最新2019届高三上学期第二次月考(9月)数学(文)试题
- 格式:doc
- 大小:797.78 KB
- 文档页数:12
安徽省六安第一中学2025届高三上学期第二次月考(9月)数学试卷一、单选题1.已知集合(){}ln 4A x y x ==-,{}1,2,3,4,5B =,则A B =I ( ) A .{5}B .{1,2,3}C .{1,2,3,4}D .{1,2,3,4,5}2.已知31cos(),cos()55αβαβ-=-+=,则sin sin αβ=( )A .35-B .25-C .25D .353.已知命题p :“tan 2α=”,命题q :“3cos25α=-”,则命题p 是命题q 的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.已知角α,β的顶点均为坐标原点,始边均为x 轴正半轴,终边分别过点()1,2A ,()2,1B -,则tan2αβ+=( )A .3-或13B .3或13- C .3- D .135.已知函数()()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上没有零点,则ω的取值范围是( )A .(]0,1B .40,3⎛⎤⎥⎝⎦ C .30,2⎛⎫ ⎪⎝⎭D .2,13⎛⎫ ⎪⎝⎭6.当x θ=时,()26sin 2sin cos 3222x x xf x =+-取得最大值,则tan θ=( )A .3B .3-C .13D .13-7.已知23ln 2,2ln3,3ln a b c πππ===,则( ) A .b c a >>B .c b a >>C .b a c >>D .a b c >>8.已知函数()(),f x g x 的定义域均为R ,()g x '为()g x 的导函数,且()()()()2,42f x g x f x g x ''+=--=,若()g x 为偶函数,则()()20222024f g '+=( ) A .0B .1C .2D .4二、多选题9.先将函数()sin f x x =图象上所有点的横坐标缩小到原来的12,纵坐标不变,再把图象向右平移π12个单位长度,最后把所得图象向上平移一个单位长度,得到函数()g x 的图象,则关于函数()g x ,下列说法正确的是( ) A .最小正周期为πB .在π0,4⎛⎫⎪⎝⎭上单调递增C .,42x ππ⎛⎫∈ ⎪⎝⎭时()2g x ⎤∈⎥⎝⎦D .其图象关于点π,012⎛⎫⎪⎝⎭对称10.设函数2()(1)(4)f x x x =--,则( )A .1x =是()f x 的的极小值点B .(2)(2)4f x f x ++-=-C .当π02x <<时,()2(sin )sin f x f x >D .不等式4(21)0f x -<-<的解集为{}12x x <<11.在ABC V 中,7AB =,5AC =,3BC =,点D 在线段AB 上,下列结论正确的是( )A .若CD 是高,则1514CD =B .若CD 是中线,则CD =C .若CD 是角平分线,则158CD =D .若3CD =,则D 是线段AB 的三等分点三、填空题12.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为. 13.已知a 、b 、c 分别为ABC V 的三个内角A 、B 、C 的对边,2a =,且()(sin sin )()sin a b A B c b C +-=-,则ABC V 面积的最大值为.14.若12,x x 是函数()()21e 12xf x ax a =-+∈R 的两个极值点且212x x ≥,则实数a 的取值范围为.四、解答题15.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,ππ22ϕ-<<),函数()f x 和它的导函数f ′ x 的图象如图所示.(1)求函数()f x 的解析式; (2)已知()65f α=,求π212f α⎛⎫- ⎪⎝⎭'的值.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B . (1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.17.在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,且满足sin cos sin2cos sin 1cos2A A BA A B+=-+.(1)若π3C =,求A 的大小; (2)求222c a b+的取值范围.18.设函数2π()(sin cos )22f x x x x ⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 单调递减区间. (2)已知函数21π()()1sin 26g x f x x ⎡⎤=--⋅⎢⎥⎣⎦, ①证明:函数()g x 是周期函数,并求出()g x 的一个周期; ②求函数()g x 的值域.19.已知函数()ln(1)sin f x x x λ=+-. (1)求函数()f x 在0x =处的切线方程;(2)当1λ=时,判断函数()f x 在π,2⎡⎫+∞⎪⎢⎣⎭上零点的个数;(3)已知()()21e xf x ≥-在[0,π]x ∈上恒成立,求实数λ的取值范围.。
2024--2025学年新会华侨中学高三第一学期第二次月考数学试题本试卷共4页,19小题,满分150分.考试用时120分钟.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5}U =,集合M 满足{}2,4U M =ð,则( )A. 1M ÍB. 4MÍ C. 5MÎ D. 3MÏ【答案】C 【解析】【分析】由补集运算得出集合M ,再由元素与集合的关系判断.【详解】因为全集{}{}1,2,3,4,5,2,4U U M ==ð,所以{1,3,5}M =,根据元素与集合的关系可知,ABD 错误,C 正确.故选:C .2 已知()()10()sin π0x x f x x x -ì-<ï=í³ïî,则()()3f f -=( )A. B. 0 C.12D.【答案】D 【解析】【分析】先求()133f -=,再求()()1π3sin 33f f f æö-==ç÷èø,即可求解.【详解】根据已知()()11333f --=--=,所以()()1π3sin 33ff f æö-===ç÷èø故选:D .3. 若“x a >”是“1x >”的必要不充分条件,则实数a 的取值范围为( )A. (),1-¥ B. (],1-¥ C. ()1,+¥ D. [)1,+¥【答案】A 【解析】【分析】由题意可得{}1x x >⫋{}x x a >,再根据集合的包含关系求参即可..【详解】因为“x a >”是“1x >”的必要不充分条件,所有{}1x x >⫋{}x x a >,所以1a <,即实数a 的取值范围为(),1-¥.故选:A .4. 已知πcos 4a æö+=ç÷èøsin 2a =( )A. 56- B. 23-C.23D.56【答案】C 【解析】【分析】代入二倍角公式,以及诱导公式,即可求解.【详解】由条件可知,22ππ2cos 22cos 121243a a æöæö+=+-=´-=-ç÷ç÷èøèø,而π2sin 2cos 223a a æö=-+=ç÷èø.故选:C5. 若1nx æöç÷èø的二项展开式中,当且仅当第5项是二项式系数最大的项,则其展开式中51x 的系数为( )A. 8 B. 28 C. 70 D. 252【答案】D 【解析】【分析】先确定n 值,再由二项展开式的通项求解5x -项的系数即可.【详解】因为二项展开式中当且仅当第5项是二项式系数最大的项,即二项式系数01C ,C ,,C nn n n L 中第5个即4C n 最大,所以由二项式系数的性质可知,展开式中共9项,8n =,又811213nx x x -æöæö-=-ç÷ç÷èøèø,则81123x x -æö-ç÷èø二项展开式的通项公式()81831822188C 3C (1)3rrr r r r rr T x x x ----+æö=-=-ç÷èø,0,1,2,,r n =L .令835,62r r -=-=,所以51x 的系数为62288C 39C 252×==.故选:D .6. 心形代表浪漫的爱情,人们用它来向所爱之人表达爱意.一心形作为建筑立面造型,呈现出优雅的弧度,心形木屋融入山川,河流,森林,草原,营造出一个精神和自然聚合的空间.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为( )A. yB. y =C. y =D. y =【答案】C 【解析】【分析】根据奇偶性和最值排除错误答案即可.【详解】A 选项:1|1x y ==>,故A 错误;B 选项:记()f x =()()f x f x -=-=-,故()f x 为奇函数,不符合题意,故B 错误;C 选项:记()h x =()()h x h x -=,故y =当0x ³时,y ==,此函数在()0,1上单调递增,在()1,2上单调递减,且()()()00,11,20h h h ===,故C 正确;D 选项:记()g x =()()g x g x -=¹-,故()g x 既不是奇函数也不是偶函数,不符合题意,故D 错误.故选:C.7. 已知函数221(2)()15(2)24x ax x x f x x ì+->ï=íæö-£ïç÷èøî是R 上的减函数,则实数a 的取值范围是( )A. (,1]-¥-B. 1,2æù-¥-çúèûC. (,0]-¥D. (,1]-¥【答案】A 【解析】【分析】首先由题意有(2)1f =-,若()f x 是R 上的减函数,故只需当2x >时,()221f x ax x =+-单调递减,从而列出不等式组,解不等式组即可.【详解】当2x £时,15()24xf x æö=-ç÷èø单调递减,a ÎR ,且()f x 最小值(2)1f =-,当2x >时,当0a =时,()21f x x =-单调递增,不符题意,又注意到()f x 是R 上的减函数,故只能抛物线()221f x ax x =+-的开口向下即0a <,其对称轴为1x a=-,则由题意有201222211a a a <ìïï-£íï´+´-£-ïî,解得1a £-.故选:A.8. 已知函数()f x 的图象向左平移1个单位后关于y 轴对称,当121x x <<时,()()()21210f x f x x x -->éùëû恒成立,设1ln 2a f æö=ç÷èø,()2log 3b f =,32c f æö=ç÷èø,则a ,b ,c 的大小关系为( )A. c a b >> B. c b a>> C. a c b>> D. b a c>>【答案】C 【解析】为【分析】先结合条件判断函数()f x 的对称性质和单调性,再分别界定三个自变量的值或者范围,利用函数对称性和单调性即得.【详解】依题可知函数()f x 的图象关于直线1x =对称,且在区间(,1)-¥上单调递增,则在区间(1,)+¥上单调递减.因2ln 213=<<,则131ln 22<<,23log 322<<,故213()()(log 3)2ln 2f f f >>,即a c b >>.故选:C.【点睛】关键点点睛:解题的关键在于,得知了函数在(1,+)¥上的单调性之后,如何判断三个自变量的大小范围,考虑到三个都是大于1的,且有一个是32,故对于2log 3和1ln 2,就必然先考虑它们与32的大小,而这需要利用对数函数的单调性得到.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布(100,100)N ,其中90分为及格线,120分为优秀线,下列说法正确的是( )附:随机变量x 服从正态分布2~(,)N m s ,则()0.6826P m s x m s -<<+=,(22)0.9544P m s x m s -<<+=,(33)0.9974P m s x m s -<<+=.A. 该市学生数学成绩的标准差为100B. 该市学生数学成绩的期望为100C. 该市学生数学成绩的及格率超过0.8D. 该市学生数学成绩不及格的人数和优秀的人数大致相等【答案】BC 【解析】【分析】根据正态分布网线的对称性,正态分布的概念判断.【详解】X 服从正态分布(100,100)N ,则标准差为10,期望为100,A 错,B 正确,100,10m s ==,11(90)()(1())(10.6826)0.158722P X P X P X m s m s m s £=£-=--<<+=´-=,(90)1(90)10.15870.84130.8P X P X ³=-<=-=>,C 正确;及格线m s -,而优秀线是2m s +,1(120)(2)(10.9544)0.02282P X P X m s ³=>+=´-=,这优秀率,优秀率与及格率相差很大,人数相差也很大,D 错.故选:BC .10. 下列命题正确的是( )A. 命题“1x ">,20x x ->”的否定是“01x $£,2000x x -£”;B. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的必要不充分条件C. 函数()21f x ax x =++的图象恒在()2g x x ax =+的图象上方,则a 的范围是()1,5D. 已知111222,,,,,a b c a b c 均不为零,不等式不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,则“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件【答案】BD 【解析】【分析】借助全称命题的否定的定义可得A ;借助充分条件与必要条件的关系推导可得 B ;借助作差法结合二次函数的性质计算可得C ;结合充分条件与必要条件的定义,举出相应反例可得D.【详解】对A :命题“1x ">,20x x ->”的否定是“01x $>,2000x x -£”,故A 错误;对B :由A 是B 的必要不充分条件,B 是C 的充分必要条件,可得A 是C 的必要不充分条件,由D 是C 的充分不必要条件,则A 是D 的必要不充分条件,故B 正确;对C :由题意可得()()2201f g x x x x a a x x ---++>=恒成立,即()()20111a x a x -++>-恒成立,则当1a =时,有10>恒成立,符合要求,当1a >时,()()()()2141150a a a a D =---=--<,解得()1,5a Î,当1a <时,()()20111a x a x -++>-不恒成立,故舍去,综上所述,a 的范围是[)1,5,故C 错误;对D :若“1112220a b c a b c ==<”,则“M N =”不成立,是若“M N ==Æ”,则“111222a b c a b c ==”不恒成立,故“111222a b c a b c ==”是“M N =”成立的既不充分也不必要条件,故D 正确.故选:BD .11. 