最新高中数学选修2-2-定积分的简单应用
- 格式:docx
- 大小:413.28 KB
- 文档页数:17
1.7.2定积分在物理中的应用预习导引重点难点1・变速直线运动的路程做变速直线运动的物体所经过的路程S,等于其速度函数v=v(O(v(O三0)在时间区间00]上的定积分,即思考:利用定积分求变速直线运动物体的路程和位移时,如何区分位移和路程?一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s(单位:m),则力F所做的功为____ :.(2)变力F(Q的做功公式如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从兀="移动到x=b(“vb),那么变力F(x)所做的功为厂______ :课前预习导学KEQIAN YUXI DAOXUE交流2 思考:求变力做功问题的关键是什么?课堂合作探究KETANG HEZUOTANJIU课前预习导学KEQIAN YUXI DAOXUE 问题导学当堂检测一、求变速直线运动的路程E2活动与探究求变速直线运动的物体在时间区间由,切上的路程S课堂合作探究KETANG HEZUOTANJIU 时尸广v(r)d?课前预习导学KEQIAN YUXI DAOXUE 问题导学当堂检测正确吗?课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU当堂检测______ I例1 一质点在直线上从时刻QO(s)开始以速度v=r-4r+3(m/s)运动,求点在匸4 s时的位置及经过的路程.课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU 问题导学当堂检测又\v(r)=r2-4r+3=(M)(r-3),/在区间[0,1 ]及[3,4]上的v(t)三0, 在区间[1,3]上,叩)W0. ••在t=4 s时的路程为(几4丫+3)&+|『t2-4t+3)dt| +『(t2-4t+3)dt =f^ (?-4z+3)dr-J13 (r-4z+3)d?+J^ (r-4r+3)dr =4(m).课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIUS3迁移与应用若某一物体以速度v(0=4-r2做直线运动,求它在t=l到?=4这段时间内的路程.问题导学当堂检测------------- 名師修津----------------物体做变速直线运动的速度叫等于加速度函数a=a(t)在时间妝切上的定积分;物体做变速直线运动经过的位移s,等于其速度函数v= v(r) 在时间区间["0]上的定积分.用定积分解决简单的物理问题时,关键是要结合物理学中的相关内容,将物理意义转化为用定积分解决.问题导学当堂检测二、求变力做功吧活动与探究当力F的方向与运动方向夹角为0时,怎样求力F所做的功?课前预习导学课堂合作探究KEQIAN YUXI DAOXUEKETANG HEZUO TANJIU----- 例2由胡克定律知,把弹簧拉长所需要的力与弹簧的伸长 量成正比,现知2 N 的力能使一个弹簧伸长3 eg 试求要把弹簧拉伸0.4 m 所做的功.当堂检测问题导学当堂检测唸迁移与应用1・已知弹簧拉长0.02 g需要98 N的力,则把弹簧拉长到0.1 m所做的功为()A.24.5 JB.23.5 JC.22.5 JD.25.0 J问题导学当堂检测2•在原点O有一个带电量为+g的点电荷,它所产生的电场对周围电荷有作用力•现有一个单位正电荷从距离为0处沿着射线方向移至距O点为b@<b)的地方,求电场力做的功.(电场力F = /c・卷(k为常数))问题导学当堂检测------------- 名師❷障---------------- 由于力F的大小随物体的位置变化而变化,因此将其记为F(Q,F(Q 在[G0]上所做的功W=f^ F(x)(k・要解决好变力做功问题,必须熟悉相关问题导学当堂检测的物理知识,正确写出被积函数.课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU 当堂检测2问题导学1 •物体以速度v(?)=3?-2r+3做直线运动,它在t=0到匸3这段时间内的位移是()A.9B.18C.27D.362•物体以速度v(?)=2-f 做直线运动,则它在t=l 到t=3这段时间的路程为 ()问题导学3•做直线运动的质点在任意位置兀处,所受的力F(x)=l+e^则质点沿着 与F(x)相同的方向,从点x 1=0处运动到点x 2=l 处,力F(x)所做的功是 () 1A. 1+eB.eC -D.e-1问题导学4•如果1 N 力能拉长弹簧1 cm,为了将弹簧拉长6 eg 所耗费的功为问题导学5•质点做直线运动,其速度叩)=汽2丫+1(单位:凶3)・则它在第2秒内所走 的路程为 ・问题导学£_© _________。
