个位产生进位,,十位产生进位.则根据上面给出的材料:判断106是否为“本位数”______(填“是”或者“否”),在所有的四位数中,最大的“本位数”是_______.【答案】 ①. 否②. 3332【解析】【分析】本题考查数字问题,关键是理解题意,会分类讨论.根据“本位数”的定义即可判断;要保证不进位,千位、百位、十位最大只能为3,个位最大只能为2,由此可确定最大的“本位数”.【详解】解:,有进位,故106不是“本位数”;要保证不进位,千位、百位、十位最大只能为3,个位最大只能为2,则最大的“本位数”为3332,因为,所以3332是“本位数”,且是最大的“本位数”.故答案为:否,3332.三、解答题:(本大题共8小题,第19题12分,20题6分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)化简:EF CM =90E CMH =∠=︒∠FHE CHM ∠=∠()AAS FHE CHM ≌ 2.3EH MH == 5.6AE AM MH HE =++=5.6(1)(2)N N N ++++N N 2349++=30313293++=15161748++=919293276++=106107108321++=3332333333349999++=;②(2)解方程:①;②.【答案】19.,②20. ①,②【解析】【分析】本题考查了二次根式的加减,整式的混合运算,解分式方程等知识,掌握这些知识是关键.(1)①利用二次根式的性质化为最简二次根式,再合并同类二次根式即可;②利用平方差公式展开,再合并同类项即可;(2)①方程两边乘以,化为整式方程,再解之即可,注意验根;②方程两边乘以,化为整式方程,再解之即可,注意验根.【小问1详解】;②;【小问2详解】解:①方程两边乘以,得:,解得:,当时,,∴原方程的解为;()2233(23)(23)x y x y x y --++-233x x =-21133x x x x =+++2x 9x =32x =-(3)x x -3(1)x +=-+=()2233(23)(23)x y x y x y --++-22223949x y x y =-++-2x =233x x=-(3)x x -23(3)x x =-9x =9x =(3)540x x -=≠9x =②方程两边乘以,得:,解得:,当时,,∴原方程的解为.20. 因式分解:(1);(2).【答案】(1)(2)【解析】【分析】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.(1)利用提公因式法进行分解,即可解答;(2)先提公因式,再利用完全平方公式继续分解即可解答.【小问1详解】;【小问2详解】.21. 在江北区“书香校园领航计划”中,某学校为了解八年级学生的课外阅读情况,随机抽查部分学生并对其课外阅读量进行统计分析,绘制成如图所示的不完整的统计图.根据图示信息,解答下列问题:21133x x x x =+++3(1)x +323(1)x x x =++32x =-32x =-33(1)02x +=-≠32x =-323812a b ab c +22363ax axy ay ++224(23)ab a bc +23()a x y +323812a b ab c+224(23)ab a bc =+22363ax axy ay ++223(2)a x xy y =++23()a x y =+(1)本次抽样调查的学生有______人;(2)请补全条形统计图;(3)若规定:阅读4本以上(含4本)课外书籍为“优秀阅读者”,据此估计该校八年级1465名学生中,约有多少人是“优秀阅读者”?【答案】(1)50 (2)见解析(3)约有586人是“优秀阅读者”.【解析】【分析】本题考查读频数(率分布表的能力和利用图表获取信息的能力.利用统计图表获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:各小组频数之和等于数据总数;各小组频率之和等于1;频率频数数据总数.(1)根据读2本的人数与所占的百分比列式计算即可求出被调查的学生人数;(2)用总人数减去1、2、3、5本的人数求出读4本的人数,据此补全统计图即可;(3)用样本估计总体的思想解决问题即可.【小问1详解】(人,故答案为:50.【小问2详解】读4本书的人数为(人,补全图形如图:)=÷1020%50÷=)50410166503614----=-=)【小问3详解】“优秀阅读者”的人数约为(人.答:约有586人是“优秀阅读者”.22. 如图,在中,是边上的高.请根据要求完成以下作图与填空.(1)用尺规完成以下基本作图:作的平分线,与交于点:(保留作图痕迹,不写作法,不下结论)(2)在(1)所作的图中,过点作于,已知,求证:.证明:∵平分,∴______.∵,∴(______),∴,在和中∴,∴,∴______,∵14620146514655862050+⨯=⨯=)ABC AD BC ABC ∠l l AD E E EH AB ⊥H ,BE AC BD AD ==AB BC =BE ,,ABC EH AB ED BC ∠⊥⊥EH =BE BE =BDE BHE △△≌BH BD =Rt BDE △Rt ADC ____BD BE AC=⎧⎨=⎩(HL)BDE ADC ≌ED CD =EH =,90,AD BD ADB EH AB =∠=︒⊥∴_____.∴,∴.【答案】(1)画图见解析(2),,,,【解析】【分析】本题考查的是作已知角的角平分线,全等三角形的判定与性质,等腰三角形的判定,熟练的证明三角形全等是解本题的关键;(1)以B 为圆心,任意长为半径画弧,交角的两边分别为R ,T ,再分别以R ,T为圆心,大于为半径画弧,交于点Q ,作射线,交于即可;(2)根据题干信息提供的推论过程,结合每一步的已知条件逐步得到推论结论,完善推理过程即可.【小问1详解】解:如图,射线即为所求,.【小问2详解】如图,过点作于,证明:∵平分,∴.∵,HEA HAE BAD ∠=∠=∠=︒HE AH CD ==BC BD CD BH AH AB =+=+=ED HL AD CD 4512RT BQ AD E l E EH AB ⊥H BE ,,ABC EH AB ED BC ∠⊥⊥EH ED =BE BE =∴,∴,在和中∴,∴,∴,∵∴.∴,∴.23. 先化简,再求值:,其中a 的值从不等式组的解集中选取一个合适的整数.【答案】,【解析】【分析】此题主要考查了分式的化简求值.直接将括号里面通分运算,再利用分式的混合运算法则化简,再解不等式组,结合分式有意义的条件分析,代入合适的值求出答案.【详解】解:()HL BDE BHE ≌BH BD =Rt BDE △Rt ADC BD AD BE AC=⎧⎨=⎩(HL)BDE ADC≌ED CD =EH CD =,90,AD BD ADB EH AB=∠=︒⊥45HEA HAE BAD ∠=∠=∠=︒HE AH CD ==BC BD CD BH AH AB =+=+=2221532222221a a a a a a a ++⎛⎫--÷ ⎪--+-⎝⎭012a a a ⎧<⎪⎨-<⎪⎩212a -18-2221532222221a a a a a a a ++⎛⎫--÷ ⎪--+-⎝⎭()()()()()()2111532121121a a a a a a a a a ⎡⎤+-++=--⋅⎢⎥-+-+⎢⎥⎣⎦()()()()()()()22153111211a a a a a a a a +--+-+-=⋅+-()()()()()2222152311211a a a a a a a a a ++--+-+-=+-()()()()2111211a a a a a +--=⋅+-,,解不等式组得:,当时无意义,故取,当时,原式.24. 如图,在平面直角坐标系中,已知.(1)在图中作出关于轴的对称图形,并写出坐标:(2)连接,已知点,且,求满足条件的所有点的坐标.【答案】(1)作图见解析;(2)或【解析】【分析】本题考查作轴对称图形,网格中求图形面积,写出点的坐标等知识.(1)分别作出点A 、B 、C 关于y 轴对称的对称点,并依次连接即可.(2)由题意可求得底边上的高,根据D ,横坐标相同即可确定b ,从而求得D 点坐标.