已知函数()sin cos f x a x x =+的图象关于π3x =对称,下列结论中正确的是( )A. π6f x æö-ç÷èø是奇函数B. π4f æö=ç÷èøC. 若()f x 在[,]m m -上单调递增,则π03m <£D. ()f x 的图象与直线π23y x =+有三个交点【答案】AC 【解析】【分析】先函数对称性求解a ,得到()f x 的解析式.A 项,化简π2sin 6f x x æö-=ç÷èø可知为奇函数;B 项,代入解析式求值即可;C 项,利用整体角求()f x 的单调递增区间,由2ππ33m m -£-<£可得m 范围;D 项,利用导数可知直线恰为曲线在π,06æö-ç÷èø处的切线,进而可得公共点个数.【详解】因为()f x 的图象关于直线π3x =对称,所以2π(0)3f f æö=ç÷èø112-=,解得a =所以π()cos 2sin 6f x x x x æö=+=+ç÷èø,验证:当π3x =时,π23f æö=ç÷èø,()f x 取最大值,故()f x 的图象关于直线π3x =对称,满足题意;A 项,π2sin 6f x x æö-=ç÷èø,x ∈R ,由2sin()2sin x x -=-,则π6f x æö-ç÷èø是奇函数,故A 正确;B 项,由)πππcos 1444f æö=+=+=ç÷èøB 错误;C 项,π()2sin 6f x x æö=+ç÷èø,由πππ2π2π,262k x k k -+£+£+ÎZ ,解得2ππ2π2π,33k x k k -+££+ÎZ ,当0k =时,32π3π-££x ,由()f x 在[,]m m -上单调递增,则2ππ33m m -£-<£,解得π03m <£,故C 正确;D 项,π()2sin 6f x x æö=+ç÷èø的图象与直线π23y x =+均过点π,06æö-ç÷èø,由π()2cos 6f x x æö=+ç÷èø¢,则π2cos 026f æö-==ç÷èø¢,故直线π26y x æö=+ç÷èø即π23y x =+与曲线π()2sin 6f x x æö=+ç÷èø相切,如图可知()f x 的图象与直线π23y x =+有且仅有一个公共点,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知x ,y 之间的一组数据:若y ˆˆy a =+,则此曲线必过点_____________.x 14916y12.98 5.017.01【答案】(6.25,4)【解析】【分析】设t =ˆˆˆybt a =+,根据回归方程性质可得回归直线所过定点.【详解】由已知ˆˆya =,设t =ˆˆˆybt a =+,由回归直线性质可得(),t y 在直线ˆˆˆybt a =+上,又1234 2.54t +++==,1 2.98 5.017.0144y +++==,所以点()2.5,4在直线ˆˆˆybt a =+上,故点(6.25,4)在曲线ˆˆy a =上.故答案为:(6.25,4).13. 诗词是中国的传统文化遗产之一,是中华文化的重要组成部分.某校为了弘扬我国优秀的诗词文化,举办了校园诗词大赛,大赛以抢答形式进行.若某题被甲、乙两队回答正确的概率分别为11,43,且甲、乙两队抢到该题的可能性相等,则该题被答对的概率为___________.【答案】724【解析】【分析】分甲抢到题且答对和乙抢到题且答对两种情况计算即可.【详解】解:由题意,甲、乙两队抢到该题的概率均为12,该题被答对的概率为11117242324´+´=.故答案:724.14. 函数()f x 为定义在R 上的奇函数,且满足()(2)f x f x =-,若(1)3f =,则(1)(2)(50)f f f +++=L __________.【答案】3【解析】【分析】首先由函数的奇偶性和对称性,分析函数的周期性,再求值.【详解】()(2)f x f x =-Q ,(2)()f x f x \+=-,又()f x 奇函数,(2)()(),(4)(2)()f x f x f x f x f x f x \+=-=-+=-+=()f x \是周期为4的周期函数,为为()f x Q 是定义在R 上的奇函数,(0)0,(4)(0)0f f f \=\==,(2)(0)0,(3)(1)(1)3f f f f f ===-=-=-(1)(2)(3)(4)0f f f f \+++=,()()()()()12...50012123f f f f f \+++=´++=.故答案为:3.【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,属于中档题型,本题关键是能够通过对称性与周期性的关系确定函数的周期,进而确定函数值的变化特点.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数2111222f x x x æö-=--ç÷èø.(1)求函数()f x 的解析式;(2)对任意的实数1,22x éùÎêúëû,都有()113222f x x ax ³+-恒成立,求实数a 的取值范围.【答案】(1) ()()2471f x x x x R =++Î;(2) (],7a Î-¥.【解析】【详解】试题分析:()1用换元法令112t x =-来求函数()f x 的解析式(2)由(1)得()f x 的解析式代入,分离含参量123a x x æö£++ç÷èø,求出实数a 的取值范围解析:(1)令11222t x x t =-Þ=+∴()()()21222222f t t t =+-+- 2471t t =++即:∴()()2471f x x x x R =++Î.(2)由()11312222f x x ax ³+-Þ ()21347122x x x ax ++³+-即:2232ax x x £++又因为:1,22x éùÎêúëû,∴123a x x æö£++ç÷èø令()123g x x x æö=++ç÷èø,则:()min a g x £又()g x 在1,12x éùÎêúëû为减函数,在[]1,2x Î为增函数.∴()()min 17g x g ==∴7a £,即:(],7a Î-¥.点睛:在解答含有参量的恒成立问题时,可以运用分离含参量的方法,求解不等式,注意分类讨论其符号,最后求解结果.16. 记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知)()()sin sin sin a A b c B C -=+-.(1)求角C ;(2)若ABC V 外接圆的半径为2,求ABC V 面积的最大值.【答案】(1)π6C =(2)2+【解析】【分析】(1)运用正弦定理实现边角转化,结合余弦定理进行求解即可;(2)根据正弦定理,结合外接圆的半径可以求出2c =,根据三角形面积公式、利用重要不等式进行求解即可.【小问1详解】由已知及正弦定理可得)()()a a b c b c -=+-,整理得222a b c +-=,222cos 2a b c C ab +-\==,()π0,π,6C C Î\=Q .【小问2详解】ABC QV 外接圆的半径为2,4sin cC\=,得222,4c a b =\+=,又(222,42a b ab ab +³\£,当且仅当a b ==时,等号成立,(111sin 422222ABC S ab C \=£´+´=+V ,V面积的最大值为2+.即ABC17. 为响应国家使用新能源的号召,促进“碳达峰碳中和”的目标实现,某汽车生产企业在积极上市四款新能源汽车后,对它们进行了市场调研.该企业研发部门从购买这四款车的车主中随机抽取了50人,让车主对所购汽车的性能进行评分,每款车的性能都有1分、2分、3分、4分、5分五个等级,各评分及相应人数的统计结果如下表.汽车款式合计汽车性能基础版豪华版一般优秀合计性能评分12345汽车款式基础版122310基础版基础版244531豪华版113541豪华版豪华版200353(1)求所抽车主对这四款车性能评分的平均数和第90百分位数;(2)当评分不小于4时,认为该款车性能优秀,否则认为性能一般.根据上述样本数据,完成上面列联a=的独立性检验,能否认为汽车的性能与款式有关?表,并依据0.05(3)为提高这四款新车的性能,现从样本评分不大于2的基础版车主中,随机抽取3人征求意见,记X 为其中基础版1车主的人数,求X的分布列及数学期望.附:()()()()()22n ad bca b c d a c b dc-=++++.a0.100.050.010.005xa2.7063.841 6.6357.879【答案】(1)3,4.5(2)列联表见解析,依据0.05a=的独立性检验,能认为汽车的性能与款式有关;(3)分布列见解析,1【解析】【分析】(1)根据平均数公式求平均数,根据百分位数定义求第90百分位数;(2)由条件数据填写列联表,提出零假设,计算2c,比较2c与临界值的大小,确定结论;(3)由条件可得X服从超几何分布,确定其取值,求取各值的概率,可得分布列,再由期望公式求期望.【小问1详解】由题意得这四款车性能评分的平均数为1 (172931641355)350´+´+´+´+´´=;509045´%=,所以第90百分位数为50数从小到大排列的45和第46个数的平均数,由已知50数从小到大排列后的第45个数为4,第46个数为5,故第90百分位数为454.5 2+=;【小问2详解】由题意得汽车款式汽车性能基础版豪华版合计一般201232优秀51318合计252550零假设为0H :汽车性能与款式无关,根据列联表中的数据,经计算得到220.0550(2013125)505.556 3.841321825259x c ´´-´==»>=´´´.根据小概率值0.05a =的独立性检验,推断0H 不成立,即认为汽车性能与款式有关,此推断犯错误的概率不超过0.05;【小问3详解】由题意可得X 服从超几何分布,且12N =,4M =,3n =,由题意知,X 的所有可能取值为0,1,2,3,则38312C 14(0)C 55P X ===,1482123C C (1)C 2855P X ===,824312112C C (2)C 55P X ===,34312C 1(3)C 55P X === 所以X 的分布列为X123P1455285512551551428121()0123155555555E X =´+´+´+´=.18. 已知锐角ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos a c c B -=.(1)证明:2B C =;(2)若2a =,求cos 1C b c+的取值范围.【答案】(1)证明见解析 (2)33,42æöç÷èø【解析】【分析】(1)由正弦定理、两角和差的正弦公式化简得sin()sin B C C -=,进一步即可证明;(2)由题意首先求得cos C 的取值范围,进一步将目标式子cos 1C b c+转换为只含有cos C 的式子即可求解.【小问1详解】因为2cos a c c B -=,由正弦定理得sin sin 2sin cos A C C B -=,所以sin cos sin cos sin 2sin cos B C C B C C B +-=,所以()sin cos sin cos sin sin sin B C C B C B C C -=Û-=,而0π,0C πB <<<<,则B C C -=或πB C C -+=,即2B C =或B π=(舍去),故2B C =.【小问2详解】因为ABC V 是锐角三角形,所以π02π022π0π32C C C ì<<ïïï<<íïï<-<ïî,解得ππ64C <<,所以cos Ccos C <<,由正弦定理可得:sin sin b B c C =,则sin sin 22cos sin sin B C b c c C c C C=×=×=×,所以cos 12C b c =,所以cos 132C b c c+=,因为2cos a c c B -=,所以22cos 2c c C -=,所以22cos 21c C =+,所以()()234cos 132cos 21cos 13342442cos 21C C C b c c C -++====+,因为cos CÎ,所以24cos 1C -Î()1,2,所以()234cos 1cos 14C C b c -+=的取值范围是33,42æöç÷èø.19. 已知()x x a b f x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =.设()()()2f x F x f x =.(1)求a ,b 的值,并求()F x 的值域;(2)把区间()0,2等分成2n 份,记等分点的横坐标依次为i x ,1,2,3,,21i n =-L ,设()142321x g x -=-+,记()()()()()()*12321g g g g n H n x x x x n -=++++ÎN L ,是否存在正整数n ,使不等式()()F x H n ≥有解?若存在,求出所有n 的值,若不存在,说明理由.【答案】(1)答案见解析(2)存在,n =1,2或3【解析】【分析】(1)由()f x 是R 上的奇函数,且()325f =求出,a b 可得()f x 及()F x ,利用分离常量求出()F x 的值域;(2)()()113g x f x =-+得出()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,利用对称性求出()H n 可得答案.【小问1详解】因为()x x a bf x a b+=-(0a >且1a ¹)是R 上的奇函数,且()325f =,所以()()002200325a bf a b a b f a b ì+==ïï-í+ï==ï-î,解得21a b =ìí=-î,则()2121x x f x -=+,因为定义域为R ,()()21212121x x x x f x f x -----==-=-++,所以()f x 是R 上的奇函数,故2,1a b ==-,()()()2222221212221212121x x x x x x x f x F x f x -++×+==´=+-+()22212221012122x x xx x x ++×==+¹++,因为20x >,所以()221121222x xF x =+£+=+,当且仅当122xx=,即x =0时等号成立,所以()2F x <又x R Î时,()211122xxF x =+>+,所以()12F x <<,即()F x 的值域为()1,2;【小问2详解】把区间()0,2等分成2n 份,则等分点的横坐标为i ix n=,1,2,3,,21i n =-L ,()()1142211113212133x x g x f x --=-=-+=-+++,()f x 为奇函数,所以()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=,1,2,3,,21i n =-L ,所以()122221g g g g n n H n n n n n --æöæöæöæö=++++ç÷ç÷ç÷ç÷èøèøèøèøL 12122211n n n n n g g g g g g g n n n n n n n éùéùéù---+æöæöæöæöæöæöæö=+++++++ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúêúêúèøèøèøèøèøèøèøëûëûëûL 122212133333n n --=++++=L 1442443项所以()2123n H n -=<,即72n <.故存在正整数1,2n =或3,使不等式()()f x H n ³有解.【点睛】关键点点睛:第二问的解题的关键点是判断出()()113g x f x =-+,()g x 的图象关于11,3æöç÷èø对称,所以()()223i i g x g x +-=.。
