水淹层测井解释研究
- 格式:ppt
- 大小:174.50 KB
- 文档页数:29
水淹层特征分析及测井解释方法简介作者:王遂华来源:《中国新技术新产品》2016年第01期摘要:经济的快速发展加大了对于能源的需求,在我国的石油能源中,国外进口石油所占的比重在逐年加大,为提高我国的石油开采能力,需要在开采、勘探以及测井技术等方面进行研究,提高我国的石油开采能力。
本文将在分析水淹层地质特征及其影响因素的基础上总结出一套切实可行的水淹层测井解释方法,使用混合地层水电阻率法来定量的对水淹层进行解释。
关键词:混合地层水电阻率法;水淹层;测井解释中图分类号:P631 文献标识码:A1 前言随着我国大规模以及长时间的开采,国内的各大油田都相继进入了勘探开发的后期,使用水驱油田测井解释的方法逐渐被各大油田所重视,但是由于各地油田在地质结构以及开发条件、进程以及资源条件等方面的不同,无法建立起一套通用的水淹层测井解释方法来为后续的油田开采保驾护航,从而为油田的开采提出了较大的困难。
本文将在分析水淹层特征结构的基础上对水淹层测井解释方法进行分析阐述。
2 水淹层测井解释方法在油田的开采过程中,注水开发的早期多使用的是淡水,随着开采的持续进行,为提高采油效率采用的是淡水与污水相混合的模式,随着时间的进行,到了油田开采到了后期,随着地下水由于压力等进入到开采中,此时所注入的水多为污水。
不同的阶段注入水的性质不同会使得地层的水性质发生了较大的改变,从而为水淹层的解释到了不小的挑战。
在水淹层测井解释的解释方法中分为定性和定量解释两种。
2.1 水淹层测井定性解释水淹层测井解释的定性解释方法是一些开采时间较长的油田加密、调整过程中现场解释的重要技术,水淹层测井定性解释主要是对水淹层进行定性解释,其主要是根据测井所得出的曲线来对地下油层进行定性解释,主要判断地下油层是否被水淹,通过对水淹层的特征进行分析后发现,判断油层是否为水淹的重要依据是判断地层水的电阻率和地层中的含水饱和度的相关变化,依据地层中的孔隙度泥质含量以及地层渗透率等的所带来的变化均不如以上两个变化明显。
水淹层测井解释方法研究的开题报告一、研究背景与意义水淹层是指石油、天然气等地下储层经过开采或者其他原因导致水进入储层内部,形成水力连通而被淹没的地层。
在油气开发中,水淹层是一种比较普遍的现象,也是一种比较复杂的地质问题。
水淹层的存在,不仅对油气勘探和开发有着重要的意义,而且对地质环境保护和工程建设也具有实际意义。
因此,研究水淹层测井解释方法,具有重要的理论和应用价值。
二、研究内容和目标本文研究的内容是针对水淹层测井数据,探讨解释方法,主要包括以下几个方面:1. 水淹层测井数据的特点分析,包括电性、声波、密度等物理参数的变化特征、水淹层、油层和气层的识别方法以及水淹层影响的影响因素等。
2. 建立适合水淹层的测井解释模型,并对测井数据进行综合解释。
通过对水淹层测井数据的参数处理,建立起模型,探讨模型的可靠性和有效性,并对测井数据进行解释。
3. 与实际地质情况对比,验证解释结果的准确性。
通过与实际地质情况的对比,评价测井解释结果的可靠性,确定水淹层的存在、位置和大小,为油气勘探和开发提供依据。
三、研究方法本文采用数学建模、数据处理和实验验证相结合的方法,具体为:1. 建立水淹层测井解释模型。
通过分析水淹层的物理性质和测井参数的变化规律,建立水淹层测井解释模型,为后续的测井解释提供基础支撑。
2. 对测井数据进行处理。
采用统计分析、信号处理和数据挖掘等方法,对测井数据进行处理,并与实际地质情况对比,评价测井解释结果的可靠性。
3. 实验验证。
选取典型水淹层地质条件的油田或气田作为实验对象,进行实地测井,并与实际地质情况对比和验证模型和解释结果的准确性。
四、预期成果和意义本文预期成果为:1. 探讨了水淹层测井数据的特点和影响因素,建立了水淹层测井解释模型。
2. 对测井数据进行综合解释,验证了解释结果的准确性。
3. 建立了水淹层识别、定位和评价的技术框架,为油气勘探和开发提供技术支持。
本研究对于深入了解水淹层的形成机理和地质特征,提高油气开发效率和降低环境风险具有重要的指导意义,为实现资源的合理利用和环境的保护提供了理论和技术支持。
水淹层测井解释与评价综述水淹层测井技术,是20世纪50年代发展起来的一种测井工艺,是探测注水开发油田含水率高低、预测地下剩余油的重要技术。
经过半个世纪的发展,水淹层测井技术已经形成了多个技术系列,成为为高含水油田开发中后期剩余油挖潜提供依据的重要手段[1]。
0我国多数油田,一般都采用早期注水开发方式,随着油田水驱开发程度的不断提高,油田的水淹程度日趋增高,导致产层的流体性质、孔隙结构,岩石的物理化学性质,以及油气水分布规律等,都会发生一定程度的变化。
水淹层测井解释利用测井资料对水驱油藏水淹所发生的变化进行评价,以便弄清水淹部位和水淹程度,是研究剩余油饱和度的主要手段,为进行二次乃至三次采油提高采收率提供依据,也为近一步调整油田开发方案,加密井布井,注采关系调整,确定老井封堵措施等方面提供了科学的指导[2]。
一、油层水淹后产层物理性质的变化受注入水影响,储层性质发生了与开发初期不同的变化,主要表现在岩石的电学性质、孔隙结构、水动力学系统等方面[3]。
1、孔隙度、渗透率的变化注水开发过程中,注入水的推进和冲刷使岩石的孔隙度、渗透率发生改变,其变化大小与水洗程度有关。
弱水洗时,岩石中的粘土矿物受注入水浸泡发生膨胀,孔喉变窄,孔径变小,被冲刷的胶结物也可能堵塞孔道,导致孔隙度变小、渗透率降低;强水洗时,受注入水的长期冲刷,粘土矿物被冲洗,使得泥质含量降低,孔隙度变大,渗透率提高。
因此,在注水井附近的高水淹区域,储层渗透率有明显提高[3]。
2、含油性及油水分布的变化注水开发前,储层内主要为束缚水,含油饱和度高。
随着水驱程度的提高,油水分布发生变化[3]。
由于储层的非均质性的差异,物性好并且与注水井连通性好的区域先水淹,含油饱和度降低;相反,物性差且与注水井层连通差的区域后水淹或未水淹,剩余油饱和度相对较高,成为挖潜调整的主要对象。
3、润湿性的变化岩石的润湿性与岩石的性质和孔隙结构有关,并由其亲水能力表现出来。