用落球法测液体的粘度
- 格式:doc
- 大小:1009.00 KB
- 文档页数:10
用落球法测量液体的粘度实验报告实验名称:用落球法测量液体的粘度实验目的:通过落球法测量液体的粘度,了解粘度的定义及计算方法。
实验原理:粘度是指液体流动阻力的大小。
通过落球法可以测量液体的粘度。
当一球从管子的上端落下时,由于液体的粘滞力,球不能自由下落,而是随时间逐渐减速直到停止。
落球法利用粘滞力对球体的作用直接测得液体黏度,计算公式如下:η=2(g-ρV)/9c其中,η为液体的粘度,g为重力加速度,V为球体体积,ρ为球体密度,c为液体中球体的附面积所造成的阻力系数。
实验器材:落球仪、不锈钢球、粘度杯、天平、计时器。
实验步骤:1. 将清洗干净的粘度杯放置于水平桌面上,从中心位置向四周倾倒粘度杯内液体,使其液面略高于粘度杯口。
2. 用干净柔软的织物揩干不锈钢球的表面和手指指纹,取适量液体注入粘度杯中。
3. 轻轻放入处理好的不锈钢球,并避免球与粘度杯发生碰撞。
4. 将不锈钢球从杯口自由落下,计时器开始计时。
5. 直到不锈钢球停止落下,记录下时间t。
6. 用天平称出不锈钢球的质量m,以及球的直径D和液体的温度θ。
7. 重复以上步骤3至6,得到不同时间下的球体速度v。
8. 用计算公式计算液体的粘度。
η=2(g-ρV)/(9c)9. 根据实验结果计算液体的平均粘度。
实验数据与结果:实验条件:球体质量m=0.13g,球的直径D=2mm,液体密度ρ=1.207g/cm³,液体表面张力=0.0592N/m,重力加速度g=9.8m/s²。
实验结果如下:实验时间(s)球体速度v(m/s)0 05 0.037310 0.073815 0.106520 0.139225 0.170230 0.1998计算平均粘度:η = 2(g-ρV)/(9c) = 44.478Pa·s实验结论:本实验使用落球法测量液体的粘度,测量结果为Η=44.48Pa·s。
根据测得的粘度,比较不同液体的粘度大小,观察不同温度下同一液体的粘度变化,加深对粘度概念和测量方法的理解。
用落球法测定液体的粘度液体的粘度是指液体阻碍内部流动的程度,也就是流体的黏性。
粘度与许多物理特性相关,例如温度、压力、表面张力、密度、化学成分等。
多种方法可以测量液体的粘度,其中一种常见的方法是落球法。
落球法是一种简单有效的测量液体粘度的方法,它通常可以用来测量各种常见液体的粘度。
落球法的原理是根据斯托克斯定理,利用小球在液体中的沉降速度与液体粘度和密度间的关系来计算液体的粘度。
落球法测定液体粘度需要采用一组实验器材,包括落球粘度仪、温度计、粘度球、毫升量筒、计时器等。
落球粘度仪是一种专门用于测量液体粘度的仪器,它包括一个透明的粘度杯和一个小球,小球沿着杯壁向下滑落并记录下滑落时间。
粘度杯的材质通常是玻璃或聚合物,它们的形状和尺寸标准化,并且有精确的容积和口径尺寸。
落球仪的小球通常是钢球或玻璃球,而球的大小和重量也是标准化的。
在进行落球法测定液体粘度的实验前,应先将实验室温度调整到标准温度,通常为20℃或25℃。
然后,将液体倒入粘度杯中,并用毫升量筒测量液体的体积。
接着,将温度计放入液体中,等待几分钟使液体温度稳定。
然后将粘度球轻轻放入液体中,让它沿杯壁向下滑落,记录下滑落时间。
这个过程应该进行数次以提高测量的准确度。
每次测量后应将杯清洗干净,重新倒入液体进行下一轮测量。
η = (ρ - ρ0) g t / (2R(v - v0))其中,η表示液体的粘度,ρ和ρ0分别是液体和环境的密度,g是重力加速度,t是球从杯口滑落到指定位置所花费的时间,R是球的半径,v和 v0分别是粘度球在液体中下落时的速度和初始速度,同时也是带入实验数据中的两个个实际测量值。
如果要得到更准确的液体粘度测量结果,还需考虑到一些误差因素,如液体温度、环境温度、液体的气味、表面张力等。
要尽可能去除误差因素,可以做好实验操作流程,准确记录数据并多次重复实验以提高测量的准确度。
总之,落球法是测量液体粘度的一种有效和方便的方法,它可以用于多种常见液体的粘度测量。