湖南省三湘名校教育联盟2024-2025学年高三上学期第二次大联考(11月)数学试题(答案在最后)本试卷共4页.全卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本式卷和答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本式卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{40},{31}A xx B x x =-=-∣∣ ,则集合A B 中所含整数的个数为A.2 B.3C.4D.52.已知3i12iz -=+,则z 的虚部为A.75B.75-C.15-D.153.“202520251ab>”是“33a b >”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知()1sin 104θ︒+=-,则()sin 2110θ︒+=A.78B.18C.18-D.78-5.经研究表明:光源发射出来的粒子在没有被捕获之前属于光子,光子在离开光源后会与各种粒子撞击,其动量可能会改变,导致其速度降低,最终可能改变身份成为其他范围的粒子(如红外线粒子),不再能被人类的感光设备捕获.已知在某次光学实验中,实验组相关人员用人类感光设备捕获了从同一光源发射出来的两个光子A ,B ,通过数学建模与数据分析得知,此时刻在平面直角坐标系中它们的位移所对应的向量分别为(4,3),(2,10)A B s s == ,设光子B 相对光子A 的位移为s ,则s 在A s上的投影向量的坐标为A.43,55⎛⎫⎪⎝⎭B.(2,7)- C.5239,2525⎛⎫⎪⎝⎭ D.43,2525⎛⎫⎪⎝⎭6.已知等差数列{}n a 的前n 项和为n S ,公差为1,2d a =也为等差数列,则d 的值为A.2B.3C.4D.87.已知函数1()ln 2(1)x f x x m x m+=+≠+关于点(,4)n 中心对称,则曲线()y f x =在点(n m -,())f n m -处的切线斜率为A.14 B.74C.38D.1388.ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且πcos cos 2,3b Cc B A +==,则ABC 的内切圆半径的最大值为A.2B.3C.2D.1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知正数x ,y 满足21x y +=,则A.81xy B.1412x y+ C.22142x y +D.1(1)4x y +10.三棱台111ABC A B C -中,112AB A B =,设AB 的中点为1,E AA 的中点为1,F A E 与BF 交于点1,G A C 与1C F 交于点H ,则A.直线GH 与直线1BB 异面B.1//GH BC C.线段AE 上存在点P ,使得1//BC 平面1A PCD.线段BE 上存在点P ,使得1//BC 平面1A PC11.设函数2()e ,x f x nx n n +=-+∈N ,记()f x 的最小值为n a ,则A.122a a >- B.1n a n +C.()()n f a f n > D.n m n ma a a +>+三.填空题:本题共3小题,每小题5分,共15分.12.已知命题:“2,20x ax ax ∀∈--<R ”为真命题,则a 的取值范围是______.13.已知P 为边长为4的正六边形ABCDEF 内部及其边界上的一点,则AP AB ⋅的取值范围是______.14.三棱锥P ABC -中,AB AC AB AC ==⊥,平面PBC ⊥平面ABC ,且PB PC =.记P ABC -的体积为V ,内切球半径为r ,则21r V-的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()2cos 2,(0,π)f x x x x =+∈.(1)求()f x 的单调递减区间;(2)若()f x 在π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,求m 的取值范围.16.(本小题满分15分)记首项为1的数列{}n a 的前n 项和为n S ,且2(1)n n S n a =+.(1)探究数列n a n ⎧⎫⎨⎬⎩⎭是否为单调数列;(2)求数列{}2na n a ⋅的前n 项和nT .17.(本小题满分15分)如图,四棱柱1111ABCD A B C D -中,四边形ABCD 是菱形,四面体11A BC D 的体积与四面体111A B BC 的体积之差为12,A BD 的面积为(1)求点A 到平面1A BD 的距离;(2)若11111,,2A B A D A B A C BD =⊥=,求锐二面角11A BD C --的余弦值.18.(本小题满分17分)已知函数2()ln 2x f x ax ax x =+-在(0,)+∞上有两个极值点12,x x ,且21x x <.(1)求a 的取值范围;(2)当21(1,e)x x ∈时,证明:122eln ln e 1x x <+<+.19.(本小题满分17分)对于(2,3,)m m = 项数列{}n a ,若满足111m miii i a am ==-=-∑∑,则称它为一个满足“绝对值关联”的m 阶数列.(1)对于一个满足“绝对值关联”的m 阶数列{}n a .证明:存在,{1,2,,}i j m ∈ ,满足0i j a a <;(2)若“绝对值关联”的m 阶数列{}n a 还满足(1,2,,)i a i m λ=,则称{}n a 为“绝对值λ关联”的m 阶数列.①请分别写出一个满足“绝对值34关联”的4阶数列和满足“绝对值1关联”的5阶数列(不必论证,符合要求即可);②若存在“绝对值λ关联”的n 阶数列(2)n ,求λ的最小值(最终结果用常数或含n 的式子表示).三湘名校教育联盟•2025届高三第二次大联考•数学参考答案、提示及评分细则1.【答案】C 【解析】由题意可得{40},{31}A xx B x x =-=-∣∣ ,可得{30}A B x x =- ∣ ,故集合A B 中所含整数有3,2,1,0---,共4个,故选C.2.【答案】A 【解析】由题意可得3i (3i)(12i)32i 6i 17i 12i (12i)(12i)555z ------====++-,故17i 55z =+,其虚部为75,故选A.3.【答案】A 【解析】由202520251ab> 及指数函数的单调性可得0a b > ,令函数3()f x x =,易得()f x 单调递增,故当0a b > 时,一定有33a b >,故充分性成立,但由33a b >只能推出a b >,即必要性不成立,故“20252025a b >1 ”是“33a b >”的充分不必要条件,故选A.4.【答案】A 【解析】由题意可得()1sin 104θ︒+=-,故()()()()2sin 2110sin 90220cos 22012sin 10θθθθ︒︒︒︒︒+=++=+=-+2171248⎛⎫=--= ⎪⎝⎭,故选A.5.【答案】C 【解析】由向量(4,3),(2,10)A B s s == ,可得(2,10)(4,3)(2,7)B A s AB s s ==-=-=-,所以s 在A s 上的投影向量为218135239(4,3),55252525A A A A As s s s s s ⋅-⎛⎫⋅=⨯=⋅= ⎪⎝⎭ ,故选C.6.【答案】C 【解析】易知232222n n d S a n d n d ⎛⎫-=+-+- ⎪⎝⎭也为等差数列,则232222d n d n d ⎛⎫+-+- ⎪⎝⎭为完全平方,则2322(2)02d d d ⎛⎫---= ⎪⎝⎭,解得4d =,故选C.7.【答案】D 【解析】因为()f x 关于点(,4)n 中心对称,所以函数1()()4ln224x n g x f x n x n x m n ++=+-=++-++为奇函数,则240n -=,即2n =,且3ln 2x y x m +=++为奇函数,所以23m +=-,解得5m =-,故1()ln 5x f x x +=+-2,7x n m -=,且6()2(1)(5)f x x x '=-+-,故切线斜率为13(7)8f '=,故选D.8.【答案】B 【解析】设ABC 的内切圆半径为r ,由题意可得cos cos 2b C c B +=,由余弦定理可得2222a b c b ab +-⋅+2222222222222a c b a b c a c b c a ac a a +-+-+-⋅=+==,而11sin ()22ABC S bc A a b c r ==++ ,故2r =⋅2bcb c ++,由余弦定理可得2222cos a b c bc A =+-,则224b c bc bc =+- ,当且仅当b c =时等号成立,而4=2()3b c bc +-,则b c +=,其中4bc ,故33222bc r b c =⋅=++=(24)t t < ,故24(2)6263t r t t -=⋅=-+ .故选B.9.【答案】AC 【解析】对于A :因为21x y +=18xy ,当且仅当2x y =,即11,42x y ==时取等号,故A 正确;对于B :1424(2)8666x y x y x y x y x y y x +++=+=+++=+,当且仅当8x yy x =,即x =1,22y =时取等号,故B 错误;对于C :因为22x y +,则22142x y + ,当且仅当2x y =,即11,42x y ==时取等号,故C 正确;对于D :因为2112(1)1(1)2(1)2222x y x y x y ++⎡⎤+=⨯+⨯=⎢⎥⎣⎦,当且仅当21x y =+,即1,02x y ==时取等号,这与x ,y 均为正数矛盾,故1(1)2x y +<,故D 错误,故选AC.10.【答案】AD 【解析】如图所示,对于A ,因为1BB ⊂/平面11,BC F BB 平面1BC F B =,故1BB 与平面1BC F 的交点为B ,且是唯一的.又因为B ,G ,H 三点不共线,所以GH 不经过点B ,又GH ⊂平面1BC F ,所以直线GH 与直线1BB 没有交点,即直线GH 与直线1BB 异面,故A 正确;对于B ,因为AB 的中点为1,E AA 的中点为F ,所以点G 是1A AB 的重心,:1:2FG GB =,若1//GH BC ,则1:1:2FH HC =,事实上:()()1111111222A H A C A A AC A F A C A F λλλλ==+=+=+112AC λ ,所以H 是1FC 的中点,1:1:2FH HC =不成立,故B 错误;对于CD 选项,如图,取线段BF 的中点Q ,连接1AQ 并延长,交BE于点P ,下证1//BC 平面1A PC :由H 为1C F 的中点可知1//HQ BC ,又1BC ⊂/平面1,A PC HQ ⊂平面1A PC ,所以1//BC 平面1A PC ,故D 正确,C 错误;故选AD.11.【答案】BCD 【解析】由题意可得()e xf x n '=-,当(,ln )x n ∈-∞时,()0,()f x f x '<单调递减,当(ln ,)x n ∈+∞时,()0,()f x f x '>单调递增,故2(ln )ln n a f n n n n n ==+-.对于A :12212,62ln 2,22a a a a ==---=-2ln 20>,即122a a <-,故A 错误;对于B :设函数2()1ln ,,()2ln 1F x x x x x F x x x '+=--∈=--N ,设函数1()2ln 1,()2,1g x x x g x x x '=--=- 时,则()0()g x g x '>⇒单调递增,故()(1)10g x g =>⇒ ()0()F x F x '>⇒单调递增,故22()(1)01ln 0ln 11n F x F n n n n n n n n a n =⇒--⇒+-+⇒+ ,故B 正确;对于C :易知ln n n >,又因为()f x 在(ln ,)x n ∈+∞上单调递增,故(ln )()(1)f n f n f n <<+ ()n f a ,故()()n f a f n >,故C 正确;对于D :[ln ln()][ln n m m n a a a m n m n m n m n +--=+-+++-ln()]n m +,只需证明ln ln()0n m n m +-+>即可,而ln ln e n n m m +=,由e 1(1)x x x >+易得e n m >(1)m n m mn m n +=++,故ln ln()0n m n m +-+>,同理可得ln ln()0m n n m +-+>,故n m n a a +>+m a ,故D 正确,故选BCD .12.【答案】(8,0-]【解析】因为命题“2,20x ax ax ∀∈--<R ”为真命题,当0a =时,20-<成立,当0a ≠时,则280a a a <⎧⎨∆=+<⎩,解得80a -<<,故a 的取值范围是(8,0]-,故答案为(8,0]-.13.【答案】[-8,24]【解析】由题意可得AB 的模为4,根据正六边形的特征及投影的定义可以得到AP 在AB方向上的投影长度的取值范围是[2,6]-,由数量积定义可知AP AB ⋅ 等于AB 的模与AP 在AB 方向上的投影长度的乘积,所以AP AB ⋅的取值范围是[8,24]-,故答案为[8,24]-.14.62+【解析】设三棱锥P ABC -的高为h ,依题意,可取BC 中点O ,连接OA ,OP ,则OA =1,OB OC OP h ===,则PBC 的面积为1,2h BC h ABC ⋅= 的面积112OA BC ⋅=,由21PA PB h ==+可得PBA 的面积为2212h +,于是三棱锥P ABC -2211h h +++,由等体积可知)2211133r hh h +++=⨯,所以2222222122122h h h r h h ++++==+,故21r V-=2222123221122h h h h h ++-+-=+.设函数22211()2x f x x +=+,且0x >,则()f x '=()2222222212121212x x x x x x +=++++,当3,()0,()2x f x f x '<<单调递减,3()02x f x '>>,()f x 单调递增,所以3()622f x f =+ ,所以62h =时,21r V -取得最小值62+62.15.