条件是: 对任一趋于 的递增数列{ An } (其中A1
c), 函数项级数
n1
An1 An
f ( x , y)dy
un ( x)
n1
(7)
在 J 上一致收敛,
其中 un( x)
An1 An
f ( x, y)dy.
前页 后页 返回
证 必要性 由(1)在 J 上一致收敛, 故 0, M c,
或称含参量反常积分.
前页 后页 返回
定义1 若含参量反常积分(1)与函数 I(x)对 0 ,
N c, 使得当 M N 时, 对一切 x J, 都有
M
c f ( x, y)dy I( x) ,
即
M f ( x, y)dy ,
则称含参量反常积分(1)在 J上一致收敛于I(x), 或简 单地说含参量积分(1)在 J 上一致收敛.
因此, 含参量积分在 (0, ) 上非一致收敛.
而对于任何正数 , 有
( A) sup xexydy e A 0 ( A ), x[ ,) A
因此, 该含参量积分在 [ , ) 上一致收敛.
前页 后页 返回
二.含参量反常积分一致收敛性的判别
定理19.7 (一致收敛的柯西准则) 含参量反常积分(1)
在[a, b]上一致收敛的充要条件是: 0,N c,
使得当 A1, A2 N 时, 对一切的 x [a, b], 都有
A2 f ( x, y)dy . A1
(3)
前页 后页 返回
证 必要性
若I( x) f ( x, y)dy 在 J 上一致收敛, 则 c 0, N c, A N 及 x J , 有
使得当 A A M时,对一切 x J, 总有