《定积分的简单应用》教学反思《定积分的简单应用》教学反思《定积分的简单应用》教学反思王利本节课内容是选修2-2中第四章最后一个小节,要求学生在充分认识导数与定积分的概念的基础上,通过运用积分手段解决曲边梯形的面积问题,从而进一步体会到导数与积分的工具性作用,认识到数学知识的实用价值。
新课标要求我们在教学过程中要着重培养学生的探究、发现、创新等方面的能力。
学习的全过程需要学生的参与,学生是学习的主体和中心。
围绕这个宗旨,我在课堂内容的`编排和教学课件的制作上作了一定的思考。
在内容编排上,我基本遵循由易到难的过程,从最基本的,学生所熟知的前课知识开始引入,由浅入深的引导学生加以足够地探究,使学生的发现变得自然而水到渠成。
同时对于学生可能的探究结果留有足够的空间,充分肯定学生的创新发现,对于学生考虑不到的地方加以补充、引导、完善,并留出一定课后思考得余地。
在课件制作方面,考虑到多媒体直观形象的特点,让其承担起引导思考与解释的重任。
我想,一堂好的示范课,不应该只是一次简单的表演与展示,如果在上课之前反复编排到一词一句,会让学生疲惫,听课老师觉得虚假而没有了讨论与交流的兴致,这其实也是对听课老师的一种不尊重的表现。
因此我按照正常的教学进度,以便学生在课堂上有充分的暴露与发现的机会,当然这样一来对于老师的临场应变要求会更高,我想这也应该是一个合格教师的基本素养吧。
当然这节课还有一些不足之处,课堂容量过大,学生板演的次数过多,导致了出现了拖堂的遗憾。
课件的制作也达不到美观的要求,不能更好的发挥其应有的作用。
在今后的教学中我会不断的完善自己的教学技能,提高自己的业务水平。
[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题.知识点一 定积分在求几何图形面积方面的应用1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,⎠⎛ab f (x )d x >0,所以S =⎠⎛ab f (x )d x .(2)如图②,f (x )<0,⎠⎛ab f (x )d x <0,所以S =⎪⎪⎪⎪⎠⎛a bf (x )d x =-⎠⎛ab f (x )d x .(3)如图③,当a ≤x ≤c 时,f (x )≤0,⎠⎛a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,⎠⎛ab f (x )d x >0.所以S =⎪⎪⎪⎪⎠⎛acf (x )d x +⎠⎛cb f (x )d x =-⎠⎛ac f (x )d x +⎠⎛cbf (x )d x .2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =⎠⎛ab [f (x )-g (x )]d x .(2)如图⑤,当f (x )>0,g (x )<0时,S =⎠⎛ab f (x )d x +⎪⎪⎪⎪⎠⎛a bg (x )d x =⎠⎛ab [f (x )-g (x )]d x .3.当g (x )<f (x )≤0时,同理得S =⎠⎛ab [f (x )-g (x )]d x .思考 (1)怎样利用定积分求不分割型图形的面积? (2)当f (x )<0时,f (x )与x 轴所围图形的面积怎样表示?答案 (1)求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可.(2)如图,因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以 S =⎠⎛a b (0-f (x ))d x =-⎠⎛ab f (x )d x .4.利用定积分求平面图形面积的步骤:(1)画出图形:在平面直角坐标系中画出曲线或直线的大致图象;(2)确定图形范围,通过解方程组求出交点的横坐标(或纵坐标),确定积分上、下限; (3)确定被积函数;(4)写出平面图形面积的定积分表达式;(5)利用微积分基本定理计算定积分,求出平面图形的面积,写出答案. 知识点二 定积分在物理中的应用 1.在变速直线运动中求路程、位移路程是位移的绝对值之和,从时刻t =a 到时刻t =b所经过的路程s 和位移s ′分别为: (1)若v (t )≥0,则s =⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(2)若v (t )≤0,则s =-⎠⎛a b v (t )d t ,s ′=⎠⎛ab v (t )d t .