【解析】(1)由题意可得π()32cos 22sin 2,(0,)6f x x x x x π⎛⎫=+=+∈ ⎪⎝⎭,………………2分令π2,(0,π)6z x x =+∈,则π13π,66z ⎛⎫∈ ⎪⎝⎭,因为π13πsin ,,66y z z ⎛⎫=∈ ⎪⎝⎭的单调递减区间是π3π,22⎡⎤⎢⎥⎣⎦,…………………………………………5分且由π3π22z ,得π2π63x ,所以()f x 的单调递减区间是π2π,63⎡⎤⎢⎥⎣⎦.………………………………7分(2)当π,12x m ⎡⎤∈⎢⎥⎣⎦,则πππ2,2636x m ⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在区间π,12m ⎡⎤⎢⎥⎣⎦上的最小值为-2,……9分即sin y z =在ππ,236m ⎡⎤+⎢⎥⎣⎦上的最小值为-1,又因为π13π,66z ⎛⎫∈ ⎪⎝⎭,所以3ππ13π2,266m +< ……12分即2ππ3m < ,故m 的取值范围为2π,π3⎡⎫⎪⎢⎣⎭.……………………………………………………………13分16.【解析】(1)由题意得2(1)n n S n a =+,当2n 时,112n n S na --=,………………………………1分两式作差得112(1),(1)n n n n n a n a na n a na --=+--=,……………………………………………………3分所以11n n a a n n -=-,则数列n a n ⎧⎫⎨⎬⎩⎭为常数数列,………………………………………………………………5分无单调性,故数列n a n ⎧⎫⎨⎬⎩⎭不是单调数列.……………………………………………………………………6分(2)由(1)可得111n a a n ==,所以n a n =,故22an n n a n ⋅=⋅.……………………………………8分所以231222322n n T n =⋅+⋅+⋅++⋅ ,①……………………………………………………………10分23412122232(1)22n n n T n n +=⋅+⋅+⋅++-⋅+⋅ ,②………………………………………………12分①-②得()231112122222222(1)2,12n nn n n n T n n n +++--=++++-⋅=-⋅=---⋅- ……………14分所以1(1)2 2.n n T n +=-⋅+…………………………………………………………………………………15分17.【解析】(1)如图,连接AC 交BD 于点O ,设四棱柱1111ABCD A B C D -的体积为V Sh =(其中S 为菱形ABCD 的面积,h 为四棱柱ABCD -1111A B C D 的高),…………………………………………1分所以1ABDA 的体积为111236S h V ⋅=,同理四面体111A B BC 的体积为111236S h V ⋅=……………2分又因为四边形ABCD 是菱形,所以111122AO OC AC A C ===,所以点A 到平面1A BD 的距离为点1C 到平面1A BD 距离的一半,所以四面体11A BC D 的体积是四面体1ABDA 的体积的两倍,即13V .……4分设点A 到平面1A BD 的距离为d ,则1111233663V V V d =-==⋅………………………………5分解得3d =分(2)如图,连接1OA ,由111A B A C ⊥得1A B AC ⊥,又四边形ABCD 是菱形,所以AC BD ⊥,又11,,A B BD B A B BD =⊂ 平面1A BD ,所以AC ⊥平面1A BD ,又1AO ⊂平面1A BD ,所以1A O AC ⊥,………………………………………………………………………………………………8分又11,A B A D BO BD ==,所以1A O BD ⊥,…………………………………………………………9分又,,BD AC O BD AC =⊂ 平面ABCD ,所以1A O ⊥平面ABCD ,以点O 为原点,OA 为x 轴,OB 为y 轴,1OA 为z 轴,建立如图所示空间直角坐标系,由(1)知12V =,且菱形ABCD的面积为S =,所以h ==………………………………11分依题意,1(0,0,0),((0,1,0),(O C B C -,易得平面1A BD的一个法向量为(0,0)OC =,…………………………………………………12分设平面1BC D 的一个法向量为(,,)n a b c =,又1(0,1,0),(OB OC ==- ,所以100OB n OC n ⎧⋅=⎪⎨⋅=⎪⎩,即00b a c =⎧⎨-=⎩,取(1,0,1)n = ,…………………………………………………13分故111cos ,2||n OC n OC n OC ⋅<>===⋅ ,……………………………………………………14分故锐二面角11A BD C --的余弦值为2.…………………………………………………………………15分【评分细则】本题第二问若考生通过利用几何法来求解二面角11A BD C --的平面角为11π4A OC ∠=,或者利用余弦定理等来直接求解二面角的余弦值,只要过程合理,最终答案正确均给满分,若过程有误或证明过程不严谨酌情扣一定的分数.18【解析】(1)易得()f x 定义域为(0,),()ln f x x a x '+∞=-,显然0a ≠.…………………………1分①当0a <时,()f x '单调递增,不可能有两零点,不合题意.…………………………………………2分②当0a >时,令函数()()g x f x '=,易得()x a g x x'-=,故(0,)x a ∈时,()0,()g x g x '<单调递减(,)x a ∈+∞时,()0,()g x g x '>单调递增,……………………………………………………………4分当e a 时,有()()(1ln )0g x g a a a =- ,不可能有两零点;当e a >时,有()0,(1)10g a g <=>,由零点存在性定理可得()g x 在区间(1,)a 必有一个零点1x .……………………………………………6分()2(2ln )g a a a a =-,令函数()2ln a a a ϕ=-,则2()10a aϕ'=->,即()a ϕ单调递增,故()(e)a ϕϕ>=e 20->,即()20g a >,故()g x 在(,)a +∞上有零点2x ,综上(e,)a ∈+∞.…8分(2)依题意有()()120g x g x ==,即1122ln ln 0x a x x a x -=-=,故得12211221ln ln ln ln x x x x a x x x x -====-2121ln x x x x -,…………………………………………………………10分因此2121122111ln ln ln 1x x x x x x x x x x ==--,令21(1,e)x t x =∈.则1ln ln 1t x t =-,同理2ln ln 1t t x t =-,故12eln ln x x +=e ln 1t t t +-,欲证122eln ln e 1x x <+<+,即证112ln (e 1)e e t t t t t --<<+++,……12分令函数1()ln 2e t m t t t -=-+,函数1()(e 1)ln ,(1,e)e t n t t t t -=+-∈+,只需证明()0,()0m t n t >>即可,又22222(e)2(e 1)(1)e 1()0(e)(e)t t t m t t t t t '+-+-+-==>++,……………………………………………………14分故()m t 是增函数,故()(1)0m t m >=,又222222(e 1)(e)1e ()e 1(e)(e)t t n t t t t t t '⎛⎫+-+==+-- ⎪++⎝⎭,令函数22e ()e 1h t t t =+--,则22e ()10h t t '=->,故()h t 单调递增,故()(1)0h t h >=,………………16分因此21()()0(e)n t h t t '=>+,故()n t 单调递增,故()(1)0n t n >=,故122eln ln e 1x x <+<+得证.17分【评分细则】第一问若考生求完导后用参变分离的方法来求参数范围,只要最终答案正确均给分,第二问也可用其他方法来证明,逻辑正确,严谨可酌情给分.19.【解析】(1)因为{}n a 为满足“绝对值关联”的m 阶数列,假设0i a ,则11110m m m m i i i i i i i i a a a a====-=-=≠∑∑∑∑1(2)m m - ,不满足题意,同理若0i a ,则111101(2)m m m mi i i i i i i i a aa a m m ====-=-+=≠-∑∑∑∑ ,也不满足题意,………………………………4分所以12,,,m a a a 中必有一些数小于0,也必有一些数大于0,不妨设121,,,0,,,,0l k k m a a a a a a +>< (其中1l k m << ),故存在{1,2,,},{,1,,}i l j k k m ∈∈+ ,满足0i j a a <.………………6分(2)①一个满足“绝对值34关联”的4阶数列为:3333,,,4444--;(答案不唯一,符合要求即可)8分一个满足“绝对值1关联”的5阶数列为:222,,,1,1333--;(答案不唯一,符合要求即可)……10分②设(1,2,,)i a i n λ= ,且111n n i i i i a an ==-=-∑∑.不妨设1212,,,0,,,,0k k k n a a a a a a ++< ,其中1k n < ,并记11,k n i i i i k a x a y ==+==∑∑,为方便起见不妨设x y (否则用i a -代替i a 即可),于是得11,n n i i i i ax y a x y ===+=-∑∑,因为111n n i i i i a a n ==-=-∑∑,即()()1x y x y n +--=-,所以11,22n n y x --=,一方面有1()2n y n k λ-=- ,另一方面12n x k λ- .所以1()n n k k n λλλ--+= ,即1n n λ- ,当且仅当n k k -=,即2n k =时等号成立.………13分(i )当n 为偶数时,设*2,n s s =∈N ,则有前s 项为正数,后s 项为负数的数列111,,,n n n n n n --- ,111,,,n n n n n n ------ 是“绝对值1n n -关联”的n 阶数列,又1n n λ- ,所以λ的最小值为1n n -;……………………………………………………………………14分(ii )当n 为奇数时,设*21,n s s =+∈N ,则11(),22n n y n k x k λλ--=- 等价于21s s k λ+- 且s k λ ,即λ不小于21s s k +-与s k中的最大者.……………………………………………………15分当k s =或1s +时,两者中的最大者均为1,有1λ ,当k s <或1k s >+时,有1s k >或121s s k>+-,则有1λ>,所以取k s =或1s +时,λ可能取得最小值1,且有前s 项为正数,后1s +项为负数数列1111,1,,1,,,,111n n n n n n ------+++ 符合题意,所以λ可以取得最小值1.…………………………………………………………………………………………16分综上所述λ的最小值为()*1,21,21n n s s n n s -⎧=⎪∈⎨⎪=+⎩N .……………………………………………………17分。
奉新一中2019届高三上学期第二次月考数学(文)试卷一、选择题(每小题5分,共60分)1.已知{}{}21230A x|x ,B x|x x =>=--<,则A B ⋃=( ) A .{}11x|x x <-≥或B .{}13x|x <<C .{}3x|x >D .{}1x|x >-2.设复数Z 满足i i i Z -=+⋅2)1(-)(,则=⋅Z Z ( ) A.1 B.21C.22D.23.若011<<ba ,则下列结论不正确的是( ) A .22b a < B .2b ab < C .0<+b aD .b a b a +>+4.已知数列}{n a 为等差数列,若21062π=++a a a ,则)tan(93a a +的值为( ) A. 0 B .33C .1D .35.已知平面向量=+=-=m 23),,2(),2,1(则( ) A .(﹣1,2)B .(1,2)C .(1,﹣2)D .(﹣1,﹣2)6.已知y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥-0001m y x y x x 若1+x y 的最大值为2,则m 的值为( )A.4B.5C.8D.97.函数()()33101y log x a a =-+>≠且的图象恒过定点A ,若点A 在直线10mx ny +-=上,其中00m ,n >>,则mn 的最大值为( )A .12B .14 C. 18D .1168.若函数()()3200log x x f x g x ,x ->⎧⎪=⎨<⎪⎩,为奇函数,则()()3f g -=( )A .﹣3B .﹣2C .﹣1D .09.数列1}{1=a a n 满足且对任意的n a a a N n n n ++=∈++11都有,则}{na 1的前100项和为 A.101100 B.10099 C.100101 D.10120010.给出下列命题:①已知:的充分条件是且"1""11",,>>>∈ab b a R b a ,②已知平面向量b a ,,:“1>a ,1>b ”是“1>+b a ”的必要不充分条件, ③已知的充分不必要条件是"1""1",,22≥+≥+∈b a b a R b a ,④命题1ln 1,:00000-≤+≥∈∃x x x e R x p x 且使的否定为,:R x p ∈∀⌝都有1ln 1->+<x x x e x 且其中正确命题的个数是( )A.0B.1C.2D.311.已知,函数满足:恒成立,其中是的导函数,则下列不等式中成立的是( )A. B.C..)3()4(2.ππf f D <12. 已知函数)(x f 是定义在R 上的奇函数,当0<x 时,x e x x f )1()(+=则对任意的R m ∈,函数m x f f x F -=))(()(的零点个数至多有( ) A.3个 B.4个 C.6个 D.9个 二、填空题(每小题5分,共20分)13.若y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--001022y y x y x ,则y x z 23+=的最大值为 ;14.已知=-=∈)4cos(,2tan 20πααπα则),,( ; 15.设向量21,e e 1221==e e ,21,e e 的夹角是︒60,若212172e t e e e t ++与的夹角为钝角,则t 的取值范围为 ;16.已知函数)(其中R a ax x x g x f x ∈+==2)(,2)(。
