测井解释与水淹层判别
- 格式:ppt
- 大小:1.77 MB
- 文档页数:38
54随着油田的深入开发,石油开采进入后期阶段,储层高含水已成为普遍现象,采油的难度日益加大,水淹层的解释分析日益受到重视,有效的评价水淹层,搞清地下油水分布,对于提高产能具有十分重要的意义。
油层水淹后,储层的流体比例、泥质含量、地层水矿化度及岩性的亲油水性等均会发生不同程度的变化,因此储层的岩性、物性、油性、电性声学性特征也会出现比较明显的变化,水淹程度较高,当储层被水淹时,自然伽马发生畸变,自然电位基线漂移,电阻率数值和形态、地层压力和原始油层相比均发生不同程度的变化。
因此,测井曲线对水淹层的判别比较直观,准确。
目前常用的测井判别水淹层的方法主要有裸眼井的自然电位基线偏移法、电阻率变化法、地层压力指示综合研究法和一些新方法以及开发测井中的生产动态监测,碳氧比测井等。
本文主要以裸眼井资料的一些常用测井方法为例,通过介绍水淹层对常规测井中的曲线的影响来确定判别水淹层。
水淹层的基本特征级常用分级,如表1所示。
产水率范围水淹级别F :≤10%油层10%<FW ≤40%4级(弱)水淹层40%<FW ≤60%3级(中)水淹层60%<FW ≤80%2级(较强)水淹层FW >80%1级(强)水淹层1 水淹层评价方法应用实例(1)自然电位基线偏移法:水淹层处自然电位曲线会发生基线偏移。
3োሖ图1 自然电位曲线发生偏移3号层自然电位基线发生明显偏移(见图1),为水淹层特征,解释为2级水淹层。
投产日产液30t,日产水15t,含水率50%。
(2)电阻率变化法通常情况下,油层电阻率较高,水淹后,油层电阻率会下降,通过与原始地层电阻率对比可判断是否水淹。
油层电阻率下降的越多,水淹越严重。
53号层对应邻井强吸水层,该层物性好,自然电位异常幅度较大,基线有偏移,且电阻率与原始地层电阻率(5Ω·m)比明显下降,解释为2级水淹层。
投产日产液37.2方,油10.8t,含水71%。
如果油层强淡水水淹时,部分储层也会出现电阻率异常高,甚至高于原始地层电阻率的情况,这种情况通常要认真分析后判别油层是否水淹。
水淹层测井解释技术研究与应用摘要:现阶段,我国大多数油田开始使用注水开发,而且已经步入到高和特高的含水开发阶段。
我国的油田发展现已成为全球油田最高国家之一,并且其储存量占总量的五分之四以上。
在油田测井解释技术中,水淹层的测井资料也在不断完善,促使产量成本降低。
关键词:测井解释技术水淹层应用研究水淹层的测井解释技术精确度的提高,对于高含水油田剩余油位置的分布和指导性的加密新井射孔试油和确定老井封堵等措施特别重要。
在过去几十年的技术经验基础之上,建立一套直观的、快速的水淹层定性定量的测井解释技术体系,可以改善应用效果。
1 水淹层的测井解释技术1.1 定性的解释方法水淹层测井解释技术中的定性分析方法,主要应用于老油田加密的、经过长时间的调整过程中的油田现场解释中运用的重要技术方法。
定性分析时识别水淹层的一种专门化技术,根据水淹层的测井解释技术的曲线判断油层的水淹程度。
水淹层的机理特征了解到,油层的水淹处的基本变化主要是地层水的电阻率,以及地层含水的饱和度变化,其中孔隙度的泥质含量与渗透率的性质变化一般不如Rw、Sw 变化的范围显著。
所以,如果使用常规的最基本的识别水淹层技术方法就是判断Rw、Sw的变化程度,以及电阻率的SP曲线变化。
1.1.1 自然电位的基线偏移方法油层的内部呈现非均匀的状态,在大多数情况下,水淹层会出现局部水淹或者是水淹程度不均匀现象,其中局部被水淹就会出现自然电位基线的偏移。
原因是原始的地层水矿化度会发生局部的变化,当地层水与注入水矿化度不同时,油层水淹部位即自然状态下的电位基线偏移的部位。
1.1.2 自然电位的幅度对比方法油层刚进入水淹阶段,注入水没有充分与围岩束缚水进行离子交换,这时候注入水代替部分原装的地层水,并且砂岩的自然电位的幅度会降低,逐渐沿着岩泥的基线方向定性偏移。