落球法测量液体的粘滞系数一、实验内容:熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理和方法。
二、实验仪器:落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪三、实验原理:如图1,当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力mg、ρ(V为小球体积,ρ为液体密度)和粘滞阻力F(其方向于小液体作用于小球的浮力gV球运动方向相反)。
如果液体无限深广,在小球下落速度v较小的情况下,有:=(1)6Fπηrv图1 液体的粘滞系数测量装置上式称为斯托克斯公式,式中η为液体的粘滞系数,单位是s Pa ⋅,r 为小球的半径。
斯托克斯定律成立的条件有以下5个方面: 1)媒质的不均一性与球体的大小相比是很小的;2)球体仿佛是在一望无涯的媒质中下降; 3)球体是光滑且刚性的; 4)媒质不会在球面上滑过;5) 球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不是因球体运动所推向前行的媒质的惯性所产生。
小球开始下落时,由于速度尚小,所以阻力不大,但是随着下落速度的增大,阻力也随之增大。
最后,三个力达到平衡,即:rv gV mg πηρ6+=于是小球开始作匀速直线运动,由上式可得:vrgV m πρη6)(-=令小球的直径为d ,并用ρπ36d m =,t l v =,2dr =代入上式得:(2)其中ρ'为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。
实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行修正。
测量表达式为:(3)其中D 为容器的内径,H 为液柱高度。
四、实验步骤:1. 调整粘滞系数测量装置及实验仪器1)调整底盘水平,在仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准底盘的中心圆点。
2)将实验架上的两激光器接通电源,并进行调节,使其红色激光束平行对准锤线。
3)收回重锤部件,将盛有待测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变。
用落球法测定液体粘度分析
一、简介
落球法是一种用于测量液体粘度的方法,它可以测量出微小的液体粘
度变化。
落球法原理是基于流体力学的理论,理论上,可以通过测量放入
液体中的球体的落速来确定粘度。
根据实际测量获得的实测数据,液体的
粘度可以由其临界落距和所记录的时间计算出来。
换句话说,落球法可以
帮助理解液体的流变性,以及在液体状态时的物理变化。
二、原理
落球法的原理是流体力学理论。
理论上,可以通过测量放入液体中的
球体的落速来确定粘度。
落球法是基于Stoke's Law来计算液体粘度。
Stoke's Law用于计算均匀流体在球体流动时的阻力。
在Stoke's Law中,临界半径表示球体在液体中的阻力大小。
因此,可以通过测量球体在液体
中的落速来确定临界半径,从而推导出液体的粘度。
在落球法中,实验者通常可以在一个液体中测量几个球体的落速以求
得准确的结果。
这些球体的大小通常介于2mm到25mm之间。
球体的大小
影响着测试中计算出的粘度值。
因此,不同大小的球体应该在实验中一起
使用,以确保测试的精度和准确性。
三、实验
落球法实验需要一个容器,这个容器可以是一个深度足够的烧杯、玻
璃杯或是一个管道。
实验室要求容器必须是透明的,因为实验中需要观察
球体的运动。
实验名称 落球法测定液体的粘度组号【实验目的】学会用落球法测量液体的粘度。