湖南省邵阳市第二中学等多校联考2025届高三上学期9月月考数学试题一、单选题1.已知集合{1,4}A =,{|22}B x x =≥-λ,若A B ⋂=∅,则实数λ的取值范围是( )A .3,2∞⎛⎫- ⎪⎝⎭B .3,2⎡⎫+∞⎪⎢⎣⎭C .(3,)+∞D .[3,)+∞2.已知等差数列{}n a 的前n 项和为n S ,若21024a a +=,且36a =,则8S =( ) A .60 B .72 C .120 D .1443.已知()(2)3g x f x =+-是定义在R 上的奇函数,若(1)4f =,则(3)f =( ) A .10- B .4- C .2 D .34.已知过点(1,0)A 的直线l 与圆22:(2)4C x y ++=相交于M ,N 两点,若||2MN =,则l 的斜率为( )A .B .12±C .13±D .14± 5.中国冶炼铸铁的技术比欧洲早2000年左右,铸铁技术的诞生标志着真正的铁器时代的开始.现将一个表面积为236πcm 的实心铁球熔化后,浇铸成一个正四棱台形状的实心铁锭,若该铁锭的上、下底面的边长分别为和,则该铁锭的高为( ) A .3cm B .10cm 3 C .18cm 5 D .27cm 76.已知1122(,),(,)x y x y 是函数ln y x =的图象上的两个不同的点,则( )A .1212e 2y y x x ++>B .1212e 2y y x x ++<C .122212e 2y y x x ++> D .122212e 2y y x x ++< 7.已知正方体1111ABCD A B C D -的棱长为4,11134A E A B =uuu r uuu u r ,1(,[0,1])CF CB CC =+∈uu u r uu r uuu r λμλμ,若//EF 平面11A DC ,则线段EF 的长度的取值范围为( )A .B .C .D . 8.已知1a >,若(0,)∀∈+∞x ,log a a a x x >恒成立,则a 的取值范围是( ) A .1e (e ,)+∞ B .e (e ,)+∞ C .1e (1,e ) D .e (1,e )二、多选题9.已知函数π()sin(2)3f x x =-,则( )A .()f x 的最小正周期为πB .()f x 在区间π(0,)2上无最大值C .()f x 在区间ππ(,)26--上单调递减D .()f x 的图象关于直线π12x =-对称 10.在平面直角坐标系xOy 中,已知点(1,0)A ,(0,3)B ,(,3)(0)C a a ≠,(1,0)D -,ABD △,BCD △的外接圆分别为圆M 、圆N ,则下列结论正确的是( )A .直线BD 的方程为230x y -+=B .点C 恒在圆M 外C .若圆M 与圆N 的半径相等,则2a =-D .若1a =,则圆N 的圆心的横坐标为0 11.已知圆锥SO 的侧面积为3π,且母线长为底面半径的3倍,若线段MN 为底面圆O 的一条直径,P 为线段SN 的中点,Q 为圆锥底面内一动点,且1MQ =,则( )A .圆锥SOB .一质点从点P 出发沿圆锥SO 的侧面运动到点MC .与圆锥SO 的侧面和底面均相切,且球心在线段SOD .动点Q 的轨迹长度为2π3三、填空题12.已知复数1i ()1ia z a +=∈-R 在复平面内对应的点的横坐标为2,则a =. 13.若α,β满足tan tan 3=+βα,且π6βα=+,则cos cos αβ=.14.已知平面向量OA u u u r ,OB u u u r ,OC u u u r 满足||OA =uu r ||4OB =u u u r ,5π,6OA OB 〈〉=u u u r u u u r ,且()()3OC OA OC OB -⋅-=uu u r uu r uu u r uu u r ,若||AC ≤uuu r λ恒成立,则实数λ的最小值为.四、解答题15.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()()30a b c a b c ab +++--=.(1)求C ;(2)若π2C A <<,求a b c +的取值范围. 16.如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,1AB AC ⊥,11122AB AC AA A B ===,M 是棱BC 的中点.(1)求证:1AB ⊥平面11A MC ;(2)求二面角11A MC B --的正弦值.17.已知F 是椭圆22:143x y C +=的右焦点,过点F 作两条相互垂直的动直线1l 和2l ,1l 与C 交于A ,B 两点,2l 与C 交于D ,E 两点.(1)若//AD x 轴,求||AD ;(2)设M ,N 分别为线段AB ,DE 的中点,求证:直线MN 过定点4,07P ⎛⎫ ⎪⎝⎭. 18.已知函数21()2e ()2x f x m x =--,2()()ln 2g x f x x x x =--. (1)若32m =,求曲线()y f x =在点(0,(0))f 处的切线方程. (2)若()g x 有两个极值点a ,()b a b <.(i )证明:e 1m >-;(ii )证明:1ab <.19.已知P ,Q ∈Z ,若方程20x Px Q -+=有两个不相等的非零实数根a ,b ,设n n n a b u a b -=-,n v =11n n a b --+,其中*n ∈N ,称数列{}n u 和{}n v 为方程20x Px Q -+=的“特征数列”.(1)若4P =,3Q =,求特征数列{}n u 的前n 项和;(2)若1P =,1Q =-,证明:2n n nv v u ++为定值; (3)从集合{1,2,3,4}中随机取一个数作为P ,从集合{}1,2,3,4----中随机取一个数作为Q ,求事件“22u ≥且6150v ≥”的概率.。
杨村三中2018-2019第一学期高三年级第二次月考(文科数学)1.已知全集5}432{1,,,,=U ,集合2}{1,=A ,集合4}{2,=B ,则集合=B A C U )(( ) A . {4} B .5}43{2,,,C .5}{3,D .5}3{2,, 2.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤+-≥-+2022022y y x y x ,则目标函数y x z +=的最大值为( )A . 7B . 6C . 5D .4 3.“1x <”是“ln(1)0x +<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.执行程序框图,该程序运行后输出的k 的值是( ) A 6 B 5 C 4 D 3 5.设20.3a =,0.32b =,0.3log 2c =,则 ( )A .a b c <<B .b c a <<C .a c b <<D .c a b << 6.下列函数中,周期为π,且在,42ππ⎛⎫⎪⎝⎭上为增函数的是( ) A .sin 2y x π⎛⎫=+⎪⎝⎭B .cos 2y x π⎛⎫=+⎪⎝⎭ C .sin 22y x π⎛⎫=+⎪⎝⎭D .cos 22y x π⎛⎫=+⎪⎝⎭7.已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A..221412x y -= B 22193x y -= C.22139x y -= D.221124x y -= 8.已知函数)(x f 的定义域为R ,且[]()⎩⎨⎧-∈-∈+=0,1,21,0,2)(22x x x x x f ,)1()1(-=+x f x f ,则第(4)题xx x f 12)(+=在区间[]3,3-上的所有实根之和为( ) A.1 B.-2 C.-8 D.8 9.i 是虚数单位,432ii+-=__________________ 10.已知2()(2)e xf x x x =-(其中e 是自 然对数的底数),()f x '为()f x 的 函数,则(0)f '的值为___________.11.已知一个正四面体的四个顶点都在同一个球面上,若此正四面体体的棱长为1,那么这个球的表面积为_______.12.已知圆C 的圆心为(01),-,直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .13.设a >b >0,则a 2+1ab +1aa -b的最小值是___________ 14 14.边长为1的菱形ABCD 中,060=∠DAB ,MD CM =,BN ND 2=,则=⋅AN AM15. 为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从C B A ,,三个区中抽取7个工厂进行调查,已知C B A ,,区中分别有18,27,18个工厂 (1)求从C B A ,,区中应分别抽取的工厂个数(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有一个来自A 区的概率16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足ca BA b C A +-=-sin sin sin sin .(1)求C ; (2)若71cos =A ,求)2cos(C A -的值.17.如图,四边形ABCD是正方形,平面ABCD⊥平面ABEF,AF BE,2//,⊥==, 1AB BE AB BEAF=.AC平面DEF;(Ⅰ)求证://(Ⅱ)求证:平面BDE⊥平面DEF;(Ⅲ)求直线BF和平面DEF所成角的正弦值.18.已知等比数列的公比,,且成等差数列. (1)求数列的通项公式;(2)记,求数列的前项和.19. 已知椭圆()2222:10x y E a b a b +=>>经过点31,2⎛⎫⎪⎝⎭,且离心率为1.2e =(1)求椭圆E 的方程;(2)设椭圆E 的右顶点为A,若直线:l y kx m =+与椭圆E 相交于M,N 两点(异于A 点),且满足MA NA ⊥,试证明直线l 经过定点,并求出该定点的坐标.20.已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()y f x =的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.1. B2.D3.B4.C5.D6.D7.C8.A9.1+2i 10.-2 11.23π 12.18)1(22=++y x 13.4 14.131215. (1)2.3.2 (2)211116.(1)由ca BA b C A +-=-sin sin sin sin 及正弦定理得:,ca b a b c a +-=-即222b ab c a -=- 由余弦定理得:212cos 222=-+=ab c b a C , 所以3π=C(II )由1cos 7A =及22sin cos 1A A += 得sin A = 49471cos 22cos 2-=-=A A1sin 22sin cos 27749A A A ==⨯= 所以()3sin 2sin 3cos 2cos 32cos 2cos πππA A A C A +=⎪⎭⎫⎝⎛-=- 9823234938214947-=⨯+⨯-=17.(Ⅰ)取的中点,连结, 因为四边形为正方形,所以为中点.则,且.由已知,且,则且OG AF =,所以四边形为平行四边形,所以,即. --------------------3分因为平面,平面,所以平面.--------------------4分(Ⅱ)因为平面平面,平面平面,且,所以平面.因为平面,所以.-------------------6分又因为四边形为正方形,所以.因为,所以平面.--------------------7分由(Ⅰ)可知,,所以⊥FG 平面BDE , 因为⊂FG 平面,所以平面⊥BDE 平面,--------------------8分(Ⅲ)作DE BH ⊥,垂足为H ,连结FH , 因为平面⊥BDE 平面,平面⋂BDE 平面DE =,所以BH ⊥平面DEF所以BF 在平面上的射影为FH ,所以BFH ∠是直线BF 和平面DEF 所成的角.--------------------10分BDE Rt ∆中, 3222=+=BD BE DE ,362322==⋅=DE BD BE BH , ABF Rt ∆中,522=+=AF AB BF ,BFH Rt ∆中,sinBH BFH BF ∠===, 故直线BF 和平面DEF 所成角的正弦值为15302.--------------------13分18.(1)根据等差数列的性质得到,,进而得到通项;(2)由第一问得到,错位想减求和即可.详解:,,又成等差数列,,,,①②-②:19.解得 m=-2k 或m=-2/7 k.易得过定点(2/7,0)20.解:2()(21)f x ax a x '=-++(0)x >. (Ⅰ)(1)(3)f f ''=,解得23a =.(Ⅱ)(1)(2)()ax x f x x--'=(0)x >.①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<, 故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ②当102a <<时,12a >,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a 上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a.③当12a =时,2(2)()2x f x x -'=, 故()f x 的单调递增区间是(0,)+∞.④当12a >时,102a<<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a 上()0f x '<,故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a.(Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. 由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---.由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-.。