自然电位的基线无任何变化,这种方式不具有水淹显示特征。
1.1.3 自然电位和电阻率对比方法利用盐水进行水淹,会在进行水淹的部分产生一层具有导电性的产层,其电阻率被认为下降,当自然电位的幅度在水淹的部分下降时,自燃电位的基线也会发生偏移,并且,电阻率曲线和自然电位的曲线不相符。
水淹层测井解释与评价综述水淹层测井技术,是20世纪50年代发展起来的一种测井工艺,是探测注水开发油田含水率高低、预测地下剩余油的重要技术。
经过半个世纪的发展,水淹层测井技术已经形成了多个技术系列,成为为高含水油田开发中后期剩余油挖潜提供依据的重要手段[1]。
0我国多数油田,一般都采用早期注水开发方式,随着油田水驱开发程度的不断提高,油田的水淹程度日趋增高,导致产层的流体性质、孔隙结构,岩石的物理化学性质,以及油气水分布规律等,都会发生一定程度的变化。
水淹层测井解释利用测井资料对水驱油藏水淹所发生的变化进行评价,以便弄清水淹部位和水淹程度,是研究剩余油饱和度的主要手段,为进行二次乃至三次采油提高采收率提供依据,也为近一步调整油田开发方案,加密井布井,注采关系调整,确定老井封堵措施等方面提供了科学的指导[2]。
一、油层水淹后产层物理性质的变化受注入水影响,储层性质发生了与开发初期不同的变化,主要表现在岩石的电学性质、孔隙结构、水动力学系统等方面[3]。
1、孔隙度、渗透率的变化注水开发过程中,注入水的推进和冲刷使岩石的孔隙度、渗透率发生改变,其变化大小与水洗程度有关。
弱水洗时,岩石中的粘土矿物受注入水浸泡发生膨胀,孔喉变窄,孔径变小,被冲刷的胶结物也可能堵塞孔道,导致孔隙度变小、渗透率降低;强水洗时,受注入水的长期冲刷,粘土矿物被冲洗,使得泥质含量降低,孔隙度变大,渗透率提高。
因此,在注水井附近的高水淹区域,储层渗透率有明显提高[3]。
2、含油性及油水分布的变化注水开发前,储层内主要为束缚水,含油饱和度高。
随着水驱程度的提高,油水分布发生变化[3]。
由于储层的非均质性的差异,物性好并且与注水井连通性好的区域先水淹,含油饱和度降低;相反,物性差且与注水井层连通差的区域后水淹或未水淹,剩余油饱和度相对较高,成为挖潜调整的主要对象。
3、润湿性的变化岩石的润湿性与岩石的性质和孔隙结构有关,并由其亲水能力表现出来。
一、水淹级别解释标准
测井解释在判断水淹层及水淹级别中,它采用的标准是根据含水率(Fw)而确定的,即:当Fw≤35%时,测井解释为低水淹(D);
当35%<Fw>75%时,测井解释为中水淹(Z);
当Fw≥75%时,测井解释为高水淹(G)。
众所周知,测井解释确定的是孔隙度和含油饱和度,而含油饱和度(So)与含水率(Fw)是有差别的,如何建立它们之间的关系,则可以通过建立试油结果与测井解释确定的含油饱和度的一个关系,找出其中的关联。
在建立了试油结果与含油饱和度的关系后,还需了解该油田的含油饱和度(So)、残余油饱和度(Soi)、束缚水饱和度(Swi)之间的关系。
这样,在确定剩余油饱和度后,根据剩余油饱和度(So)与含水率(Fw)的关系、剩余油饱和度(So)与残余油饱和度(Soi)和束缚水饱和度(Swi)之间的关系,确定水淹层及水淹级别。
我们通过对塔里木轮南油田的含水率、残余油饱和度(Soi)和束缚水饱和度(Swi)与剩余油饱和度的研究,确定了轮南油田水淹层的解释标准:
低水淹层:Φ>15%,Soi≥35%,Fw≤35%
中水淹层:Φ>15%,35%>Soi>25%,35%<Fw≤75%
高水淹层:Φ>15%,Soi≤25%,Fw>75%
须注意的是:①脉冲中子测井的俘获截面曲线的特征与感应测井曲线很相似,因此感应测井在特殊复杂层(如低阻层)解释中遇到的困难,同样在脉冲中子测井资料中也会遇到,这就是我们常说的一种测井方法不能解决所有问题。
②以前曾多次提过,无论那种方法所求剩余油饱和度都是有误差的,不能严格按其大小判断水淹级别。