【小问1详解】解:∵,∴它们关于y 轴的对称点分别为;在坐标系中描出这三点,依次连接得到,图形如下;212a =-012a a a ⎧<⎪⎨-<⎪⎩1a -<<01a a ==,2a =2a =211228=-=-⨯(1,2)(3,1)(2,1)A B C --,,ABC y 111A B C △111A B C ,,11CC AC ,(2,)D b 11DCC ACC S S ∆∆=D 111(1,2)(3,1)(2,1)A B C ---,,(2,2)D (2,4)-111A B C ,,1DCC △1C (1,2)(3,1)(2,1)A B C --,,111(1,2)(3,1)(2,1)A B C ---,,111A B C △【小问2详解】解:∵,∴,∵,∴,h 为底边上的高,∴,∵,∴轴,∴,解得:或,∴或.25. 重庆——山水之城,美食之都.今年国庆期间,吸引了众多游客到重庆游玩,某打卡点的面馆的生意也异常火爆.(1)十月一日该面馆“小面”销售额是800元,“豌杂面”销售额是1500元,且两种面的销量相同.已知“小面”的单价比“豌杂面”的单价少7元.求“小面”和“豌杂面”的单价各是多少元?(2)十月三日,游客量达到顶峰,该面馆当天“小面”比“豌杂面”的多卖出60份,两种面的总销售额为2895元.求该面馆十月三日当天“小面”的销量是多少份?【答案】(1)“小面”单价8元,则“豌杂面”单价15元;(2)该面馆十月三日当天“小面”的销量是165份.【解析】的14CC =114362ACC S =⨯⨯= 11DCC ACC S S ∆∆=11462DCC S h ∆=⨯=1DCC △1CC 3h =1(2,)(2,1)D b C -,1DC y ∥13b +=2b =4b =-(2,2)D (2,4)-【分析】本题考查分式方程与一元一次方程解实际应用题,读懂题意,找到等量关系列方程是解决问题的关键.(1)设“小面”单价元,则“豌杂面”单价元,利用“两种面的销量相同”,再建立分式方程求解即可;(2)设该面馆十月三日当天“小面”的销量是份,利用“两种面的总销售额为2895元”,再建立方程求解即可.【小问1详解】解:设“小面”单价元,则“豌杂面”单价元,由题意得,解得,经检验:是原分时方程的解,∴,答:“小面”单价8元,则“豌杂面”单价15元;【小问2详解】设该面馆十月三日当天“小面”的销量是份,由题意得,解得,答:该面馆十月三日当天“小面”的销量是165份.26. 等边中,于点,点为边上一动点,连接,点关于直线的对称点为点,连接.(1)如图1,点恰好落在的延长线上,则求______;(2)过点作交于点,连接交于点.①如图2,试判断线段、和之间的数量关系,并说明理由:②如图3,直线交于点,连接点运动的过程中.当取最小值时,请直接写x ()7+x a x ()7+x 80015007x x =+8x =8x =715x +=a ()815602895a a +-=165a =ABC 4BC AH BC =⊥,H D BC AD B AD E AE DE CE ,,E AH BCE ∠=︒D DG AC ∥AB G GE AD F AF EF CE GE AH M ,BM D BM GM +出线段的长度.【答案】(1)15(2)①,理由见解析;②;【解析】【分析】(1)由折叠的性质、由等边三角形及等腰三角形的性质即可求解;(2)①延长交于点N ;证明为等边三角形;再证明,即可得线段、和之间的数量关系;②连接,取中点P ,连接,则当C 、M 、G 三点共线且与重合时,最短,此时点D 与H 点重合,即可求得长度.【小问1详解】解:∵是等边三角形,,∴,,;由折叠性质得:;∴,∴,∴;故答案为:15;【小问2详解】解:①;理由如下:如图,延长交于点N ;设,由折叠性质得:,;∴,;∵,∴,,∵,∴,,∴,∵,∴,DG AF EF CE =+2DG =AB AE =CE AD ,EFN AGF CDN ≌AF EF CE CM AB CP CP BM GM +DG ABC AH BC ⊥AB AC =60ACB BAC ∠=∠=︒1302CAH BAC ==︒∠AB AE =AE AC =1(180)752ACE CAH ∠=︒-∠=︒756015BCE ACE ACB ∠=∠-∠=︒-︒=︒AF CE EF =+CE AD ,BAD ∠=αEAD BAD α∠=∠=60AB AE GD ED AED B ==∠=∠=︒,,602CAE α=︒-∠2BAE α∠=AB AC AE ==1(180)602ACE AEC CAE α∠=∠=︒-∠=︒+DCE ACE ACB α∠=∠-∠=DG AC ∥60GDB ACB ∠=∠=︒∠=∠=︒60B G D B A C 18060120AGD GDC ∠=∠=︒-︒=︒180AGD AED ∠+∠=︒180GDE GAE ∠+∠=︒∴,∴,∴,∴,∴,∴;∵,∴,∴为等边三角形,∴,;∵,∴是等边三角形,∴,∵,∴,∵,∴,∴,∴.②如图,连接,取中点P ,连接,∵是等边三角形,∴,;∵,1801802GDE BAE α∠=︒-∠=︒-DG DE =DGE DEG α∠=∠=60AEG AED DEG α∠=∠-∠=︒-6060120CEG AEC AEG αα∠=∠+∠=︒++︒-=︒60FEN ∠=︒6060EFN EAD AEG αα∠=∠+∠=+︒-=︒60FEN EFN ∠=∠=︒EFN EF EN =60N EFN AFG ∠=∠=∠=︒60GDB BGD ∠=∠=︒BDG BD BG =AB AC =AG CD =GAF DCN α∠=∠=60N AFG ∠=∠=︒(AAS)AGF CDN ≌AF CN =AF CE NE CE EF =+=+CM AB CP ABC CP AB ⊥4AC BC ==AH BC BH CH ⊥=,∴,∴,当C 、M 、G 三点共线且与重合时,最短,此时点D 与H 点重合,点G 与点P 重合,∵P 、H 分别是的中点,∴.【点睛】本题是几何综合问题,考查了等边三角形的判定与性质,全等三角形的判定与性质,折叠的性质,最短距离问题,线段垂直平分线的性质等知识,作辅助线构造全等三角形是问题的关键与难点.BM CM =BM GM CM GM PC +=+≥CP BM GM +AB BC ,122DG AC ==。
2023—2024学年山东省东营市(五四制)八年级上学期期末考试数学检测试卷注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页。
2.数学试题答题卡共4页。
答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束后上交答题卡。
3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑。
第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上。
第I 卷(选择题 共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
)1.下列4个图形中,是中心对称图形但不是轴对称图形的是( )2.下列等式从左到右的变形,属于因式分解的是( )A .x 2﹣2x ﹣1=(x ﹣1)2B .x 2+1=(x +1)2C .(a +b )(a ﹣b )=a 2﹣b 2D .x 2﹣2x +1=(x ﹣1)23.计算的结果是( )yyx y x x 88-⋅-A .B.C. D.xy yx yx -xy -4.如果分式中的x ,y 都扩大为原来的2倍,那么分式的值( )23-xyx yA .扩大为原来的2倍B.扩大为原来的4倍C .不变D .不能确定A. B. C. D.5.在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (2,1)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.小乐一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为x km/h ,则下面所列方程正确的是( )A .B .211.89075-=x x 211.89075+=x x C .D .21901.875+=x x 21901.875-=x x 7.如图,四边形ABCD 中,R 、P 分别是CD 、BC 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CB 上从C 向B 移动而点R 不动时,那么下列结论成立的是( )A .线段EF 的长不变B .线段EF 的长逐渐增大C .线段EF 的长逐渐减小D .线段EF 的长与点P 的位置有关8.如图,E 是平行四边形ABCD 的边AD 延长线上一点,连接BE 交CD 于点F ,连接CE ,BD 。