【实验内容与步骤】1、 调整粘滞系数测定仪底盘水平,再仪器横梁中间部位放重锤部件,调节底盘旋钮,使重锤对准盘的中心圆点;2、 调节上下两个激光器,使其红色激光束平行地对准垂线;3、 收回重锤部分,将盛有被测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变;4、 在实验架上放上钢球导管,放入清洁过的小球,看其落下时能否阻挡光线;若不能,则适当调整激光器的位置;5、 用读数显微镜测量10颗小球的直径,以备用;将小球放入导管,当小球落下阻挡上面的红色激光束时,电子计时仪器开始计时;小球阻挡下面的激光束时,计时结束,从而得到小球在上下两束激光之间的下落时间t ;重复测量6次以上。
6、 测量上下激光束之间的距离l ;用游标卡尺测量筒的内径D ;用钢尺测量油柱深度H ;记录实验时的温度。
【数据处理】粘滞系数的计算:()21181 2.41 1.6gd t d d lD H ρρη′−=•⎛⎞⎛⎞++⎜⎟⎜⎟⎝⎠⎝⎠ 钢球的密度,液体的密度用密度计自行测量。
温度16度时,蓖麻油粘滞系数参考值37.8310/Kg m ρ′=×31.37Pa s η=•。
【预习思考题】1、 如何判断小球在做匀速运动?2、 测量的起始点是否可以选择液面,为什么?3、 用激光光电开关测量小球下落时间的方法测粘滞系数有何优点?【注意事项】1.每个小钢球在投入液体前必须先测量直径,否则投入后不能取出。
2.小钢球必须用镊子夹,不能用手拿。
3.实验所用的液体必须保持清洁,不允许掉入杂物。
4.实验时特别注意动作要轻,防止装置倾覆和液体外溅。
21 / 4实验一 落球法测液体的粘滞系数粘滞系数是液体的重要性质之一,它反映液体流动行为的特征.粘滞系数与液体的性质,温度和流速有关,准确测量这个量在工程技术方面有着广泛的实用价值.如机械的润滑,石油在管道中的传输,油脂涂料,医疗和药物等方面,都需测定粘滞系数.测量液体粘滞系数方法有多种,落球法(又称Stokes 法)是最基本的一种,它可用于测量粘度较大的透明或半透明液体,如蓖麻油,变压器油,甘油等.【实验目的】1.学习和掌握一些基本物理量的测量;2.学会落球法测定液体的粘滞系数.【实验原理】一个在液体中运动的物体会受到一个与其速度反方向的摩擦力,这个力的大小与物体的几何形状、物体的速度以及液体的内摩擦力有关.液体的内摩擦力可用粘滞系数η 来表征.对于一个在无限扩展液体中以速度v 运动的半径为r 的球形物体,斯托克斯(G.G. Stokes )推导出该球形物体受到的摩擦力即粘滞力为r v F ⋅⋅⋅=ηπ61 (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力F 1、向上的液体浮力F 2和向下的重力F 3.球体受到液体的浮力可表示为g r F ⋅⋅⋅=13234ρπ (2)上式中ρ 1为液体的密度,g 为重力加速度.球体受到的重力为g r F ⋅⋅⋅=23334ρπ (3)式中ρ 2为球体的密度.当球体运动某一时间后,上述三种力将达到平衡,即321F F F =+ (4)此时,球体将以匀速v 运动(v 也称为收尾速度).因此,可以通过测量球体的下落速度v 来确定液体的粘滞系数:22 / 4()v r g 92122⋅-⋅⋅=ρρη (5)这里v 可以从球体下落过程中某一区间距离s 所用时间t 得到,这样粘滞系数为()s t r ⋅⋅-⋅⋅=g 92122ρρη (6)在实际测量中,液体并非无限扩展,且容器的边界效应对球体受到的粘滞力有影响,因此公式(1)需要考虑这些因数做必要修正.对于在无限长,半径为R 的圆柱形液体轴线上下落的球体,修正后的粘滞力为⎥⎦⎤⎢⎣⎡⋅+⋅⋅⋅⋅=R r r v F 4.2161ηπ (7)这样公式(6)变为()R r s t g r ⋅+⋅⋅⋅-⋅⋅=4.21192122ρρη (8)如果考虑到圆柱形液体的长度L 并非无限长,还有r /L 量级的进一步修正.【实验仪器】 F 3F 1+F 2图1 液体中小球受力分析图落球法粘滞系数测定仪(见图2)、小钢球、蓖麻油、米尺、液晶数显千分尺、游标卡尺、液体密度计、电子天平、电子秒表和温度计等.【实验内容】1.