含时薛定谔方程的微扰理论
- 格式:ppt
- 大小:652.50 KB
- 文档页数:28
第五章 微扰理论§5.1 学习指导应用量子力学理论解决实际问题,通常需要求解薛定谔方程。
除了前几章中介绍过的几个高度理想化的简单模型外,绝大多数实际量子体系的薛定谔方程都不能精确求解。
因此在量子力学基本理论的基础上,寻找有效的近似方法,求出实际量子体系的近似解是量子力学的重要内容之一。
量子力学中常用的近似方法有微扰近似、准经典近似和变分法等,这些方法在实际问题中有广泛的应用。
微扰近似方法是在已知精确解的量子力学模型的基础上进行的,该方法把系统的哈密顿算符分为两个部分:无微扰哈密顿算符0ˆH 和微扰项H 'ˆ,其中无微扰哈密顿算符可以精确求解,微扰项相对很小。
这样就可以在无微扰时精确解的基础上,通过逐级近似的方法来求出加上微扰项后引起的修正,从而得到系统的近似解。
准经典近似方法是利用大量子数条件下量子力学与经典力学的对应原理为基础,求出量子理论对经典结果的修正。
变分法是利用能量本征方程中,基态能量的极小值特性,从一类试探函数中选择出使得能量最小的状态,作为基态波函数的近似。
虽然变分法的应用范围比较窄,但可以处理一些无法用微扰近似方法解决的问题。
本章的主要知识点有 1.定态微扰论 1)基本方法体系的哈密顿0ˆˆˆH H H λ'=+,其中0ˆH ,H 'ˆ均不含时间t ,λ为表示数量级的小量,0ˆH 的本征方程)0()0()0(0ˆnn n E H ψψ=可以精确求解。
将ˆH 的本征值与本征函数用小量λ展开为(0)(1)2(2)n n n n E E E E λλ=+++和(0)(1)n n n ψψλψ=++,代入本征方程ˆn n nH E ψψ=后得到(0)(1)(0)(1)2(2)(0)(1)0ˆˆ)()()()n n n n n n nH H E E E λψλψλλψλψ'+++=+++++( (5-1) 比较两边同阶量,立即得到本征方程的各级近似,进而可以求出本征值n E 与本征函数n ψ的各级修正。
第五章 微扰理论本章介绍:在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能严格求解的情况不多(一维谐振子,氢原子)。
因此,引入各种近似方法就显得非常重要,常用的近似方法有微扰论,变分法,WKB (半经典近似),Hatree-Fock 自恰场近似等。
本章将介绍微扰论和变分法。
本章将先讨论定态微扰论和变分法,然后再讨论含时微扰以及光的发射和吸收等问题。
§5.1 非简并定态微扰论 §5.2 简并定态微扰论§5.3 氢原子的一级Stark 效应§5.4 变分法§5.5 氦原子基态§5.6 含时微扰§5.7 跃迁几率和黄金费米规则§5.8 光的发射与吸收§5.9 选择定则附录: 氦原子基态计算过程非简并定态微扰论本节将讨论体系受到外界与时间无关的微小扰动时,它的能量和波函数所发生的变化。
假设体系的哈密顿量不显含时间,能量的本征方程ˆH E ψψ= 满足下列条件: ˆH 可分解为 0ˆH 和 ˆH '两部分,而且 0ˆH 远大于ˆH'。
00ˆˆˆˆˆ H H H H H ''=+ 0ˆH 的本征值和本征函数已经求出,即 0ˆH 的本征方程(0)(0)(00ˆn n n H E ψψ=中,能级(0)n E 和波函数(0)n ψ都是已知的。
微扰论的任务就是从0ˆH 的本征值和本征函数出发,近似求出经过微扰ˆH ' 后,ˆH 的本征值和本征函数。
3. 0ˆH 的能级无简并。
严格来说,是要求通过微扰论来计算它的修正的那个能级无简并的。
例如我们要通过微扰计算ˆH '对 0ˆH 的第n 个能级(0)n E 的修正,就要求(0)nE 无简并,它相应的波函数只有(0)n ψ一个。
其他能级既可以是简并的,也可以是无简并的。
4. 0H 的能级组成分离谱。
严格说来,是要求通过微扰来计算它的修正的那个能级(0)n E 处于分离谱内,(0)n ψ是束缚态。
第五章 微扰理论§5.1 学习指导应用量子力学理论解决实际问题,通常需要求解薛定谔方程。
除了前几章中介绍过的几个高度理想化的简单模型外,绝大多数实际量子体系的薛定谔方程都不能精确求解。
因此在量子力学基本理论的基础上,寻找有效的近似方法,求出实际量子体系的近似解是量子力学的重要内容之一。
量子力学中常用的近似方法有微扰近似、准经典近似和变分法等,这些方法在实际问题中有广泛的应用。
微扰近似方法是在已知精确解的量子力学模型的基础上进行的,该方法把系统的哈密顿算符分为两个部分:无微扰哈密顿算符0ˆH 和微扰项H 'ˆ,其中无微扰哈密顿算符可以精确求解,微扰项相对很小。
这样就可以在无微扰时精确解的基础上,通过逐级近似的方法来求出加上微扰项后引起的修正,从而得到系统的近似解。
准经典近似方法是利用大量子数条件下量子力学与经典力学的对应原理为基础,求出量子理论对经典结果的修正。
变分法是利用能量本征方程中,基态能量的极小值特性,从一类试探函数中选择出使得能量最小的状态,作为基态波函数的近似。
虽然变分法的应用范围比较窄,但可以处理一些无法用微扰近似方法解决的问题。
本章的主要知识点有 1.定态微扰论 1)基本方法体系的哈密顿0ˆˆˆH H H λ'=+,其中0ˆH ,H 'ˆ均不含时间t ,λ为表示数量级的小量,0ˆH 的本征方程)0()0()0(0ˆnn n E H ψψ=可以精确求解。
将ˆH 的本征值与本征函数用小量λ展开为(0)(1)2(2)n n n n E E E E λλ=+++L 和(0)(1)n n n ψψλψ=++L ,代入本征方程ˆn n nH E ψψ=后得到(0)(1)(0)(1)2(2)(0)(1)0ˆˆ)()()()n n n n n n nH H E E E λψλψλλψλψ'+++=+++++L L L ( (5-1) 比较两边同阶量,立即得到本征方程的各级近似,进而可以求出本征值n E 与本征函数n ψ的各级修正。
渤海大学本科毕业论文(设计)含时微扰理论及其应用Time-dependent perturbation theory and its application学院(系):数理学院物理系专业:物理学(师范)学号:10030009学生姓名:庞涛入学年度:2010指导教师:韩萍完成日期:2014 年5 月5 日渤海大学Bohai University摘要在量子力学中,精确求解薛定谔方程是很困难的,一般只能求近似解,应用微扰理论可以求得近似解。
学好微扰理论在以后的学习中具有很大帮助。
微扰理论分为两类,不含时微扰理论和含时微扰理论。