八年级数学(考试用时120分钟,满分120分)注意事项:1.试卷分为试题卷和答题卡两部分,请在答题卡上作答,在本试题卷上作答无效.2.考试结束后,将本试卷和答题卡一并交回.3.答题前,请认真阅读答题卡上的注意事项.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1. 下列实数中,属于无理数的是()A. B. 3 C. D.答案:A解析:解析:解:,3,,中,只有是无理数;故选A.2. 如果二次根式有意义,那么的值可以是()A. B. C. D. 1答案:D解析:解析:解:由题意,得:,故的值可以是1;故选:D.3. 分式和的最简公分母是()A. B. C. D.答案:C解析:解析:解:分式的分母分别为,,故最简公分母是:,故选C.4. 不等式的解集是()A. B. C. D.答案:D解析:解析:解:,∴,∴;故选:D.5. 下列命题是真命题的是()A. 相等的角是对顶角B. 两直线平行,同旁内角相等C. 两点之间直线最短D. 邻补角互补答案:D解析:解析:解:A、对顶角相等,但相等的角不一定是对顶角,原说法错误,故该选项是假命题;B、两直线平行,同旁内角互补,原说法错误,故该选项是假命题;C、两点之间线段最短,原说法错误,故该选项是假命题;D、邻补角互补是指两个相邻角,它们的互为补角,该说法正确,故该选项是真命题;故选:D.6. 下列计算正确的是()A. B.C. D.答案:C解析:解析:解:A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.7. 2023年10月26日17时46分,神舟十七号载人飞船与中国空间站交会对接的过程犹如“万里穿针”,其核心部件高精度“传感器加速度计”仅为探测器升空过程中最大加速度的0.0001量级,用科学记数法表示数0.0001是()A. B. C. D.答案:B解析:解析:解:;故选:B.8. 将质量分别为的物体放入天平中,两个天平均保持平衡,则下列不等关系成立的是()A. B. C. D.答案:A解析:解析:解:由题图知,,∴,∴.故选:A.9. 如图,已知,,,则的长是()A. B. C. D.答案:B解析:解析:解:∵,∴cm,cm,即cm,故选:B.10. 如图,都是的中线,连接的面积是,则的面积是()A. B. C. D.答案:C解析:解析:解:∵是的中线,∴,∵是的中线,∴为的中线,即,故选:C.11. 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了下面的公式:如果一个三角形的三边长分别为,则该三角形的面积为.已知的三边长分别为,则的面积是()A. B. C. D.答案:C解析:解析:解:∵的三边长分别为,∴,故选:C.12. 如图,在中,的平分线交于点,点分别是上的动点,若的最小值为3,则的长是()A. 3B.C.D. 6答案:D解析:解析:解:作点P关于直线的对称点,连接交于点Q,如图:则,∵根据对称的性质知,∴,又∵是的平分线,点P在边上,点Q在直线上,∴,∴,∴点在边上.∵当时,线段最短.∵的最小值为3,即最短∵在中,∴故选D二、填空题(共6小题,每小题2分,共12分,请将答案填在答题卡上)13. 9的算术平方根是_____.答案:3解析:解析:∵,∴9算术平方根为3.故答案为:3.14. 将分式化简的结果是______.答案:解析:解析:解:,故答案为:.15. 三根长分别为的小木棒首尾相接构成一个三角形,则的取值范围是______.答案:解析:解析:由题意得:,即:,故答案为:.16. 计算:________.答案:解析:解析:.故答案:.17. 某校组织开展了“读书立志,强国有我”的知识竞赛,共20道竞赛题,选对得6分,不选或错选扣2分,得分不低于80分获奖,那么同学们要获奖至少应选对______道题.答案:15解析:解析:解::设应选对x道题,则不选或选错的有道,依题意得:,得:∴至少应选对15道题,故答案为:15.18. 如图①,点、分别为长方形纸带的边、上的点,,将纸带沿折叠成图②(为和的交点),再沿折叠成图③(为和的交点),则图③中的______(结果用含的代数式表示).答案:解析:解析:解:图①中四边形的长方形,,,,,此时图②中也有,由折叠性质得:图②中,,是的一个外角,,由折叠性质得:图③中,,,是的一个外角,,在四边形中,.故答案为:.三、解答题(本大题共8题,共72分,请将解答过程写在答题卡上)19 计算:.答案:3解析:解析:解:原式.20. 解分式方程:答案:x=1解析:解析:解:x-3+(x-2)=-3x+x=-3+3+22x=2x=1检验:当x=1时,左边=3=右边∴x=1是原方程的解21. 解不等式组:,并把解集在数轴上表示出来.答案:,图见解析解析:解析:解:由①,得:,由②,得:,在数轴上表示解集如图:∴不等式组的解集为:.22. 先化简,再求值:,请从0,1,2,3四个数中选取一个你喜欢的数代入求值.答案:,当时,原式(当时,原式)解析:解析:解:原式=由题意可知:,∴当时,原式(当时,原式)23. 如图,,,与相交于点.(1)求证:≌;(2)若,求的度数.答案:(1)证明见解析(2)解析:小问1详解:证明:在中,,∴;小问2详解:解:由(1)可得,∴,∵是的一个外角,∴,∴的度数为.24. 综合与实践(1)实践操作::已知:线段,如图1,作图:用尺规作图,作线段的垂直平分线与交于点.(只保留作图痕迹,不要求写出作法)发现:在直线上任取一点(点除外),连接后发现是______三角形.(2)类比探究::已知:如图2,在中,,作图:在线段上求作点,连接,使得和都是等腰三角形.(尺规作图,只保留作图痕迹,不要求写出作法)(3)推理证明::在(2)所作的图2中,求证:和都是等腰三角形.答案:(1)图见解析,等腰(2)图见解析(3)证明见解析解析:解析:解:如图,直线即为所求;∵直线垂直平分,∴,∴即为等腰三角形;故答案为:等腰;(2)如图,点即为所求;(3)延长至点,使,∵,,∴,∴,,∴,∴,又,∴,∴,∴,∴和都是等腰三角形.25. 为赓续中华优秀文脉,促进文明交流互鉴,某社区准备聘请甲、乙两支施工队参与布置一条长为1200米的宣传长廊.已知甲队单独布置完成工程比乙队单独布置完成工程多用10天,乙队每天布置的数量是甲队每天布置的数量的1.5倍.(1)求甲、乙两支施工队每天分别布置完成多少米宣传长廊?(2)现将宣传长廊布置任务交给乙队并要求25天内完成.乙队布置若干天后因接到其它布置任务,经社区同意将余下布置任务全部交给甲队完成.求在转交给甲队之前乙队至少要布置多少天才能按时完成全部任务?答案:(1)甲施工队每天分别布置40米宣传长廊,则乙两支施工队每天分别布置60米宣传长廊;(2)在转交给甲队之前乙队至少要布置10天,才能按照村委会要求按时完成解析:小问1详解:解:设甲施工队每天分别布置x米宣传长廊,则乙两支施工队每天分别布置米宣传长廊,根据题意得:,解得:,经检验,是所列方程的解,且符合题意,∴.答:甲施工队每天分别布置40米宣传长廊,则乙两支施工队每天分别布置60米宣传长廊;小问2详解:设在转交给甲队之前乙队施工y天,根据题意得:,解得:,∴y的最小值为10.答:在转交给甲队之前乙队至少要布置10天,才能按照村委会要求按时完成.26. 如图,已知:和都是等边三角形,点分别是上的点,点是线段延长线上的一点,连接.(1)如图1,求证:;(2)如图1,若,求证:;(3)如图2,在(2)的条件下,点是线段的中点,连接并延长至使得,交于,连接,求证:是等边三角形.答案:(1)见解析(2)见解析(3)见解析解析:小问1详解:证明:∵和都是等边三角形,∴,∴;小问2详解:∵和都是等边三角形,∴,∴,∴,∵,∴,∴,∴;小问3详解:∵为等边三角形,∴,连接,∵,∴,∴,∴,∴,∴,∴,由(2)知:,∴,又,∴,∴,∴,∴是等边三角形.。