渭南市尚德中学2018——2019学年度第一学期高三第二次教学质量检测数学(文)试题考试时长:100分钟 总分:120分一、选择题(每题4分,共40分)1.已知集合{}|1,A x x =<{}|31,x B x =<则 ( ) A. {}|0A B x x ⋂=< B. A B R ⋃= C. {}|1A B x x ⋃=>D. A B ⋂=∅2.若1sin 63πα⎛⎫-= ⎪⎝⎭,则3cos απ+⎛⎫⎪⎝⎭等于 ( )A. 79-B. 13-C.13D.793.设a ,b 都是非零向量,则使a |a|=b|b|成立的充分条件是 ( )A .|a |=b 且a ∥bB .a =-bC .a ∥bD .a =2b4.函数()()xx x f 21ln -+=的零点所在的大致区间是 ( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →= ( ) A.BC → B.12AD → C.AD →D.12BC →6.已知数列{}n a 的前n 项和,则19a a +等于 ( )A.19B.20C.21D.227.定义行列式运算,将函数()xf x x=的图象向左平移()0n n >个单位,所得图像对应的函数为偶函数,则n 的最小值为 ( ) A.6πB.3πC.56πD.23π8.已知函数1()||f x x x=+,则函数()y f x =的大致图象为 ( )9. 设偶函数()f x 对任意x R ∈都有()()13f x f x +=-,且当[]3,2x ∈--时, ()4f x x =,则()107.5f = ( ) A. 10B.110C. 10-D. 110-10.若函数()f x 在R 上可导, ()'()f x xf x <则 ( ) A. (1)()ef f e < B. (1)()ef f e > C. (1)()ef f e = D. (1)()f f e =二、填空题(每题5分,共20分)11. 曲线2ln y x x =-在1x =处的切线方程是__________.12. 已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是__________13.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=___. 14. 如图,正方形ABCD 中, M 、N 分别是BC 、CD 的中点,若AC AM BN λμ=+,则λμ+=__________.三、解答题(共5个小题,每题12分,共60分)15.已知||=4,|b |=8,向量a 与b 的夹角是3π,计算:(1) |2a -b | (2)若与b 垂直,求实数k 的值16.已知是一个等差数列,且,.(1)求的通项(2)求前n 项和的最大值.17.如图为),0,0)(sin()(πϕϕ<>>+=w A wx A x f 图像的一部分.(1)求函数()f x 的解析式;(2)若将函数()f x 图像向在左平移的单位后,得到函数g()x 的图像,若23)(≥x g ,求的取值范围.18.已知向量(sin ),(sin ,cos )m x x n x x ==-,设函数()f x m n =⋅. (1)求函数()f x 在3[0,]2π上的单调递增区间; (2)在ABC ∆中, ,,a b c 分别是角,,A B C 的对边, A 为锐角,若()sin(2)16f A A π+-=,7b c +=,ABC ∆的面积为求边a 的长.19.已知函数()xf x e ax =-,(0a >).(1)求()f x 的极小值为()g a 。
雅礼中学2019届高三月考试卷(二)数学(文科)第Ⅰ卷一、选择题:本大题共12个小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1. 已知命题2:,0p x R x ∀∈>,则( ) A. 命题p ⌝:2,0x R x ∀∈≤,为假命题B. 命题p ⌝:2,0x R x ∀∈≤,为真命题C. 命题p ⌝:200,0x R x ∃∈≤,为假命题D. 命题p ⌝:200,0x R x ∃∈≤,为真命题2. 已知i 是虚数单位,则41()1i i+=-( ) A. iB. i -C. 1D. —13. “上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( ) A.13B.16C.14D.1124. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A.B.C.D.5. 已知△ABC 是边长为1的等边三角形,D 为BC 中点,则(AB +AC )•(AB -DB )的值为( ) A. 32-B.32C. 34-D.346. 已知0x 是()112xf x x⎛⎫=+ ⎪⎝⎭的一个零点,()()1020,,,0x x x x ∈-∞∈,则( ) A. ()()120,0f x f x << B. ()()120,0f x f x >> C. ()()120,0f x f x ><D. ()()120,0f x f x7. 已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则91078a a a a +=+( )A. 1B. 1C. 3+D. 3-8. 函数y =||2x sin2x 的图象可能是A. B.C. D.9. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.814πB. 16πC. 9πD.274π10. 若函数()sin(2))()2f x x x πθθθ=++<的图象关于点(,0)6π对称,则()f x 的单调速增区间为( ) A. 5[,],36k k k z ππππ++∈ B. [,],63k k k z ππππ-++∈C. 7[,],1212k k k z ππππ-+-+∈ D. 5[,],1212k k k z ππππ-++∈ 11. 设函数22()()(),,()x f x x t e t x R f x b =-+-∀∈≥恒成立,则实数b 的最大值为( )A.B.12C. 1D. e12. 设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.B.23C.2D. 1第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分13. 已知函数2()2()log xa f x +=,若()20f =,则a = _____.14. 一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 15. 设ABC ∆内角,,A B C 所对的边长分别为,,a b c ,且4cos ,25B b ==,则ABC ∆面积的最大值为_______.16. 已知数列{}n a 满足11a =,()()111n n na n a n n +=+++,且2cos3n n n b a π=⋅,记n S 为数列{}n b 的前n 项和,则24S =_____.三、解答题:本大題共70分.解答应写出文字说明、证明过程或演算步骤17. 已知函数2()sin 22sin f x x x =-. (1)求函数()f x 的最小正周期;(2当[0,]2x π∈时,求函数()f x 的值域.18. 已知四棱锥P ABCD -的三视图如图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形,E 是侧棱PC 上的动点PC .(1)求证:平面PAC ⊥平面BDE ;(2)若E 为PC 的中点,求直线BE 与平面PBD 所成角的正弦值.19. 二手车经销商小王对其所经营的A 型号二手汽车的使用年数x (单位年)与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是z 关于x 的折线图.的(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,求z 关于x 的回归方程,并预测当某辆A 型号二手车使用年数为9年时售价约为多少?(,b a 小数点后保留两位有效数字) (2)基于成本考虑,该型号二手车的售价不得低于7118元,请根据(1)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:1122211()()()()nni iiii i nniii i x y nx y x x yy b xn x x x ====---==--∑∑∑∑,a y bx =-,6621147.64,139,2,ln1.460.38,ln 0.7110.34i ii i i x zx z =====≈≈-∑∑.20. 已知椭圆2222:1(0)x y E a b a b+=>>的离心率为1,2F 为左焦点,过点F 作x 轴的垂线,交椭圆E 于,A B 两点,3AB =.(1)求椭圆E 的方程; (2)过圆22127x y +=上任意一点作圆切线交椭圆E 于,M N 两点,O 为坐标原点,问:OM ON ⋅是否为定值?若是,请求出定值;若不是,请说明理由. 21. 已知函数2()(2)ln f x x a x a x =-++,其中实数0a >. (1)讨论函数()f x 的单调性;(2)设定义在D 上的函数()y h x =在点()()00,P x h x 处的切线的方程为()y g x =,当0x x ≠时,若()()0h x g x x x ->-在D 内恒成立,则称P 为()y h x =的“类对称点”当4a =时,试问()y f x =是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.的请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目如果多做,则按所做的第一个题目计分坐标系与参数方程 22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(a 为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求C 的普通方程和l 的倾斜角;(2)设点(0,2)P ,l 和C 交于A ,B 两点,求||+||PA PB . 不等式选讲23. 已知函数()223,()213f x x a x g x x =-++=++. (1)解不等式:()5g x <; (2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.雅礼中学2019届高三月考试卷(二)数学(文科)第Ⅰ卷一、选择题:本大题共12个小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1. 已知命题2:,0p x R x ∀∈>,则( ) A. 命题p ⌝:2,0x R x ∀∈≤,假命题B. 命题p ⌝:2,0x R x ∀∈≤,为真命题C. 命题p ⌝:200,0x R x ∃∈≤,为假命题D. 命题p ⌝:200,0x R x ∃∈≤,为真命题【答案】D 【解析】 【分析】命题的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.【详解】命题2:,0p x R x ∀∈>,则命题p ⌝:200,0x R x ∃∈≤,为真命题的故选D【点睛】本题主要考查了命题的否定的写法,属于基础题. 2. 已知i 是虚数单位,则41()1i i+=-( ) A. i B. i -C. 1D. —1【答案】C 【解析】 【分析】利用复数代数形式的乘除法运算即可得到结果.【详解】41()1i i +-=()2441[]12i i +==, 故选C .【点睛】本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.3. “上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( ) A.13B.16C.14D.112【答案】A 【解析】 【分析】先排好医字,共有23C 种排法,再排国字,只有一种方法. 【详解】幼童把这三张卡片进行随机排列, 基本事件总数n=23C =3,∴该幼童能将这句话排列正确的概率p=13. 故选A【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.4. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为C.2【答案】D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a .5. 已知△ABC 是边长为1的等边三角形,D 为BC 中点,则(AB +AC )•(AB -DB )的值为( ) A. 32-B.32C. 34-D.34【答案】B 【解析】 【分析】由题意得到AD ,进而由线性运算及数量积运算得到结果. 【详解】∵ABC ∆是边长为1的等边三角形,D 为BC 中点,∴AD =而()()23222AB AC AB DB AD AD AD +⋅-===故选B【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.6. 已知0x 是()112xf x x⎛⎫=+ ⎪⎝⎭的一个零点,()()1020,,,0x x x x ∈-∞∈,则( ) A. ()()120,0f x f x << B. ()()120,0f x f x >> C. ()()120,0f x f x >< D. ()()120,0f x f x【答案】C 【解析】 【分析】已知x 0是()11()2xf x x =+的一个零点,可令h (x )=1()2x ,g (x )=﹣1x,画出h (x )与g (x )的图象,判断h (x )与g (x )的大小,从而进行求解;【详解】∵已知x 0是()11()2x f x x=+的一个零点,x 1∈(﹣∞,x 0),x 2∈(x 0,0),可令h (x )=1()2x ,g (x )=﹣1x,如下图:当0>x >x 0,时g (x )>h (x ),h (x )﹣g (x )=112xx ⎛⎫+ ⎪⎝⎭<0;当x <x 0时,g (x )<h (x ),h (x )﹣g (x )=112xx⎛⎫+ ⎪⎝⎭>0; ∵x 1∈(﹣∞,x 0),x 2∈(x 0,0), ∴f (x 1)>0,f (x 2)<0, 故选C .【点睛】函数零点的求解与判断(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.7. 已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则91078a a a a +=+( )A. 1+B. 1C. 3+D. 3-【答案】C 【解析】试题分析:由已知3122a a a =+,所以21112a q a a q =+,因为数列{}n a的各项均为正,所以1q =,2229107878783a a a q a q q a a a a ++===+++C .考点:等差数列与等比数列的性质.8. 函数y =||2x sin2x 的图象可能是A. B.C. D.