(3)若在区间[a ,c ]上v (t )≥0,在区间[c ,b ]上v (t )<0, 则s =⎠⎛a c v (t )d t -⎠⎛c b v (t )d t ,s ′=⎠⎛ab v (t )d t .2.定积分在物理中的应用(1)做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛ab v (t )d t .(2)一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s (单位:m),则力F 所做的功为W =Fs ;而若是变力所做的功W ,等于其力函数F (x )在位移区间[a ,b ]上的定积分,即W =⎠⎛ab F (x )d x .思考 下列判断正确的是 .(1)路程是标量,位移是矢量,路程和位移是两个不同的概念; (2)利用定积分求变速直线运动的路程和位移是同一个式子⎠⎛t 1t 2v (t )d t ;(3)利用定积分求变速直线运动的路程和位移不是同一个式子⎠⎛t 1t 2v (t )d t .答案 (1)(3)解析 (1)显然正确.对于(2)(3)两个判断,由于当v (t )≥0时,求某一时间段内的路程和位移均用⎠⎛t 1t 2v (t )d t 求解;当v (t )<0时,求某一时间段内的位移用⎠⎛t 1t 2v (t )d t 求解,这一时段的路程是位移的相反数,即路程为 -⎠⎛t 1t 2v (t )d t .所以(2)错(3)正确.题型一 利用定积分求平面图形的面积问题例1 求由抛物线y 2=x5,y 2=x -1所围成图形的面积.解 在同一个平面直角坐标系上画出两个抛物线的大致图形,如图.方法一 以x 为积分变量.由⎩⎪⎨⎪⎧y 2=x 5,y 2=x -1,得两个抛物线的两个交点坐标分别为A ⎝⎛⎭⎫54,12,B ⎝⎛⎭⎫54,-12. 设点P (1,0),则所求面积S =2⎝ ⎛⎭⎪⎫⎠⎜⎛054x 5d x -⎠⎜⎛154x -1d x=2()35532442031152x x ⎡⎤--⎢⎥⎢⎥⎣⎦=23. 方法二 以y 为积分变量.由⎩⎪⎨⎪⎧y 2=x 5,y 2=x -1,可得两个抛物线的两个交点坐标分别为A ⎝⎛⎭⎫54,12,B ⎝⎛⎭⎫54,-12. 设点P (1,0),则所求面积S =2⎠⎜⎛012 (y 2+1-5y 2)d y=2⎝⎛⎭⎫y -43y 3⎪⎪⎪⎪120=23. 反思与感悟 若以x 为积分变量,则被积函数的原函数不易确定,而且计算也比较麻烦;若以y 为积分变量,则可以避免这种情况.选取积分变量有时对解题很关键.跟踪训练1 在曲线y =x 2(x ≥0)上的某一点A 处作一切线,使之与曲线以及x 轴所围成图形的面积为112.试求:切点A 的坐标和过切点A 的切线方程.解 如图所示,设切点A (x 0,y 0),由y ′=2x 得过A 点的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20.令y =0,得x =x 02即C ⎝⎛⎭⎫x 02,0. 设由曲线和过A 点的切线及x 轴所围成图形的面积为S ,则S =S 曲边△AOB -S △ABC .S 曲边△AOB =x ⎰x 2d x =13x 3⎪⎪⎪x 00=13x 30,S △ABC =12|BC |·|AB |=12⎝⎛⎭⎫x 0-x 02·x 20=14x 30, 即S =13x 30-14x 30=112x 30=112,所以x 0=1. 从而切点为A (1,1),切线方程为y =2x -1 题型二 运用定积分求解物理问题例2 一点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求: (1)此点在t =4 s 时的位置; (2)此点在t =4 s 时运动的路程.解 因为位置决定于位移,所以它是v (t )在[0,4]上的定积分,而路程是位移的绝对值之和,所以需要判断在[0,4]上哪些时间段的位移为负. (1)在t =4 s 时,该点的位移为⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪40=43(m).即在t =4 s 时该点在距出发点43 m 处.(2)∵v (t )=t 2-4t +3=(t -1)(t -3), ∴在区间[0,1]及[3,4]上,v (t )≥0, 在区间[1,3]上,v (t )≤0, ∴该点在t =4 s 时的路程为S =⎠⎛01(t 2-4t +3)d t +⎪⎪⎪⎪⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =4(m).