调整粘滞系数测定仪(1)调整底盘水平,在底盘横梁上放重锤部件,调节底盘旋纽,使重锤对准底盘的中心圆点;(2)将实验架上的上,下二个激光器接通电源,可看见其发出红光.调节上、下二个激光器,使其红色激光束平行,并对准锤线;(3)收回重锤部件,将盛有被测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变;(4)在实验架上放上钢球导管;(5)将小球放入钢球导管,看其是否能挡阻光线,若不能,则适当调整激光器位置.2.测量下落小球的匀速运动速度(1)测量上、下二个激光束之间的距离;(2)放小球入钢球导管,当小球落下,阻挡上面的红色激光束时,光线受阻,此时用秒表开始计时,到小球下落到阻挡下面的红色激光束时,计时停止,读出下落时间,重复测量6次以上.3.测量小钢球的密度ρ 2(1)用电子天平测量小钢球的质量m,测量一次;(2)用千分尺测其直径d,测量十次,计算平均值;(3)计算小钢球的密度ρ 2.23 / 44.用液体密度计测量蓖麻油的密度ρ 1(单次测量).用游标卡尺测量量筒的内径D(测量六次).用温度计测量液体温度(液体粘滞系数随温度变化很快,因此需要标明测量是在什么温度下进行的.).5.用公式(8)计算η 值,η 值保留三位有效数据,η 的单位为kg·m-1·s-1.6.用滚筒法测量蓖麻油的粘滞系数,根据落球法的测量结果和仪器说明书,选择合适的转子和转速。
落球法测液体的粘度系数落球法是一种用于测量液体粘度的方法。
它主要通过让小球在液体中自由下落的过程中测量所需时间和落程距离,来计算液体的粘度系数。
其中,落球法是一种比较简单和常用的粘度测量方法,而且由于其测量原理比较简单,因此可以在实验室中比较方便地进行。
1.测量原理落球法的测量原理主要是通过测量小球在液体中下落的时间和位移来计算其粘度系数。
在进行实验时,会让一个球体自由下落,并利用静态力学平衡原理,来计算出液体的粘度系数。
根据牛顿运动定律,我们可以得到小球在液体中的运动方程:$$m \frac{dv}{dt} = (m-\Delta m)g -F_f$$其中,m是小球的质量,g是重力加速度,$\Delta m$是小球和液体之间的位移,$F_f$是摩擦力。
由于小球的速度和加速度很小,因此我们可以近似简化为:或者:其中,$\Delta x$是小球在液体中的位移,$\eta$是液体的粘度系数,r是小球的半径,v是小球的下落速度。
通过上述公式,可以计算出液体的粘度系数。
2.实验步骤落球法的实验步骤主要可分为以下几个部分:2.1. 器材准备:首先,需要准备一个测量液体粘度的装置,该装置主要包括一个简易的底部开口的垂直透明筒,用于盛放液体,并有一条尺度以测量液面的高度。
在筒的底部有一个小洞,开口和管的内径相同,并有一个可调压轮和一个刻度尺。
此外,还需要一个质量较小的小球,并测量它的准确半径和质量。
2.2. 测量液面高度:首先,在透明筒中加入液体并将小球放入筒中,使其自由下落并逐渐适应液体。
然后利用刻度尺测量液面高度,记录下来。
此时,可初步根据液面高度和球的初始位置估算粘度系数初值。
2.3. 测量小球下落时间:首先,将小球从静止位置释放,并让其自由下落,同时用秒表测量下落所需的时间,并记录下来。
重复多次测量,取平均值。
2.5. 计算粘度系数:通过实验测量得到小球下落的时间和下落距离,就可以利用公式计算液体的粘度系数。
用落球法测定液体粘度落球法是一种常用的测定液体粘度的方法,通过测量液体中小球下落的速度和时间,可以计算出液体的粘度。
本文将详细介绍落球法的原理、实验步骤和应用及注意事项。
一、原理落球法是基于斯托克斯定律的,斯托克斯定律是在恒定的温度下,一小球在粘度为η的液体中自由下落时,它所受的阻力与小球下落速度成正比的定律。
斯托克斯定律的公式为:F=6πrηv其中,F为小球所受的阻力,r为小球的半径,v为小球下落的速度,η为液体的粘度。
将公式变形,可以得到液体粘度的计算公式:η=(ρ球-ρ液)gR^2t/18L二、实验步骤1、准备装置:将容器放在水平台上,液面应距离容器下表面4-5cm以上。