【答案】D 【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令||()2sin 2x f x x =, 因为,()2sin 2()2sin 2()xx x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B; 因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.9. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.814πB. 16πC. 9πD.274π【答案】A 【解析】【详解】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R ,在Rt △1AOO 中,1AO =由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积10. 若函数()sin(2))()2f x x x πθθθ=++<图象关于点(,0)6π对称,则()f x 的单调速增区间为( )A. 5[,],36k k k z ππππ++∈ B. [,],63k k k z ππππ-++∈C. 7[,],1212k k k z ππππ-+-+∈ D. 5[,],1212k k k z ππππ-++∈ 【答案】C 【解析】 【分析】利用两角和的正弦公式化成标准形式,根据图象关于点06π⎛⎫⎪⎝⎭,对称,求出θ的值,然后根据正弦函数的单调增区间求函数f (x )的单调增区间.【详解】f (x )=sin (2x+θ)(2x+θ), =2sin (2x+θ+3π), ∵图象关于点06π⎛⎫ ⎪⎝⎭,对称, ∴2×6π+θ+3π=kπ,(k ∈Z ) ∴θ=kπ23π-,(k ∈Z ),∵|θ|<2π,∴3πθ=,∴f (x )=2sin (2x+23π);由2222232k x k πππππ-+≤+≤+(k ∈Z ) 解得:71212k x k ππππ-+≤≤-+(k ∈Z ) ∴函数f (x )的增区间为71212k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,. 故选C .【点睛】本题考查了三角函数式的化简及三角函数的图象与性质,解题的关键是把三角函数式化成标准形式,在求θ值时要注意其范围.11. 设函数22()()(),,()x f x x t e t x R f x b =-+-∀∈≥恒成立,则实数b 的最大值为( )A.2B.12C. 1D. e【答案】B 【解析】 【分析】()f x 的几何意义是函数x y e =上的点(),x x e 到直线y x =上的点(),t t 的距离的平方【详解】()f x 几何意义是函数xy e =上的点(),xx e到直线y x =上的点(),t t 的距离的平方,当切点为()0,1P 时,切线的斜率为1,P 到直线y x =, ∴12b ≤. 故选B【点睛】不等式恒成立问题往往转化为函数的最值问题,本题解题的关键是理解函数式隐含的几何意义. 12. 设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.B.23C.2D. 1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+,可得:200023263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y =时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件||2||PM MF =,利用向量的运算可知的200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分13. 已知函数2()2()log xa f x +=,若()20f =,则a = _____.【答案】3- 【解析】 【分析】推导出f (2)=log 2(4+a )=0,由此能求出a 的值. 【详解】∵函数f (x )=log 2(x 2+a ),f (2)=0, ∴f (2)=log 2(4+a )=0, 解得a=﹣3. 故答案为﹣3.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.14. 一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【答案】12 【解析】【详解】试题分析:判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积.∵一个六棱锥的体积为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h ,则216213h h ⨯⨯∴==,2==,该六棱锥的侧面积为1622122⨯⨯⨯=. 考点:棱柱、棱锥、棱台的体积15. 设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且4cos ,25B b ==,则ABC ∆面积的最大值为_______. 【答案】3 【解析】 【分析】利用余弦定理得出ac 的最大值从而得出面积的最大值.【详解】由余弦定理可得cosB=2222a c b ac +-=2242a c ac +-=45, ∴a 2+c 2=85ac +4≥2ac ,解得ac ≤10, ∴S △ABC =12acsinB=310ac ≤3. ∴△ABC 面积的最大值是3. 故答案为3【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化变;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.16. 已知数列{}n a 满足11a =,()()111n n na n a n n +=+++,且2cos3n n n b a π=⋅,记n S 为数列{}n b 的前n 项和,则24S =_____.【答案】304 【解析】 【分析】由na n+1=(n+1)a n +n (n+1),变形为11n a n ++﹣n a n =1,利用等差数列的通项公式可得:n an,可得a n .由b n =a n cos 23n π=223n n cos π,对n 分类讨论利用三角函数的周期性即可得出. 【详解】∵()()111n n na n a n n +=+++, ∴111n n a a n n +-=+,∴数列n a n ⎧⎫⎨⎬⎩⎭是公差与首项都为1的等差数列. ∴()111na n n=+-⨯,可得2n a n =. ∵2πcos 3n n n b a =,∴22πcos 3n n b n =,令32n k =-,k *∈N , 则()()()2232232π132cos 3232k k b k k --=-=--,k *∈N , 同理可得()2311322k b k -=--,k *∈N ,()233k b k =,k *∈N . ∴()()()22232313115323139222k k k b b b k k k k --++=----+=-,k *∈N ,则()245912883042S =⨯+++-⨯=.故答案为304【点睛】本题考查了等差数列的通项公式、递推关系、三角函数的周期性,考查了分类讨论方法、推理能力与计算能力,属于中档题.三、解答题:本大題共70分.解答应写出文字说明、证明过程或演算步骤17. 已知函数2()sin 22sin f x x x =-. (1)求函数()f x 的最小正周期; (2当[0,]2x π∈时,求函数()f x 的值域.【答案】(1)π;(2)1⎡⎤-⎣⎦.【解析】 【分析】(1)由三角函数的公式化简已知函数可得f (x )2?14x π⎛⎫+- ⎪⎝⎭,易得周期; (2)由x 的范围,结合不等式的性质,一步步可得值域,先求函数的单调区间,结合函数的定义域可得答案.【详解】(1)因为()()πsin21cos2214f x x x x ⎛⎫=--=+- ⎪⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==. (2)π0,2x ⎡⎤⎢⎥⎣⎦时,ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 242x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦.∴π24x ⎛⎫⎡+∈- ⎪⎣⎝⎭.∴()f x 的值域为()1f x ⎡⎤∈-⎣⎦.【点睛】本题考查三角函数的公式的应用,涉及正弦函数的单调性以及函数值域的求解,属中档题. 18. 已知四棱锥P ABCD -的三视图如图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形,E 是侧棱PC 上的动点PC .(1)求证:平面PAC ⊥平面BDE ;(2)若E 为PC 的中点,求直线BE 与平面PBD 所成角的正弦值.【答案】(1)证明见解析;(2)6. 【解析】 【分析】(1)要证平面PAC ⊥平面BDE ,转证BD ⊥平面PAC ,即证BD AC BD PC ⊥⊥,;(2)过点E 作EH PO ⊥于H ,则EH ⊥平面PBD ,故EBH ∠为BE 与平面PBD 所成的角,解三角形即可得到结果.【详解】(1)由已知PC BC ⊥,PC DC PC ⊥⇒⊥平面ABCD , ∵BD ⊂平面ABCD BD PC ⇒⊥, 又∵BD AC ⊥,∴BD ⊥平面PAC .因BD ⊂平面EBD ,则平面PAC ⊥平面BDE . (2)法1:记AC 交BD 于点O ,连PO ,由(1)得平面PAC ⊥平面BDP ,且交于直线PO , 过点E 作EH PO ⊥于H ,则EH ⊥平面PBD , ∴EBH ∠为BE 与平面PBD 所成的角.∵EH PO OC PE ⋅=⋅,∴12EH =.∴13EH =.又BE =1sin6EBH ∠==.于是,直线BE 与平面PBD 所成角的正弦值是6. 法2:(等体积法)∵E PBD D PBE V V --=, ∴E 点到平面PBD 的距离为13.又BE =1sin6EBH ∠==.于是,直线BE 与平面PBD . 【点睛】求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.19. 二手车经销商小王对其所经营的A 型号二手汽车的使用年数x (单位年)与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是z 关于x 的折线图.(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,求z 关于x 的回归方程,并预测当某辆A 型号二手车使用年数为9年时售价约为多少?(,b a 小数点后保留两位有效数字)(2)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(1)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:1122211()()()()n ni iiii i nniii i x y nx y x x yy b xn x x x ====---==--∑∑∑∑,a y bx =-,6621147.64,139,2,ln1.460.38,ln 0.7110.34i ii i i x zx z =====≈≈-∑∑.【答案】(1)1.46万元;(2)11. 【解析】 【分析】(1)利用最小二乘估计公式计算ˆb 、ˆa ,写出z 与x 的线性回归方程,求出y 关于x 的回归方程,计算x=9时y ∧的值即可;(2)利用线性回归方程求出y ∧≥0.7118时x 的取值范围,即可得出预测结果. 【详解】(1)由题意,计算()1234567 4.56x =⨯+++++=, ()13 2.48 2.08 1.86 1.48 1.1026z =⨯+++++=,且6147.64i ii x z==∑,621139i i x ==∑,利用最小二乘估计公式计算616222147.646 4.52 6.360.36139ˆ6 4.517.5i i i i i x z nxz b x nx==--⨯⨯===-≈--⨯-∑∑, ∴20.36ˆˆ 4.5 3.62a z bx=-=+⨯=, ∴z 关于x 的线性回归方程是0.36 3.6ˆ2zx =-+, 又ln z y =,∴y 关于x 的回归方程是0.36 3.62ˆx y e -+=;令9x =,解得0.369 3.62.6ˆ14ye -⨯+=≈,即预测当某辆A 型号二手车使用年数为9年时售价约1.46万元.(2)当0.18ˆ71y≥时,0.36 3.62ln0.71180.340.7118x e e e -+-≥==, ∴0.36 3.620.34x -+≥-,解得11x ≤,因此预测在收购该型号二手车时车辆的使用年数不得超过11年. 【点睛】求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)求系数ˆb:公式有两种形式,即()()()1122211ˆn n i i i i i i n n i i i i x x y y x y nxyb x nx x x ====∑--∑-==∑-∑-.当数据较复杂时,题目一般会给出部分中间结果,观察这些中间结果来确定选用公式的哪种形式求ˆb ; (3)求ˆa: ˆˆa y bx =-; (4)写出回归直线方程ˆˆˆybx a =+. 20. 已知椭圆2222:1(0)x y E a b a b+=>>的离心率为1,2F 为左焦点,过点F 作x 轴的垂线,交椭圆E 于,A B 两点,3AB =.(1)求椭圆E 的方程; (2)过圆22127x y +=上任意一点作圆的切线交椭圆E 于,M N 两点,O 为坐标原点,问:OM ON ⋅是否为定值?若是,请求出定值;若不是,请说明理由.【答案】(1)22143x y +=;(2)0. 【解析】 【分析】(1)根据椭圆的离心率及通径公式,即可求得a 和b 的值,求得椭圆方程; (2)对k 分类讨论,利用设而不求法即可得到OM ON ⋅为定值.【详解】(1)∵离心率为12,则12c a =.∴2234b a =.∵3AB =,∴223b a=.∴24a =,23b =.则椭圆E 的标准方程为22143x y +=.(2)当切线斜率不存在时,取切线为x =代入椭圆方程是M,N,或M,N .∴1207OM ON ⋅==, 同理,取切线为x =0OM ON ⋅=. 当切线斜率存在时,设切线y kxb =+,则d ==()227121b k =+. ①联立()222223484120143y kx b k x kbx b x y =+⎧⎪⇒+++-=⎨+=⎪⎩. 设()11,M x y ,()22,N x y ,则122212283441234kb x x kb x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩②③ ()()()()221212*********x x y y x x kx b kx b k x x x x kb b +=+++=++++, ④把①②③代入④得12120x x y y +=,0OM ON ⋅=. 