反思与感悟 解决此类问题的一般步骤:(1)求出每一时间段上的速度函数;(2)根据定积分的物理意义,求出对应时间段上的定积分.跟踪训练2 有一辆汽车以每小时36 km 的速度沿平直的公路行驶,在B 处需要减速停车.设汽车以2 m/s 2的加速度刹车,问:从开始刹车到停车,汽车行驶了多远? 解 设从开始刹车到停车,汽车经过了t s. v 0=36 km /h =10 m/s ,v (t )=v 0-at =10-2t . 令v (t )=0,解得t =5.所以从开始刹车到停车,汽车行驶的路程为s =⎠⎛05(10-2t )d t =(10t -t 2)⎪⎪⎪50=25(m).故从开始刹车到停车,汽车行驶了25 m. 题型三 用定积分解决变力做功问题例3 设有一个长为25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,求使弹簧由25 cm 伸长到40 cm 所做的功.解 设x 表示弹簧伸长的长度,f (x )表示加在弹簧上的力,则f (x )=kx (其中常数k 为比例系数).因为当f (x )=100时,x =5,所以k =20.所以f (x )=20x .弹簧由25 cm 伸长到40 cm 时,弹簧伸长的长度x 从0 cm 变化到15 cm ,故所做的功W =⎠⎛01520x d x =10x 2⎪⎪⎪150=2 250(N·cm)=22.5(J). 反思与感悟 (1)根据物理学知识,求出变力f (x )的表达式;(2)由功的物理意义知,物体在变力f (x )的作用下,沿力的方向做直线运动,使物体由一个位置移到另一个位置,因此,求功之前应先求出位移的起始位置和终止位置;(3)根据变力做功的公式W =⎠⎛ab f (x )d x 求出变力所做的功.跟踪训练3 如图所示,设气缸内活塞一侧存在一定量气体,气体做等温膨胀时推动活塞向右移动一段距离,若气体体积由V 1变为V 2,求气体压力所做的功.解 由物理学知识知,气体膨胀为等温过程,所以气体压强为P =CV (V 表示气体体积,C 为常数),而活塞上的压力为F =PQ =CQ V =CL (Q 表示截面积,L 表示活塞移动的距离,V =LQ ).记L 1,L 2分别表示活塞的初始位置和终止位置,于是有W =⎠⎛L 1L 2F (L )d L =⎠⎛L 1L 2C L d L =C ⎠⎛V 1V 21V d V=C (ln V )⎪⎪⎪V 2V 1=C (ln V 2-ln V 1).所以气体体积由V 1变为V 2,气体压力所做的功为C (ln V 2-ln V 1).用定积分求平面图形面积时,因对图形分割不当致误例4 求由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积.错解 由题意,作出图形如图由⎩⎪⎨⎪⎧ y 2=8x (y >0),x +y -6=0得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4),所以所求面积为S =⎠⎛04(6-x -8x )d x=3242012623x x x ⎛⎫-- ⎪⎝⎭=24-8-423×324=16-3223.错因分析 S =⎠⎛04(6-x -8x )d x =⎠⎛04(6-x )d x -⎠⎛048x d x .⎠⎛04(6-x )d x 表示由直线y =6-x 与直线x =0,直线x =4,直线y =0围成的图形的面积,⎠⎛048x d x 表示由抛物线y 2=8x (y >0)与直线x =0,直线x =4,直线y =0围成的图形的面积.上述S 显然不是所求图形的面积. 正解 S =⎠⎛028x d x +⎠⎛26(6-x )d x=3223x ⎫⎪⎭⎪⎪⎪ 20+⎝⎛⎭⎫6x -12x 2⎪⎪⎪62=163+⎣⎡⎦⎤⎝⎛⎭⎫6×6-12×62-⎝⎛⎭⎫6×2-12×22 =163+8=403.防范措施 合理划分积分上、下限及正确选择积分变量,最好结合图形进行处理.1.在下面所给图形的面积S 及相应表达式中,正确的有( )S =⎠⎛ba [f (x )-g (x )]d x S =⎠⎛08(22x -2x +8)d x ① ②S =⎠⎛14f (x )d x -⎠⎛47f (x )d x S =⎠⎛0a [g (x )-f (x )]d x +⎠⎛ab [f (x )-g (x )]d x③ ④A.①③B.②③C.①④D.③④答案 D解析 ①应是S =⎠⎛ab [f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.