在量子力学中,含时微扰理论研究的是一个量子系统的含时微扰所产生的效应.该理论是由英国物理学家狄拉克首先提出和发展建立起来的。
应用含时微扰理论可以近似的计算出有微扰时的波函数,从而计算无微扰体系在微扰作用下由一个量子态跃迁到另一个量子态的跃迁概率。
含时微扰包括常微扰和周期微扰,在这两种微扰作用下,得到的结果是不同的,我们分析计算了在常微扰和周期微扰两种微扰作用下的跃迁概率,得到了一些结论。
在常微扰作用下时,我们得到了一个重要公式,该公式被称为费米黄金定则。
常微扰是只在一段时间内起作用,时间足够长的话,则跃迁概率与时间无关;而通过计算无微扰体系在周期微扰作用下的跃迁概率,得出的结论是周时,期微扰的频率只有在一定范围内,才会发生跃迁。
只有当外界微扰含有频率mk才会出现明显跃迁。
此外,我们还讨论了光的发射和吸收,给出了偶极跃迁的选择定则。
最后对激光的产生和激光的应用进行了介绍。
关键词:选择定则;含时微扰;跃迁概率;黄金规则Time-dependent perturbation theory and its applicationAbstractIn quantum mechanics, the exact solution of Schrodinger equation is very difficult, generally only approximate solutions, using the perturbation theory can be obtained the approximate solution. To learn a great help to the perturbation theory of learning in the future. Perturbation theory is divided into two categories, not the time-dependent perturbation theory and time-dependent perturbation theory.In quantum mechanics, the time-dependent theory of perturbation is the effect of a quantum system with time-dependent perturbation generated. This theory was first proposed and developed by the British physicist Dirac. Calculated using time-dependent perturbation theory can be approximated by a wave function perturbation, thus calculated without perturbation system under the perturbation induced by a quantum state transition to the transition probability of another quantum state. The time-dependent perturbation included regular perturbation and periodic perturbation, in which two kinds of perturbations, the result is different, analysis of transition probability in constant perturbation and periodic perturbation two perturbation effect was obtained by us, some conclusions were obtained. In the constant under perturbations, we obtain a formula, the formula is called the Fermi golden rule. The perturbation is often work only in a period of time, time is long enough, the transition probability is independent of time; and through the calculation of transition probability without perturbation system in the period under perturbations, it was concluded that the periodic perturbation frequency only in a certain range, the transition will occur. Only when the external perturbation with frequency, will appear obvious transition. In addition, we also discuss the emission and absorption of light, gives the dipole transition selection rule. Application of laser and laser produced finally is introduced in this paper.Key Words:Selection rule;time-dependent perturbation;transition probability;The golden rule目录摘要 (I)Abstract (II)引言 (1)1 含时微扰理论的概述 (2)1.1 含时微扰理论下的薛定谔方程 (2)1.2 跃迁概率 (3)2 常微扰和周期微扰 (5)2.1 跃迁概率和费米黄金定则 (5)2.2 周期微扰 (7)3 含时微扰理论的应用 (10)3.1 光的发射和吸收 (10)3.1.1 爱因斯坦的发射和吸收系数 (10)3.1.2 用微扰理论计算发射和吸收系数 (11)3.2 选择定则 (14)3.3 典例分析 (16)4 激光简介 (18)4.1 激光的产生 (18)4.2 激光的应用 (19)结论 (21)参考文献 (22)引言在量子力学中,对于具体物理问题的薛定谔方程,可以准确求解的问题是很少的,一般只能求近似解。