放入小球,使其静止于液面以下,距液面上部约1-2cm。
2、准备试液:将待测液体放入容器中,保证液面距小球最高处不低于10cm。
3、进行实验:用计时器记录小球下落的时间,至少测量3次后取平均值。
4、计算粘度:将测得的小球下落时间代入计算公式中,求得液体粘度。
三、应用及注意事项1、落球法可用于测定各种流体的粘度,如油、水、酒精、糊状物等。
2、采用落球法测量过程中,要保持试液恒温、无污染;小球必须光滑,直径均匀,密度稳定,并要求摆放在液面下的位置垂直于液面;为提高精度,可以将时间测量在10-20s以内。
3、测定中要保证小球的下落速度较慢,避免液体的脱水和把样品喷出。
4、落球的过程中不要摇动滴球器,水面上不应有波浪。
5、热力学稳定范围内,液体粘度随着温度升高而降低。
总之,落球法是一种可靠的测定液体粘度的方法,其原理简单、设备简便易行,并可以测量大部分液体的粘度。
用落球法测液体的粘度051977 贺鹏热能与动力工程(同济大学机械工程学院,上海,上海市,200092)摘要:对粘滞系数的由来和传统测量方法进行介绍,提出改进的方法关键词:液体粘滞系数,落球法,升球法引言在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数①。
测定液体粘滞系数的方法有多种,落球法(也称斯托克斯法)是最基本的一种。
它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。
一、传统方法的介绍1.原理一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v 很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示粘滞阻力的斯托克斯公式②:⑴⑴式中d为小球直径。
由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后,所受3力达到平衡,小球将以v0匀速下落,此时有:⑵⑵式中ρ为小球密度,ρ0为液体密度。
由⑶式可解出粘度η的表达式:⑶本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻力的表达式可加修正系数(1+D),而⑶式可修正为:⑷当小球的密度较大,直径不是太小,而液体的粘度值又较小时,小球在液体中的平衡速度v0会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响:⑸其中,Re称为雷诺数③,是表征液体运动状态的无量纲参数。
⑹当Re小于时,可认为⑴、⑷式成立。
当<Re<1时,应考虑⑸式中1级修正项的影响,当Re 大于1时,还须考虑高次修正项。
考虑⑸式中1级修正项的影响及玻璃管的影响后,粘度η1可表示为:⑺由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,⑺式又可表示为:⑻2.装置介绍FD-VM-Ⅱ型落球法液体粘滞系数测定仪④该装置的整体结构如图所示.激光光电记时器⑤:该仪器的面板图如图的右侧所示.由激光电源、直流电源和记时器组成.1456图1.导管2.激光发射器A3.激光发射器B4.激光接收器A5.激光接收器B6.量筒7. 计时器复位端8. 激光信号指示灯 9计时显示 10.计数显示 11.电源开关使用介绍:(1)打开电源开关,按下复位键,显示屏上显示“Fd ‐‐”,表示仪器进入工作状态. (2)仪器接收到激光接收器A 的第一次触发开始计时,到接收到激光接收器B 的第二次触发停止计时.此时间间隔t 就是小球匀速下降l 距离所用的时间,与下降的次数分别由显示屏上显示出来.3. 内容1. 确定小球在量筒中开始匀速下降的位置.分别将三个小球自液面的中心处由静止释放,观察小球由静止到匀速下降的全过程,以此来确定小球开始匀速下降的位置.2. 调整底盘水平、立柱垂直.在实验架横梁的中心孔处放置重锤,放下垂线,使重锤的尖端靠近底盘.