常规测井水淹层综合识别方法研究摘要:油层水驱开采是提高采收率的一种方法,水淹层测井解释是注水开发油藏监测的关键技术,其解释精度直接影响油田开发效果。
在水驱过程中油层的性质会发生一系列变化,这些变化在储层及测井曲线上有所显示。
通过分析研究这些特征,对水淹层解释具有重要的指导意义。
关键词:水淹层渗透率孔隙度测井曲线特征1 水淹层储层性质变化特征1.1 含油性变化油层水淹后随着水淹程度增大,含水饱和度逐渐增加;含油饱和度逐渐降低,与水洗程度成比例。
弱水淹层含油饱和度降低约10%;中等水淹含油饱和度降低约20%~30%;强水淹时含油饱和度降低约30%以上。
1.2 孔隙度和渗透率变化由于注入水的冲洗,岩石孔壁上贴附的粘土被剥落,含油砂岩较大孔隙中的粘土被冲散;沟通孔隙的喉道半径加大,孔隙变得干净、畅通,孔隙半径普遍增大,缩短了流体实际渗流途径;岩石孔隙结构系数变小,物性好的岩石孔隙度,可能有一定程度的增加,而渗透率明显增大。
(图1)为水淹层前后孔隙度和渗透率变化对比图。
1.3 油、气、水分布状态和流动特点的变化水淹前的油层,水呈束缚状附着在孔壁的粗糙表面上或微小的细孔中。
注入水进入地层后,水驱油的过程中,水相和油相由开始的连续流动状态逐渐转变为不连续窜流或分散状态。
在亲水性的岩层中,孔道较小或孔道拐弯处,沿孔壁窜流的水会在此处将油切断,形成滞留的油块或油滴;在亲油性岩层中,沿大孔道中心流动的水,流经狭小孔道截面时,也可能在此处形成水滴。
因此,油田在注水开发以及油层水淹后,对于偏亲油的岩层,注入水将不断驱替大孔道的油而占据大孔隙空间。
对于偏亲水性岩层,注入水会不断将油切断形成油水混合液,两者都会使地层的含水饱和度升高,剩余油饱和度降低,使油的流动阻力增加、相对渗透率减小,在测井曲线上的反应是地层电阻率发生变化。
油水分布发生的具体变化,与地层的非均质性、重力、注水井地层吸水状况等因素有关。
1.4 油层饱和度的横向分布由于地层孔隙分布和大小不均,孔隙结构复杂等原因,注入地层的水在它所流经的孔隙过程中,不可能将孔隙中的油全部驱替干净。
水淹层测井识别方法首先,电阻率测井曲线是水淹层测井中最常见的一种方法。
由于水和油的导电性差异,通过测量电阻率测井曲线的变化可以初步判断水淹层的存在。
通常使用侧向电阻率测井曲线进行解释,其主要原理是通过测井仪器上的多个电极分别测量不同深度的电阻率,然后根据电阻率值的大小推断油井中的岩石类型和含水性质。
当测量到很低的电阻率时,很可能是由于岩石孔隙中充满了水,即存在水淹层。
其次,自然伽马射线测井曲线也可以用于水淹层的测井识别。
自然伽马射线是地球自然放射性物质产生的放射线,不同的地质层含有不同程度的放射性物质。
当油井中存在含水层时,伽马射线的强度会显著增强。
通过测量伽马射线测井曲线的变化,可以判断水淹层的存在与否。
具体方法是分析伽马射线曲线的峰值和谷值,以及伽马射线的不规则波动。
当出现高峰值或者小谷值时,表示油井中有水淹层的存在。
最后,声波测井曲线也可以在水淹层测井中发挥重要作用。
声波测井通过测量声波在岩石中传播的速度和衰减程度,可以判断岩石中的孔隙度和含水性质。
水的存在会导致声波传播速度的降低和衰减程度的增加。
因此,当声波测井曲线呈现较低的传播速度和较高的衰减程度时,可以初步判断存在水淹层。
除了以上几种测井识别方法,还可以结合其他地质信息进行判断,如钻井记录、岩心分析等。
此外,在实际应用中,常常需要综合利用多种方法,通过交叉验证来进行水淹层的准确识别。
总之,水淹层测井识别方法是石油地质开发中不可或缺的一个环节。
通过电阻率测井曲线、自然伽马射线测井曲线、声波测井曲线等多种测井方法的综合分析,可以帮助油田开发者判断油井中是否存在水淹层,进而调整开发策略,提高开发效率。
主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw 时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。