曲线y =cos x (0≤x ≤32π)与坐标轴所围图形的面积是( )A.2B.3C.52 D.4答案 B解析 S =⎠⎜⎛0π2cos x d x -⎠⎜⎜⎛π23π2cos x d x =sin x ⎪⎪⎪⎪π20- sin x ⎪⎪⎪3π2π2=sin π2-sin 0- sin 3π2+sin π2=1-0+1+1=3.3.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车刹车后前进多少米才能停车( )A.405B.540C.810D.945 答案 A解析 停车时v (t )=0,由27-0.9t =0,得t =30, ∴s =⎠⎛030v (t )d t =⎠⎛030(27-0.9t )d t =(27t -0.45t 2)⎪⎪300=405. 4.由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积是 . 答案193解析 由图形可得S =⎠⎛01(x 2+4-5x )d x +⎠⎛14(5x -x 2-4)d x=⎝⎛⎭⎫13x 3+4x -52x 2⎪⎪⎪ 10+⎝⎛⎭⎫52x 2-13x 3-4x ⎪⎪⎪41 =13+4-52+52×42-13×43-4×4-52+13+4 =193.5.一个弹簧压缩x cm 可产生4x N 的力,把它从自然长度压缩到比自然长度短5 cm ,求弹簧克服弹力所做的功. 解 设F (x )=kx ,∵弹簧压缩x cm 可产生4x N 的力,∴k =4. ∴弹簧克服弹力所做的功为W =4⎠⎛05x d x =4×⎝⎛⎭⎫12x 2⎪⎪⎪50=50(N·cm)=0.5(J).1.利用定积分求平面图形面积的一般步骤:(1)在平面直角坐标系中画出图形;(2)通过解方程求出交点坐标;(3)写出平面图形面积的定积分表达式,当被求平面区域较复杂时,可分割求和;(4)运用微积分基本定理计算定积分,求出平面图形的面积. 2.路程问题.(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算. 3.变力做功问题.(1)变力做功问题,首先要将变力用其方向上的位移表示出来,这是关键一步.(2)根据变力做功的公式,将其转化为求定积分的问题.一、选择题1.用S 表示图中阴影部分的面积,则S 的值是( )A. ⎠⎛ac f (x )d xB.⎪⎪⎪⎪⎠⎛a cf (x )d x C. ⎠⎛a b f (x )d x +⎠⎛bc f (x )d xD.⎠⎛b c f (x )d x -⎠⎛ab f (x )d x答案 D解析 ∵x ∈[a ,b ]时, f (x )<0,x ∈[b ,c ]时,f (x )>0,∴阴影部分的面积S =⎠⎛b c f (x )d x -⎠⎛ab f (x )d x .2.一物体沿直线以v =2t +1 (t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在1~2 s 间行进的路程为( ) A.1 m B.2 m C.3 m D.4 m 答案 D解析 s =⎠⎛12(2t +1)d t =(t 2+t )⎪⎪⎪21=4(m). 3.一物体从A 处向B 处运动,速度为1.4t m /s(t 为运动的时间),到B 处时的速度为35 m/s ,则AB 间的距离为( ) A.120 m B.437.5 m C.360 m D.480 m答案 B解析 从A 处到B 处所用时间为25 s.所以|AB |=⎠⎛0251.4t d t =0.7t 2⎪⎪⎪250=437.5 (m). 4.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为( ) A.⎠⎛ab [f (x )-g (x )]d xB.⎠⎛a b [g (x )-f (x )]d xC.⎠⎛ab |f (x )-g (x )|d x D.⎪⎪⎪⎪⎠⎛a b[f (x )-g (x )]d x 答案 C解析 当f (x )>g (x )时,所求面积为⎠⎛a b [f (x )-g (x )]d x ;当f (x )≤g (x )时,所求面积为⎠⎛ab [g (x )-f (x )]d x .综上,所求面积为⎠⎛ab |f (x )-g (x )|d x .5.以初速度40 m/s 竖直向上抛一物体,t s 时速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 m D.203m 答案 A解析 v =0时物体达到最高, 此时40-10t 2=0,则t =2 s. 又∵v 0=40 m/s ,∴t 0=0 s.∴h =⎠⎛02(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪20=1603(m). 6.