调节底盘的调平旋钮,使重锤的尖端对准底盘的中心凹点.这是实验成功的关键.3. 打开光电计时器开关,使其处于工作状态.4. 接通实验架上的两个激光发射器的电源,调节激光发射器的位置,使红色激光束平行地对准垂线.特别要注意激光发射器A 的位置.它的位置一定要比小球开始匀速下降的位置稍下一些.5. 收回重锤和垂线,将装有被测液体的量筒放置在实验架底盘中央,使量筒底部外围与底座上面环形刻线对准,并在实验中保持不变.6. 调整激光接收器接收孔的位置,使其对准激光束.激光信号指示灯暗,说明接收器接收到了激光.7. 用一厚纸片进行挡光,测试光电门的挡光效果.观察是光电门能否按时启动和结束计时.8. 将小球放入导管,观察小球下落时能否挡住激光光线.若不能,可适当微调整激光器和接收器的位置.9. 从计时器上测出6组小球下落的时间间隔⑥t.10. 从固定激光器的立柱标尺上读出两平行激光束之间的距离l. 11. 用读数显微镜测量小球的直径d ,在不同方位上测6次. 12. 其他各项数据由实验室给出.14. 将测量结果带入计算η的最佳测量值.在不考虑g 的不确定度的条件下,可由以下公式计算相对合成标准不确定度.因为ρ、ρ΄、D 的不确定度很小,可以忽略不计.122222()()2 2.4()()()()()2.4cr u t u l u u d t l d D d η⎡⎤=++++⎢⎥+⎣⎦公式中1222AB()()()u t u t u t ⎡⎤=+⎣⎦,其中B ()u t 由实验室给出;B ()()u l u l == 1222AB()()()u d u d u d ⎡⎤=+⎣⎦,其中3mm 01.0(B =)d u . 二、 背景知识粘滞系数又称动力粘度,和运动粘度、相对粘度和条件粘度一起均是反映流体粘性阻力大小的指标。
不同流体具有不同的粘滞系数,粘度一般与压强的关系不甚显著,随温度的升高而降低。
测量液体粘滞系数的方法有落球法、转筒法、阻尼振动法。
此外,常用的粘度计还包括毛细管式、锥板式、超声波式以及恩式粘度计。
测量粘滞系数在工业生产、科学研究和国防建设等领域中具有重要意义。
如在工业上选择润滑油、进行石油制品检验;化学上测定高分子化合物的分子量;水利工程中研究流体运动;环境保护学上测定流体的杂质含量;医学上测定血液的粘滞性便于诊断病变;食品和药物的生产过程的自动控制以及国防建设上在对飞机、船舶、舰艇的模型设计等各方面都需要进行粘度测试。
1845年英国的数学家和物理学家斯托克斯⑦(Stokes, Sir George Gabriel,1819-1903)和法国的维纳(Navier)等人分别推导出粘滞流体的动力学方程,即纳维-斯托克斯方程,奠定了传统流体力学的基础。
1851年,斯托克斯推导出固体小球通过粘性介质中匀速缓慢移动时所受的阻力:F=6πηav0(其中η为粘滞系数),得出在给定力(重力)的作用下的小球速度,被称为斯托克斯公式。
三、影响测量各因素的分析⑧问题分析1.小球半径对实验的影响假设在理想状态条件下,即小球在无限广延的液体中下降,小球受到粘滞力f的作用,由斯托克斯定律给出式中r 为小球半径;v 为小球运动的速度;η为液体的粘滞系数.小球在粘滞流体中下落,受到三个竖直力的作用。
重力W ,浮力B,及粘滞力f.小球在粘滞液体中下落时的受力图假设小球由静止开始下落,有:为简便,设k=6πηr,所以:f=kv则(2)式为小球开始下落时作加速度运动,后来随速度的增加,粘滞力增大,因之加速度减小,最后小球趋于匀速运动[2].此时速度为收尾速度VT.可由aE0,得出W -B-kVT =0;所以:(3)还可以写为积分解出:由(4)和图分析得知,在有限高度的液体内,小球只是趋近于收尾速度,并未达到。
上式给出,当小球密度不变时,小球半径增大,收尾速度减小,这样测试过程中粘滞流体不易引起旋涡,使测试更准确。
另外,传统的落球实验中,如果仍然认为小球在理想的无限广延液体中下落,则粘滞系数为相对误差⑨为:从误差角度考虑,小球直径越大误差越小。
但直径增大,重力增大,这样下降速度增加,收尾速度增加,又是不希望看到的。