洛阳市2023—2024学年第一学期期末考试八年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题.请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.2023年9月,第19届亚运会在杭州举行.如图所示是以往四届亚运会会徽设计的部分图案,其中是轴对称图形的是()A.B.C. D.2.“洛阳牡丹甲天下”,某品种的牡丹花粉直径约为米,则数据用科学记数法表示为()A.B.C.D.3.如图,为估计湖岸边、两点之间的距离,小洛在湖的一侧选取一点.测得米,米,则、间的距离可能是()A.50米B.70米C.200米D.250米4.已知,下列计算正确的是()A.B.C.D.5.若点的坐标是,点的坐标是,则与满足()A.关于轴对称B.关于轴对称C.轴D.轴6.已知分式有意义,则满足的条件是()A.B.C.D.任何实数7.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图2中,的大小是()A.B.C.D.8.位于高新区的火炬大桥是洛阳市区目前最靠西的一座跨洛河桥,也是洛阳市宽度最宽、承重能力最强、单孔跨度最大、配建立交规模最大的桥梁,其侧面示意图如图所示,其中,现添加以下条件,不能判定的是()A.B.C.D.9.如图1,将边长为的正方形纸片,剪去一个边长为的小正方形纸片.再沿着图1中的虚线剪开,把剪成的两部分(1)和(2)拼成如图2的平行四边形,这两个图能解释的数学公式是()A.B.C.D.10.某工厂要加工个零件,甲队单独完成需小时,乙队单独完成比甲队少用3小时,则两队一起加工这批零件需要()小时.A.B.C.D.二、填空题(每小题3分,共15分)11.计算:.12.分解因式:x2(x﹣3)﹣x+3=.13.回顾尺规作图法中作一个角等于已知角的过程不难发现,实质上是我们首先作一个三角形与另一个三角形全等,再根据全等三角形对应角相等完成的.那么两个三角形全等的理论依据是.14.某兴趣小组利用几何图形画出螳螂的简笔画,如图,已知,,且,则.15.如图,在锐角三角形中,,.的平分线交于点,、分别是和上的动点,则的最小值是.三、解答题(本大题共8个小题,共75分)16.(1)计算:(2)解方程:17.先化简,再求值:,其中,.18.已知,在中,,.请根据要求完成以下任务:(1)利用直尺和圆规,作的角平分线交于点,作的垂直平分线,垂足为,与交于点;(2)求的度数.19.如图,点,,,在同一条直线,,.有下列三个条件:①,②,③.(1)请在上述三个条件中只选取其中一个,使得,写出你选的条件并证明;(2)求证:.20.在四边形中,.,点、分别在边、上,且平分.(1)求证:平分;(2)若,求的度数.21.为深入学习二十大重要讲话精神,落实立德树人根本任务,某中学开展了以“品红色文化”为主题的研学活动.现去中共洛阳组诞生地纪念馆有两条路线可供选择,路线A的全程是27千米,但交通比较拥堵,路线B比路线A的全程多6千米,但平均车速比走路线A时能提高.若走路线B能比走路线A少用10分钟.求走路线A和路线B的平均速度分别是多少?22.将完全平方公式进行适当的变形,可以解决很多的数学问题,例如:若,求的值.解:,,即.又,,得.根据上面的解题思路与方法,解决下列问题:(1)若,,则______;(2)为推动学生劳动实践的有效进行,某学校在校园开辟了劳动教育基地,培养学生劳动品质.如图,校园内有两个正方形场地、,()它们面积和为,边长和为,学校计划在中间阴影部分摆放花卉,其余地方分配给各班作为种植基地.请求出摆放花卉场地的面积.23.(1)问题发现:如图1,和都是等边三角形,连接、,延长交于点,求证:,;(2)类比探究:如图2,和都是等腰直角三角形,即,,,则与存在怎样的数量关系及位置关系,并说明理由;(3)问题解决:若和都是等腰三角形,且,,,请直接写出线段和的数量关系及它们所在直线的夹角.参考答案与解析1.D解析:A、B、C选项均无法找到这样的一条直线,使得沿着这条直线折叠之后,直线两旁的部分能完全重合,故它们都不是轴对称图形;D选项,沿着如图所示的虚线折叠,直线两旁的部分能够完全重合,故它是轴对称图形.故选:D2.C解析:解:,故选C.3.C解析:解:∵,则,即.则符合条件的只有C.故选C.4.D解析:解:A、,计算错误,不符合题意;B、,计算错误,不符合题意;C、,计算错误,不符合题意;D、,计算正确,符合题意;故选D.5.A解析:解:∵点的坐标是,点的坐标是,∴点与点的横坐标相同,纵坐标互为相反数,∴这两个点关于轴对称,故选:A.6.D解析:解:∵分式有意义,而,∴满足的条件是:为全体实数;故选D7.C解析:解:∵是正五边形,∴,∵,∴,∴,故选C.8.A解析:解:∵,∴,∵,∴若添加,无法证明,A选项符合题意;若添加,可利用证明,B选项不符合题意;若添加,可借助证明,C选项不符合题意;若添加,可借助证明,D选项不符合题意;故选:A.9.B解析:解:图1中(1)(2)两部分的面积和可以看作两个正方形的面积差,即,图2是由(1)(2)两部分拼成的底为,高为的平行四边形,因此面积为,因此有,故选:B.10.B解析:解:由题意可得:,故选B.11.####1.5解析:.故答案为:12..解析:解:===.故答案为:.13.##边边边解析:解:如图,由作图可知:,∴;故答案为:.14.##20度解析:过点C作,∴∵,,∴,∴,∵.故答案为:15.5解析:解:过作于,作关于的对称点,连接,∵平分,∴在上,∴,当,,共线,且垂直时,最短,即,在上,即的长,,,,∴的最小值是5.故答案为:516.(1);(2)解析:解:(1);(2),去分母得:,去括号得:,∴,解得:;经检验:是原方程的根,∴原方程的根为.17.,.解析:解:,当,时,原式.18.(1)画图见解析(2)解析:(1)解:如图,射线,直线即为所求;.(2)∵,,∴,∵平分,∴,∵是的垂直平分线,∴,∴.19.(1)选③,证明见解析(2)证明见解析解析:(1)解:选择③,在与中,,∴.(2)∵,∴,∴.20.(1)证明见解析(2)解析:(1)解:如图,过作于,平分,,.,,又∵,;∴平分;(2)在和中,,,,由(1)知,∴,∴,∵,∴.21.走路线A的平均速度是30千米/时,走路线B的平均速度是45千米/时解析:设走路线A的平均速度为x千米/时,则走路线B的平均速度为千米/时.根据题意,得,解得:,经检验,是该分式方程的解.∴.答:走路线A的平均速度是30千米/时,走路线B的平均速度是45千米/时.22.(1)(2)解析:(1)解:∵,∴,∵,∴,解得:;(2)设大正方形的边长为,正方形的边长为,面积和为,边长和为,,,,,解得:,,,②,由①②解得:,.23.(1)证明见解析,(2),;(3),它们所在直线的夹角为解析:证明:(1)和都是等边三角形,∴,,,∴,∴,在和中,,∴,∴,,记,的交点为,则,∴.(2)和都是等腰直角三角形,∴,,,∴,∴,在和中,,∴,∴,,记,的交点为,则,∴,∴.(3)如图,∵,,,∴∴,∴,在和中,,∴,∴,,延长,相交于,∵,∴,即和所在直线的夹角为。
常州市2023~2024学年度第一学期期末质量调研测试八年级数学试题2024.01一、选择题:(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.2023年9月23日至10月8日,第19届亚运会在浙江杭州举行掀起了一股运动热潮。
下面关于运动的图标中,是轴对称图形的是()A. B.C. D.2.下列各数中,是无理数的是( )A.0B. C.3.4的算术平方根是( )A.±2 B.2 C.-2D.164.若一个三角形的三边长为6、8、10,则该三角形的面积是()A.24B.30C.40D.485.如图,要测出池塘A 、B 两端的距离,可在平地上取一点C ,连接AC 、BC ,并分别延长到点D 、E ,使CD=CA 、CE=CB ,连接DE ,那么△ABC ≌△DEC 。
此时,量出DE 的长就是A 、B 两端的距离,在这个过程中,证明△ABC ≌△DEC 的依据是()第5题图A.SAS B.ASA C.AASD.SSS6.若一次函数y =kx -1(k ≠0)的值随x 增大而增大,则点P(k ,-k )在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC 中,∠C=90°,AB 的垂直平分线分别交AB 、AC 于点D 、E 。