如果1 N 的力使弹簧伸长1 cm ,在弹性限度内,为了将弹簧拉长10 cm ,拉力所做的功为( )A.0.5 JB.1 JC.50 JD.100 J 答案 A解析 由于弹簧所受的拉力F (x )与伸长量x 成正比,依题意,得F (x )=x ,为了将弹簧拉长10 cm ,拉力所做的功为W =⎠⎛010F (x )d x =⎠⎛010x d x =12x 2⎪⎪⎪100=50 (N·cm)=0.5 (J).二、填空题7.由曲线y =x 与y =x 3所围成的图形的面积可用定积分表示为 . 答案 ⎠⎛01(x -x 3)d x解析 画出y =x 和y =x 3的草图,所求面积为如图所示阴影部分的面积,解方程组⎩⎨⎧y =x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01(x -x 3)d x .8.有一横截面的面积为4 cm 2的水管控制往外流水,打开水管后t 秒末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6).则t =0到t =6这段时间内流出的水量为 cm 3. 答案 144解析 由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛06(6t -t 2)d t =4⎝⎛⎭⎫3t 2-13t 3⎪⎪⎪6=144 (cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 9.如图所示,将一弹簧从平衡位置拉到离平衡位置l m 处,则克服弹簧力所做的功为 J.答案 12kl 2解析 在弹性限度内,拉伸(压缩)弹簧所需的力与弹簧拉伸(压缩)的长度成正比,即F (x )=kx ,其中k 为比例系数.由变力做功公式得W =⎠⎛0lkx d x =12kx 2⎪⎪⎪10=12kl 2(J).10.由两条曲线y =x 2,y =14x 2与直线y =1围成平面区域的面积是 .答案 43解析 如图,y =1与y =x 2交点A (1,1), y =1与y =x 24交点B (2,1),由对称性可知面积S =2⎝ ⎛⎭⎪⎫⎠⎛01x 2d x +⎠⎛121d x -⎠⎛0214x 2d x =43.三、解答题11.求抛物线y =-x 2+4x -3与其在点A (1,0)和点B (3,0)处的切线所围成图形的面积.解 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6,由⎩⎪⎨⎪⎧y =2x -2,y =-2x +6,得两直线交点坐标为C (2,2),∴S =S △ABC -⎠⎛13(-x 2+4x -3)d x=12×2×2-⎝⎛⎭⎫-13x 3+2x 2-3x ⎪⎪⎪31=2-43=23.12.物体A 以速度v A =3t 2+1(米/秒)在一直线上运动,同时物体B 也以速度v B =10t (米/秒)在同一直线上与物体A 同方向运动,问多长时间物体A 比B 多运动5米,此时,物体A ,B 运动的距离各是多少?解 依题意知物体A ,B 均做变速直线运动.设a 秒后物体A 比B 多运动5米,则A 从开始到a 秒末所走的路程为s A =⎠⎛0a v A d t =⎠⎛0a (3t 2+1)d t =a 3+a ;B 从开始到a 秒末所走的路程为s B =⎠⎛0a v B d t =⎠⎛0a 10t d t =5a 2.由题意得s A =s B +5,即a 3+a =5a 2+5,得a =5. 此时s A =53+5=130(米),s B =5×52=125(米).故5秒后物体A 比B 多运动5米,此时,物体A ,B 运动的距离分别是130米和125米. 13.定义F (x ,y )=(1+x )y ,x ,y ∈(0,+∞).令函数f (x )=F (1,log 2(x 2-4x +9))的图象为曲线C 1,曲线C 1与y 轴交于点A (0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n ,t )(n >0),设曲线C 1在点A 、B 之间的曲线段与OA 、OB 所围成图形的面积为S ,求S 的值. 解 ∵F (x ,y )=(1+x )y ,∴f (x )=F (1,log 2(x 2-4x +9))=2log 2(x 2-4x +9)=x 2-4x +9,故A (0,9),f ′(x )=2x -4.又∵过O 作C 1的切线,切点为B (n ,t )(n >0),∴⎩⎪⎨⎪⎧t =n 2-4n +9,t n =2n -4,解得B (3,6).∴S =⎠⎛03(x 2-4x +9-2x )d x =⎝⎛⎭⎫13x 3-3x 2+9x ⎪⎪⎪30=9.。