所以,在传统实验中,为了使收尾速度变小,不得不采用直径较小的小球,这样就存在较大的误差。
2.圆筒直径对实验的影响传统的落球实验是在圆筒中进行的,考虑到管壁对小球运动的影响,加入修正项经分析表明,在相同温度下,用相同的粘滞液体,会发现圆筒直径大的收尾较大,反之亦然,而事实上,直径越大,小球的运动越接近在理想的广延液体中运动,但是为了获得较小的收尾速度,又不得不在直径较小的圆筒中测定粘滞系数,。
因此,在测量中存在较大误差也是意料之中的。
3.收尾速度对粘滞系数的影响收尾速度测定时,选取了一段距离而测出小球的平均速度,但在有限的时间内,速度仅仅是趋近于收尾速度,这样使得粘滞系数的测量值准确度降低。
4.小球下落发生滚动对粘滞系数的影响在用斯托克斯定律测定粘滞系数时,认为流体的流动是层流,其流线是稳恒的,对于球面两侧相对应各点的压力恰好相等,这时的粘滞阻力才易于计算.但是,小球在下落时,常会出现平动加滚动的运动状态,这一点在实验中又很难避免,由此而引起周围液体的不规则流动即所谓湍流,这种情况必然影响粘滞系数的测定,而且容器管壁的直径越小,这种影响就越明显.四、利用“升球法”测量液体粘滞系数通过上述分析研究,可以看出落球法虽然简便、易操作,但是给实验结果带来的误差也是非常明显的.为克服上述诸多种影响测量粘滞系数的实验因素,并且保留落球法实验的低设备成本、低损耗及容易操作等优点,提出改变测量方法的实验方案.选一个直径较大的透明容器,使小球直径d与容器直径D 不可比拟,可近似认为小球在理想的公式只与小球的直径、小球的挡光时间、配重块的广延液体中运动.用一极细的鱼弦丝线将小球,配重块(M )跨过轻滑轮连接起来,将光电门固定在器壁上,与毫秒计接通,见实验装置图1.测量原理当小球匀速向上运动时(忽略滑轮的摩擦)用天平称出小球和配种块的质量,用卡尺测出小球的直径,浮力B与收尾速度测量方法如下测量浮力:运动小球在给定的粘滞液体中的浮力可由下述方法测出,加减配重块,改变M的质量,小球静止的条件有测定小球的收尾速度:给配重块再加一个适当的质量,使其值为M,小球运动达到平稳后,在液体高度约一半,(即A点)设置光电门,在小球经过光电门时记下小球挡光的时间τ,改变光电门的位置,在A、C 点之间寻找B 点,使某点B 处的挡光时间τ与C 点处的时间相同,则B 点即为收尾速度的测量临界点,只要将光电门的位置,设在B、C 间的任一点即可测出收尾速度.将测得的浮力和收尾速度的关系式代入得:由此可见,利用升球法测定液体粘滞系数的公式仅与小球的直径,小球的挡光时间,配重块的质量及其变化量有关。
影响测量结果因素的消除进过上述分析,只要让液体容器的尺寸远远大于小球的直径,并且使小球在容器的中心轴线上升起,桶壁的影响可以忽略。
由传递公式可以推出粘滞系数的相对误差公式:显然升球法的影响误差要小于落球法,且主要因素是小球的直径D,可以看到增大小球直径D的值,并不会使收尾速度受到限制(改变配重块的质量,可以得到满意的收尾速度)。
同时,当小球直径增大时,挡光时间也增加,对减少误差也起了积极的作用。
2.结论改变传统的落球法为升球法,对液体的粘滞系数进行测量,可使测量结果准确,误差变得很小,还有以下优点:a)收尾速度随意可调,可达最小。
b)小球直径较大,可使误差减小,且不会对收尾速度有影响。
c)盛液容器足够大时,其直径与测量结果无关。
d)小球有细线束缚,不能滚动,其周围液体流动稳定,保证了层流状态。
参考文献①董艳红. 牛顿粘滞定律中粘滞系数两种推导方法. 佳木斯大学学报()②同济大学物理教研组. 物理实验. 上海同济大学出版社③蔡增基. 流体力学. 北京中国建筑工业出版社④毛俊杰、顾社. 普通物理学. 高等教育出版社⑤段平. 落球法测定液体的粘滞系数. 北京工业大学⑥李文那、马瑞霞. 计算机瞬时速度法测定液体的粘滞系数. 实验室科学()⑦大英百科全书. 中国大百科全书出版社⑧王丽南. 液体粘滞系数测量方法. 研究吉林化工学院学报⑨曾腾,林红. 落球法测量液体粘滞系数实验中误差的定性分析. 海南师范学院学报。