若AB=5,BC=3,则点B 到点E 的距离是()第7题图2227A.2B.2.5C.3D.8.如右图,将一个圆柱形无盖小烧杯放置在一个圆柱形无盖大烧杯底部,杯底厚度忽略不计,已知大烧杯的底面半径是小烧杯的底面半径的2倍,现向小烧杯内匀速加水,当大烧杯内的水面高度与小烧杯顶部齐平时,就停止加水。
在加水的过程中,小烧杯、大烧杯内水面的高度差,随加水时间x 变化的图像可能是()第8题图A. B. C. D.二、填空题(本大题共8小题,每小题2分,共16分)9.比较大小: (填“>”“=”或“<”)。
2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)1. 下列各式中,属于分式的有()个A. 4B. 3C. 2D. 12. 下列计算结果正确是()A. B. C. D.3. 下列出版社的商标图案中,是轴对称图形的为()A. B. C. D.4. 下列二次根式中,属于最简二次根式的是()A. B. C. D.5. 下列计算正确的是()A. B. C. D.6. 等腰三角形的顶角是,则此等腰三角形的底角度数为()A. B. C. 或 D.7. 如果把分式中的x和y的值同时扩大为原来的3倍,那么分式的值()A. 扩大为原来的3倍B. 缩小为原来的C. 不变D. 无法判断8. 某校八年级学生去距离学校的游览区游览,一部分学生乘慢车先行,出发后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的倍,求慢车的速度,设慢车的速度是,所列方程正确的是( )A. B. C. D.9. 下列说法正确的是()A. 等腰三角形的角平分线、中线、高线互相重合;B. 三角形三边垂直平分线交点到三边的距离相等;C. 有一个角是的等腰三角形是等边三角形;D. 如果两个三角形全等,那么它们必是关于某条直线成轴对称的图形.10. 如图,点C为线段上一动点(不与A、E重合),在同侧分别作等边和等边,与交于点O,与交于点P,与交于点Q,连接,以下四个结论①;②;③平分;④,下面的结论正确的有()个A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)11. 将用科学记数法表示为__________.12. 分解因式:______.13. 要使分式有意义,则的取值范围是__.14. 如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________.15. 如图,等腰三角形的底边长为4,面积是20,腰的垂直平分线分别交、边于E、F点.若D为边的中点,点M为线段上一动点,则周长的最小值是___________.16. 若是一个关于x的完全平方式,那么k的值是__________.17. 若,,则______.18. 在边长为的等边三角形中,于点,点在直线上,且,则的长为_____.19 如果,那么________________.20. 如图,在等腰三角形中,,为上一点,为延长线上一点,连接,且,,的平分线交于点,若,,则__________.三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)21. 计算:(1);(2).22. 先化简,再求值:,其中23. 如图,在平面直角坐标系中,已知的三个顶点坐标分别是(1)将向上平移4个单位,再向右平移1个单位,得到,请画出,并写出的坐标;(2)请画出关于y轴对称的,并写出的坐标.24. 已知:为等边三角形,点D,E分别在上,且,连接交于点F,在延长线上取点G,使得,连接.(1)如图1,求证:为等边三角形;(2)如图2,当点D为的中点时,在不添加任何辅助线的情况下,请直接写出图2中四条线段,使每一条线段的长度都等于线段的长度的2倍.25. 某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购买文化衫,最多可购买多少件A款文化衫?26. 教科书中这样写道:“形如的式子称为完全平方式“,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等问题.例如:分解因式:.解:原式再如:求代数式的最小值.解:,可知当时,有最小值,最小值是.根据阅读材料,用配方法解决下列问题:(1)分解因式:________.(直接写出结果)(2)当x为何值时,多项式有最大值?并求出这个最大值.(3)利用配方法,尝试求出等式中a,b值.27. 已知,如图1所示,为等边三角形,D是边上一点,,且,连接、.(1)求证:;(2)如图2,延长交于点F,连接,求证:平分;(3)如图3,在(2)的条件下,过点E作于H,若,,求的长.2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)【1题答案】C【2题答案】B【3题答案】A【4题答案】A【5题答案】C【6题答案】B【7题答案】A【8题答案】B【9题答案】C【10题答案】D二、填空题(每题3分,共30分)【11题答案】【12题答案】【14题答案】或【15题答案】12【16题答案】【17题答案】【18题答案】或【19题答案】【20题答案】三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)【21题答案】(1)(2)【22题答案】,【23题答案】(1)见解析;;(2)见解析;(1)见解析(2)【25题答案】(1)A款文化衫每件元,B款文化衫每件元;(2)最多可购买280件A款文化衫【26题答案】(1)(2)当时,多项式有最大值,最大值是7;(3),.【27题答案】(1)见解析(2)见解析(3)。
监利市2023-2024学年度上学期期末考试八年级数学试题本卷满分120分,考试时间120分钟,共三大题,24个小题. 一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.数学中有许多精美的曲线,以下是“笛卡尔叶形线”“阿基米德螺线”“三叶玫瑰线”和“星形线”.其中一定不.是.轴对称图形的是() A . B . C . D .2.在下列运算中,正确的是() A .236a a a ⋅=B .22(3)6a a =C .()325aa =D .32a a a ÷=3.如图,DAC BAC ∠=∠,再添加下列条件,仍不能判定ABC ADC △≌△的是()A .DC BC =B .AB AD =C .D B ∠=∠D .DCA BCA ∠=∠4.下列各式与aa b−相等的是() A .22()a a b −B .22()a ab a b −−C .33aa b− D .aa b−+ 5.一个三角形的两边长为3和8,且第三边长为奇数,则第三边长为() A .7B .9C .5或7D .7或96.将下列多项式分解因式,结果中不含因式1x −的是() A .21x −B .(2)(2)x x x −+−C .221x x −+D .221x x ++7.边长分别为a 和2a 的两个正方形按如下图的样式摆放并连线,则图中阴影部分的面积为()A .23aB .274a C .22aD .232a 8.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为km/h x ,那么可列方程为()A .12012011.5x x −= B .12012011.5x x −=+ C .12012011.5x x −= D .12012011.5x x−=+9.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC △的面积为()A .40B .46C .48D .5010.如图,在ABC △中,9AB =,13AC =,点M 是BC 的中点,AD 是BAC ∠的平分线,//MF AD ,则CF 的长为()A .12B .11C .10D .9二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分)11.分式11x x +−的值为0,则x 的值为______.12.一个多边形的内角和是外角和的2倍,这个多边形的边数为______. 13.若3m n +=,则222426m mn n ++−的值为______.14.如图,在ABC △中,74B ∠=︒,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,若AB BD BC +=,则BAC ∠的度数为______.15.若27193m n =,则23n m −的值是______.16.如图,在ABC △中,AB AC =.点D 为ABC △外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为______.三、解一解,试试谁更棒(本大题共8小题,满分72分) 17.(本题满分8分)计算:(1)()()21a a −+ (2)()()22224ab a b −÷−18.(本题满分8分)分解因式:(1)329a ab −(2)2(2)8x y xy +−19.(本题满分6分)如图AE BD =,AC DF =,BC EF =,求证:A D ∠=∠.20.(本题满分10分)(1)先化简,再求值:524223m m m m −⎛⎫+−⨯⎪−−⎝⎭,其中4m =. (2)若分式方程15102x mx x−=−−无解,求m 的值. 21.(本题满分8分)如图是68⨯的小正方形构成的网格,每个小正方形的边长为1,ABC △的三个顶点A ,B ,C 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S ,使得BSC CAB ≌△△(S 不与A 重合);. (2)在图2中AB 上取一点K ,使CK 是ABC △的高; (3)在图3中AC 上取一点G ,使得AGB ABC ∠=∠.22.(本题满分10分)如图1,ABC △中,AB AC =,点D 在AB 上,且AD CD BC ==.(1)求A ∠的大小;(2)如图2,DE AC ⊥于E ,DF BC ⊥于F ,连接EF 交CD 于点H . ①求证:CD 垂直平分EF ;②请求出线段AE ,DB ,BF 之间存在的数量关系并说明理由.23.(本题满分10分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元. (1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优恵销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?24.(本题满分12分)平面直角坐标系中,点B 在x 轴正半轴,点C 在y 轴正半轴,ABC △是等腰直角三角形,CA CB =,90ACB ∠=︒,AB 交y 轴负半轴于点D .(1)如图1,点C 的坐标是(0,4),点B 的坐标是(8,0),求点A 的坐标;(2)如图2,AE AB ⊥交x 轴的负半轴于点E ,连接CE ,CF CE ⊥交AB 于F . ①求证:CE CF =; ②求证:点D 是AF 的中点; ③求证:1=2ACD BCE S S △△.2023-2024学年度上学期八年级数学期末考试参考答案一、选一选,比比谁细心11.=-1x 12. 6 13. 1214.69° 15. 1 16. 5三、解一解,试试谁更棒17.(1)22a a −−(2)-3b18.(1)(3)(3)a a b a b +−(2)2(2)x y − 19.证明:∵AE =BD ,∴AE +BE =DB +BE ,即AB =DE , 在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A =∠D . 20.(1)原式化简得:2(m +3) 当m =4时,原式=2×(4+3)=14 (2)m =-821.解:(1)如图1中,点S 即为所求;(2)如图2中,线段CK 即为所求; (3)如图,点G 即为所求.22.(1)解:设∠A =x , ∵AD =CD ,∴∠ACD =∠A =x ,∵CD =BC ,∴∠CBD =∠CDB =∠ACD +∠A =2x ; ∵AC =AB ,∴∠ACB =∠B =2x ,则∠DCB =x , ∵x +2x +2x =180°, ∴x =36°,即∠A =36°;(2)①证明:由(1)得:∠ACD =∠A =x ,∠DCB =x , ∴∠ACD =∠DCB ,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵CD=CD,∴△DEC≌△DFC(AAS),∴DE=DF,CE=CF,∴CD垂直平分EF;②解:三条线段AE,DB,BF之间的数量关系为:AE=DB+BF,理由如下:在CA上截取CG=CB,连接DG,如图2所示:由①已得:DE=DF,CE=CF,且CG=CB,∴CG﹣CE=CB﹣CF,即GE=BF,∵DE⊥AC,DF⊥BC,∴∠DEG=∠DFB=90°,∴△DEG≌△DFB(SAS),∴DG=DB,∠DGE=∠B,由(1)得:∠B=2x,∠A=x,∴∠DGE=2∠A,∵∠DGE=∠A+∠GDA,∴∠A=∠GDA,∴AG=DG,∴AE=AG+GE=DG+BF=DB+BF.23.解:(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得x=100.经检验,x=100是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则(100+100×2﹣20)•y+20×0.5 y≥1000+2400+950,解得y≥15.答:每千克这种水果的标价至少是15元.24.(1)解:如图1中,过点A作AH⊥y轴于点H.∵点C的坐标是(0,4),点B的坐标是(8,0),∴OC=4,OB=8,∵∠AHC=∠COB=∠ACB=90°,∴∠ACH+∠BCO=90°,∠BCO+∠CBO=90°,∴∠ACH=∠CBO,在△AHC 和△COB 中,AHC COB ACH CBO CA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHC ≌△COB (AAS ), ∴AH =OC =4,CH =OB =8, ∴OH =CH ﹣CO =8﹣4=4, ∴A (﹣4,﹣4);(2)证明:①如图2中,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBF =45°, ∵AE ⊥AB ,∴∠EAC =∠CAB =∠CBF =45°,∴CE ⊥CF ,∴∠ECF =∠ACB =90°,∴∠ECA =∠FCB , 在△ECA 和△FCB 中,ECA FCB CA BCEAC FBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ECA ≌△FCB (ASA ),∴CE =CF ;②如图2中,过点F 作FN ⊥CD 于点N ,过点A 作AM ⊥CD 于点M . ∵∠ECF =∠EOC =∠CNF =90°,∴∠ECO +∠FCN =90°,∠FCN +∠CFN =90°, ∴∠ECO =∠CFN , 在△EOC 和△CNF 中,EOC CNF ECO CFN CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△CNF (AAS ), ∴OC =FN ,同法可证,△BOC ≌△CMA (AAS ),∴OC =AM , 在△FND 和△AMD 中,90FDN ADM FND AMD FN AM ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△FND ≌△AMD ,∴DF =AD ;③设OE =a ,OB =b ,OC =c , ∵△EOC ≌△CNF ,△BOC ≌△CMA , ∴CN =OE =a ,CM =OB =b ,OC =AM =c , ∴MN =b ﹣a ,∵△FND ≌△AMD ,∴DN =DM =12(b ﹣a ), ∴CD =DN +CN =12(a +b ), ∵S △ACD=12•CD •AM =12•=12(a +b )•AM =14(a +b )•c ,S △BCE=12•EB •CO =12(a +b )•OC =12(a +b )•c ,∴S △ACD=12S △ECB .。
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
八年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.在下列黑体大写英文字母中,不是轴对称图形的是()A. TB. IC. ND. H【答案】C【解析】解:A、“T”是轴对称图形,故本选项不合题意;B、“I”是轴对称图形,故本选项不合题意;C、“N”不是轴对称图形,故本选项符合题意;D、“H”是轴对称图形,故本选项不合题意.故选:C.根据轴对称图形的概念对各个大写字母判断即可得解.本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列各点中,位于第四象限的点是()A. (3,-4)B. (3,4)C. (-3,4)D. (-3,-4)【答案】A【解析】解:A、(3,-4)在第四象限,故本选项正确;B、(3,4)在第一象限,故本选项错误;C、(-3,4)在第二象限,故本选项错误;D、(-3,-4)在第三象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A. 48B. 48.0C. 47D. 47.9【答案】B【解析】解:47.95精确到0.1的近似值为48.0.故选:B.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.4.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为()A. 1.8B. 2C. 2.4D. 2.5【答案】D【解析】解:∵32+42=25=52,∴该三角形是直角三角形,∴12×5=2.5.故选:D.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.5.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb>0,则函数y=kx+b的图象大致是()A. B.C. D.【答案】B【解析】解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb>0,∴b<0,∴图象与y轴的交点在x轴下方,∴一次函数y=kx+b的图象经过第二、三、四象限.故选:B.根据一次函数的性质得到k<0,而kb>0,则b<0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴下方.本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).6.如图,点B、E、C、F在同一条直线上,AB//DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A. ∠A=∠DB. AC//DFC. BE=CFD. AC=DF【答案】C【解析】解:∵AB//DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,AB=DE∠B=∠DEFBC=EF,∴△ABC≌△DEF(SAS);故选:C.根据AB//DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC≌△DEF.本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=112∘,则∠EAF为()A. 38∘B. 40∘C. 42∘D. 44∘【答案】D【解析】解:∵∠BAC=112∘,∴∠C+∠B=68∘,∵EG、FH分别为AC、AB的垂直平分线,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=68∘,∴∠EAF=44∘,故选:D.根据三角形内角和定理求出∠C+∠B=68∘,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.8.小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A. 两人从起跑线同时出发,同时到达终点B. 小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D. 小林在跑最后100m的过程中,与小苏相遇2次【答案】D【解析】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共8小题,共16.0分)9.4的平方根是______.【答案】±2【解析】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.已知点P(-3,4),关于y轴对称的点的坐标为______.【答案】(3,4)【解析】解:首先可知点P(-3,4),再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是(3,4).故答案为:(3,4).本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.在实数16,0.3,5,27,-π2中,无理数有______个.【答案】2【解析】解:16=4,0.3,27,是有理数,5,-π2是无理数,故答案为:2.根据无理数的概念判断即可.本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.12.若点(m,m+1)在函数y=-12x+2的图象上,则m=______.【答案】23【解析】解:∵点(m,m+1)在函数y=-12x+2的图象上,∴m+1=-12m+2,解得,m=23,故答案为:23.根据点(m,m+1)在函数y=-12x+2的图象上,可以求得m的值,本题得以解决.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.13.下列关于建立平面直角坐标系的认识,合理的有______.①尽量使更多的点在坐标轴上;②尽量使图形关于坐标轴对称;③建立坐标系沟通了“数”与“形”之间的联系.【答案】①②③【解析】解:下列关于建立平面直角坐标系的认识,合理的有①②③,①尽量使更多的点在坐标轴上;②尽量使图形关于坐标轴对称;③建立坐标系沟通了“数”与“形”之间的联系,故答案为:①②③根据平面直角坐标系的性质判断即可.此题考查了关于x轴、y轴对称的点的坐标,以及轴对称图形,熟练掌握平面直角坐标系的性质是解本题的关键.14.如图,在等边△ABC中,D、E分别是边AB、AC上的点,且AD=CE,则∠ADC+∠BEA=______ ∘.【答案】180【解析】解:∵△ABC是等边三角形∴∠A=∠ACB=60∘,AC=BC∵AD=CE∴△ADC≌△CEB(SAS)∴∠ACD=∠CBE∴∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60∘.∴∠BOC=120∘,∴∠DOE=120∘,∴∠ADC+∠BEA=360∘-60∘-120∘=180∘,故答案为:180.根据等边三角形的性质,得出各角相等各边相等,已知AD=CE,利用SAS判定△ADC≌△CEB,从而得出∠ACD=∠CBE,所以∠BCD+∠CBE=∠BCD+∠ACD=∠ACB=60∘,进而利用四边形内角和解答即可.此题考查了等边三角形的性质及全等三角形的判定方法,常用的判定方法有SSS,SAS,AAS,HL等.15.如图,在△ABC中,∠C=90∘,AD平分∠CAB,AC=6,AD=7,则点D到直线AB的距离是______.【答案】13【解析】解:作DE⊥AB于E,∵∠C=90∘,AC=6,AD=7,∴CD=AD2-AC2=13,∵AD平分∠CAB,∠C=90∘,DE⊥AB,∴DE=DC=13.故答案为:13.作DE⊥AB于E,根据勾股定理求出CD的长,根据角平分线的性质解答即可.本题考查的是勾股定理,角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画______条.【答案】7【解析】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故答案为:7.根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.三、计算题(本大题共2小题,共18.0分)17.阅读理解:∵4<5<9,即2<5<3,∴1<5-1<2.∴5-1的整数部分为1.∴5-1的小数部分为(5-1)-1=5-2解决问题:已知a是19-3的整数部分,b是26-2的小数部分,求(-a)3+(b+5)2的平方根.【答案】解:∵16<19<25,∴4<19<5,∴1<19-3<2,∴a=1,∵25<26<36,∴5<26<6,∴3<26-2<4,∴b=26-5,∴(-a)3+(b+5)2=-1+26=25,则25的平方根是±5.【解析】估算确定出a与b的值,代入原式计算即可求出平方根.此题考查了估算无理数的大小,以及平方根,熟练掌握估算的方法是解本题的关键.18.如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=______km,AB两地的距离为______km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【答案】240 390【解析】解:(1)由题意和图象可得,a=1502.5×4=240千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度1502.5=60km/h,PM所表示的函数关系式为:y1=150-60xMN所表示的函数关系式为:y2=60x-150(3)由y1=60得150-60x=60,解得:x=1.5由y2=60得60x-150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.四、解答题(本大题共7小题,共50.0分)19.已知:3x2=12,求x的值.【答案】解:∵3x2=12,∴x2=4,∴x=±2.【解析】直接利用平方根的性质计算得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.20.计算:(-3)2+(3-π)0-|1-2|+327.【答案】解:原式=3+1-(2-1)+3=3+1-2+1+3=8-2.【解析】直接利用零指数幂的性质以及绝对值、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.已知:如图,在△ABC中,AB=AC,BE、CD是中线.求证:BE=CD.【答案】证明:∵AB=AC,∴∠ABC=∠ACB,∵BE、CD是中线,∴BD=12AB,CE=12AC,∴BD=CE,在△BCD和△CBE中,BD=CEamp; ∠ABC=∠ACBamp; BC=CBamp; ,∴△BCD≌△CBE(SAS),∴BE=CD.【解析】由等腰三角形的性质得出∠ABC=∠ACB,由已知条件得出BD=CE,证明△BCD≌△CBE,得出对应边相等,即可得出结论.本题考查了等腰三角形的性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应边相等是解决问题的关键.22.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.【答案】证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90∘.在Rt△BDE和Rt△CDF中,BD=CDBE=CF∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【解析】欲证明AB=AC,只要证明∠ABC=∠ACB即可;本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…-3-2-10123…y…3______ 1______ 123…②描点:③连线(2)观察图象,当x______时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为______.【答案】2 0 >0x>-1【解析】解:(1)①填表正确x…-3-2-10123…y…3210123…②③画函数图象如图所示:(2)由图象可得:x>0时,y随x的增大而增大;(3)由图象可得:不等式|x|<x+2的解集为x>-1;故答案为:2;0;>0;x>-1.(1)根据函数值填表即可;(2)根据图象得出函数性质即可;(3)根据图象得出不等式的解集即可.本题考查了一次函与不等式的关系,一次函数的图象等知识点.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【答案】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,20k+b=2015k+b=25,解得,b=40k=-1,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=-x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35-10)(-35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【解析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.25.(1)问题解决:①如图1,在平面直角坐标系xOy中,一次函数y=14x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90∘,点A、B的坐标分别为A______、B______.②求①中点C的坐标.小明同学为了解决这个问题,提出了以下想法:过点C向x轴作垂线交x轴于点D.请你借助小明的思路,求出点C的坐标;(2)类比探究数学老师表扬了小明同学的方法,然后提出了一个新的问题,如图2,在平面直角坐标系xOy中,点A坐标(0,-6),点B坐标(8,0),过点B作x轴垂线l,点P是l 上一动点,点D是在一次函数y=-2x+2图象上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D与点P的坐标.【答案】(-4,0)(0,1)【解析】解:(1)针对于一次函数y=14x+1,令x=0,∴y=1,∴B(0,1),令y=0,∴14x+1=0,∴x=-4,∴A(-4,0),故答案为(-4,1),(0,1);(2)如图1,由(1)知,A(-4,0),B(0,1),∴OA=4,OB=1,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90∘,∴∠CAE+∠ACE=90∘,∵∠BAC=90∘,∴∠CAE+∠BAO=90∘,∴∠CAE=∠ABO,∵△ABC是等腰直角三角形,∴AC=AB,在△AEC和△BOA中,∠AEC=∠BOA=90∘∠CAE=∠ABOAC=BA,∴△AEC≌△BOA(AAS),∴CE=OA=4,AE=OB=1,∴OE=OA+AE=5,∴C(-5,4);(3)如图2,∵过点D作DF⊥y轴于F,延长FD交BP于G,∴DF+DG=OB=8,∵点D在直线y=-2x+2上,∴设点D(m,-2m+2),∴F(0,-2m+2),∵BP⊥x轴,B(8,0),∴G(8,-2m+2),同(2)的方法得,△AFD≌△DGP(AAS),∴AF=DG,DF=PG,如图2,DF=m,∵DF+DG=DF+AF=8,∴m+|2m-8|=8,∴m=163或m=0,∴D(0,2)或(163,-263),当m=0时,G(8,2),DF=0,∴PG=0,∴P(8,2),当m=163时,G(8,-263),DF=163,∴PG=263,∴P(8,-23),即:D(0,2),P(8,2)或D(163,-263),P(8,-23).(1)利用坐标轴上点的特点建立方程求解,即可得出结论;(2)先构造出△AEC≌△BOA,求出AE,CE,即可得出结论;(3)同(2)的方法构造出△AFD≌△DGP(AAS),分两种情况,建立方程求解即可得出结论.此题是一次函数综合题,主要考查了全等三角形的判定和性质,方程的思想,构造全等三角形是解本题的关键.。