综合以上,OM ON ⋅为定值0. 【点睛】求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 21. 已知函数2()(2)ln f x x a x a x =-++,其中实数0a >. (1)讨论函数()f x 的单调性;(2)设定义在D 上的函数()y h x =在点()()00,P x h x 处的切线的方程为()y g x =,当0x x ≠时,若()()0h x g x x x ->-在D 内恒成立,则称P 为()y h x =的“类对称点”当4a =时,试问()y f x =是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.【答案】(1)①当2a =时,()f x 的单调递增区间为()0,∞+;②当2a >时,()f x 的单调递增区间为()0,1和,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭;③当02a <<时,()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭和()1,+∞,单调递减区间为,12a ⎛⎫⎪⎝⎭;(2)见解析. 【解析】【分析】(1)f (x )的定义域是(0,+∞),求出函数的导数,对a 分情况进行讨论,(2)当a=4时,f (x )=x 2﹣6x+4lnx ,求出f′(x )=2x +4x﹣6,得到令φ(x )=f (x )﹣g (x )=x 2﹣6x+4lnx ﹣(2x 0+04x ﹣6)(x ﹣x 0)+20x ﹣6x 0+4lnx 0,求出函数φ(x )的导数,再通过讨论x 的范围得出结论. 【详解】(1)()f x 的定义域是()0,+∞.()()()()()2222122x a x a x a x a f x x a x x x-++-'-=-++==. ①当12a =,即2a =时,()()2210x f x x-'=≥, ∴()f x 的单调递增区间为()0,+∞. ②当12a >,即2a >时,由()0f x '>得01x <<或2a x >,由()0f x '<得12a x <<, ∴()f x 的单调递增区间为()0,1和,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭. ③当12a <,即02a <<时,由()0f x '>得02a x <<或1x >,由()0f x '<得12a x <<. ∴()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭和()1,+∞,单调递减区间为,12a ⎛⎫ ⎪⎝⎭. (2)当4a =时,()264ln f x x x x =-+,()426f x x x+'=-, ()()200000042664ln y g x x x x x x x x ⎛⎫==+--+-+ ⎪⎝⎭.令()()()()22000000464ln 2664ln x f x g x x x x x x x x x x x ϕ⎛⎫=-=-+-+---+- ⎪⎝⎭, 则()00x ϕ=.()()()000000044222262621x x x x x x x x x x x x x x ϕ⎛⎫⎛⎫⎛⎫=+--+-=--=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()00022x x x x x x -⎛⎫=- ⎪⎝⎭,当00x <<()x ϕ在002,x x ⎛⎫ ⎪⎝⎭上单调递减. ∴当002,x x x ⎛⎫∈ ⎪⎝⎭时,()()00x x ϕϕ<=,从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-.当0x ()x ϕ002,x x ⎛⎫ ⎪⎝⎭上单调递减. ∴当002,x x x ⎛⎫∈ ⎪⎝⎭时,()()00x x ϕϕ>=,从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-.∴当()x ∈⋃+∞时,()y f x =不存在“类对称点”.当0x ()(22x x x ϕ'=, ∴()x ϕ在()0,+∞上是增函数,故()00x x x ϕ>-.所以当0x =()y f x =存在“类对称点”.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目如果多做,则按所做的第一个题目计分坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(a 为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求C 的普通方程和l 的倾斜角;(2)设点(0,2)P ,l 和C 交于A ,B 两点,求||+||PA PB . 【答案】(1) 2219x y +=.4π.(2) ||||5PA PB +=. 【解析】【分析】(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点(0,2)P 在直线l 上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【详解】(1)3cos ,sin ,x y αα=⎧⎨=⎩消去参数α得2219x y +=, 即C 的普通方程为2219x y +=.由sin 4πρθ⎛⎫-= ⎪⎝⎭,得sin cos 2ρθρθ-=,(*) 将cos sin x y ρθρθ=⎧⎨=⎩,代入(*),化简得+2y x =, 所以直线l 的倾斜角为4π. (2)由(1),知点(0,2)P 在直线l 上,可设直线l 的参数方程为cos 42sin 4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),即222x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2219x y +=并化简,得25270t ++=,245271080∆=-⨯⨯=>,设A ,B 两点对应的参数分别为1t ,2t ,则120t t +=<,122705t t =>, 所以10t <,20t <,所以()1212||||5PA PB t t t t +=+=-+=. 【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算.不等式选讲23. 已知函数()223,()213f x x a x g x x =-++=++.(1)解不等式:()5g x <;(2)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.【答案】(1)3122x x ⎧⎫-<<⎨⎬⎩⎭;(2){|0a a ≥或}6a ≤-. 【解析】【分析】(1)利用||x ﹣1|+2|<5,转化为﹣7<|x ﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f (x )}⊆{y|y=g (x )},通过函数最值,列出不等式求解即可.【详解】(1)由2135x ++<,得52135x -<++<,所以8212x -<+<,解不等式得321x -<<,即3122x -<<, 所以原不等式的解集是3122x x ⎧⎫-<<⎨⎬⎩⎭. (2)因为对任意的1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 所以(){}(){}y y f x y y g x =⊆=, 又()()2232233f x x a x x a x a =-++≥--+=+,()2133g x x =++≥, 所以33a +≥,解得0a ≥或6a ≤-, 的所以实数a 的取值范围是{|0a a ≥或}6a ≤-.【点睛】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用,属于中档题.。
金华2024学年第一学期高三9月月考数学试题卷(答案在最后)命题:高三数学组校对:高三数学组一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|(1)(2)0},{1,0,1,2,3}A x x x B =--≤=-,则A B = ()A.{}1,0,3- B.{}1,0,1- C.{}1,2 D.{}2,3【答案】C 【解析】【分析】解不等式化简集合A ,利用交集的定义直接求解即得.【详解】依题意,集合{|(1)(2)0}{|12}A x x x x x =--≤=≤≤,而{1,0,1,2,3}B =-,所以{}1,2A B = .故选:C2.已知复数()i 17i z =-,则z =()A.7i -+B.7i-- C.7i+ D.7i-【答案】D 【解析】【分析】根据复数乘法运算和共轭复数概念可得.【详解】因为()i 17i 7i z =-=+,所以7i z =-.故选:D3.函数π()cos sin 4f x x x ⎛⎫=+ ⎪⎝⎭的最小正周期是()A.π4 B.π2C.πD.2π【答案】C 【解析】【分析】利用三角恒等变换得到()1πsin 2244f x x ⎛⎫=+-⎪⎝⎭,利用2πT ω=求出最小正周期.【详解】由余弦和角公式、倍角公式、降幂公式可得()2ππ22cos cos sin sinsin cos sin 4422f x x x x x x x ⎛⎫=-=- ⎪⎝⎭()1cos 21πsin 2sin 2cos 2sin 242244244x x x x x -⎛⎫=-⋅=+-+- ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.故选:C4.比较两组测量尺度差异较大数据的离散程度时,常使用离散系数,其定义为标准差与均值之比.某地区进行调研考试,共10000名学生参考,测试结果(单位:分)近似服从正态分布,且平均分为57.4,离散系数为0.36,则全体学生成绩的第84百分位数约为()附:若随机变量Z 服从正态分布()2,,()0.68N P Z μσμσ-<≈.A.82B.78C.74D.70【答案】B 【解析】【分析】先根据题意计算标准差,从而得到正态分布()257.4,20.664N ,再利用正态密度曲线的轴对称性和百分位数的定义进行求解即可.【详解】根据题意得标准差为57.40.3620.664⨯=,所以测试结果(单位:分)近似服从正态分布()257.4,20.664N ,又因为0.6884%0.52=+,且()0.68P Z μσ-<≈,所以全体学生成绩的第84百分位数约为57.420.66478μσ+=+≈.故选:B .5.设抛物线()2:20C y px p =>的焦点为F ,直线l 与C 交于A ,B 两点,FA FB ⊥,2FA FB =,则l 的斜率是()A.±1B.C.D.±2【答案】D 【解析】【分析】根据抛物线的定义得到如图的抛物线,得到11,AA AF BB BF ==,可求得AH ,做1BH AA ⊥在直角三角形Rt ABH △中,可求得BH ,结合斜率的定义进行求解即可【详解】下图所示为l 的斜率大于0的情况.如图,设点A ,B 在C 的准线上的射影分别为1A ,1B ,1BH AA ⊥,垂足为H .设22FA FB a ==,0a >,则AB =.而11AH AA BB AF BF a =-=-=,所以2BH a ==,l 的斜率为2BH AH=.同理,l 的斜率小于0时,其斜率为2-.另一种可能的情形是l 经过坐标原点O ,可知一交点为O ,则FO FA ⊥,可求得2FA FO p ==,可求得l 斜率为2FA FO=,同理,l 的斜率小于0时,其斜率为2-.故选:D6.某地响应全民冰雪运动的号召,建立了一个滑雪场.该滑雪场中某滑道的示意图如下所示,A 点、B 点分别为滑道的起点和终点,它们在竖直方向的高度差为20m .两点之间为滑雪弯道,相应的曲线可近似看作某三次函数图像的一部分.综合考安全性与趣味性,在滑道的最陡处,滑雪者的身体与地面约成43~48 的夹角.若还要兼顾滑道的美观性与滑雪者的滑雪体验,则A 、B 两点在水平方向的距离约为()A.13mB.19mC.23mD.29m【答案】D 【解析】【分析】以滑道的最陡处为原点O 建立平面直角坐标系,由题意可知,O 为AB 的中点,设三次函数的解析式为()32f x ax bx cx =++,其中0a ≠,设点()0,10A x -,则()0,10B x -,在滑道最陡处,设滑雪者的身体与地面所成角为α,由题意得出0b =,()()()300020010tan 1030f c f x ax cx f x ax c α⎧==-⎪⎪=+=-'⎨=+='⎪⎪⎩,求出02x ,即可得解.【详解】以滑道的最陡处为原点O 建立平面直角坐标系,由题意可知,O 为AB的中点,设三次函数的解析式为()32f x ax bx cx =++,其中0a ≠,设点()0,10A x -,则()0,10B x -,()232f x ax bx c '=++,在滑道最陡处,0x =,则()f x '的对称轴为直线0x =,则03ba-=,可得0b =,则()23f x ax c '=+,()3f x ax cx =+,在滑道最陡处,设滑雪者的身体与地面所成角为α,则()sin cos 120tan 2sin tan cos 2f c παπααπααα⎛⎫+ ⎪⎛⎫⎝⎭'==+==-=- ⎪⎛⎫⎝⎭+ ⎪⎝⎭,所以,()3tan x f x ax α=-,()213tan f x ax α'=-,由图可知()()2003000130tan 10tan f x ax x f x ax αα⎧=-=⎪⎪⎨='⎪-=-⎪⎩,可得0230tan x α=,4348α<< ,则()0230tan 29m x α=≈.故选:D.7.设,,A B C 三点在棱长为2的正方体的表面上,则AB AC ⋅的最小值为()A.94-B.2- C.32-D.43-【答案】B【解析】【分析】建立空间直角坐标系,不妨假设A 在平面xOy 中,设()12,,0A a a ,()123,,B b b b ,()123,,C c c c ,()112,,0B b b 和()112,,0C c c 分别是点B ,C 在平面xOy 上的投影,利用向量不等式可得:()211113311114AB AC AB AC b c AB AC AB AC +⋅+≥⋅≥-⋅≥-,即可求解【详解】将正方体置于空间直角坐标系O xyz -中,且A 在平面xOy 中,点O 和点()2,2,2的连线是一条体对角线.设()12,,0A a a ,()123,,B b b b ,()123,,C c c c ,()112,,0B b b 和()112,,0C c c 分别是点B ,C 在平面xOy 上的投影.可得()130,0,B B b = ,()130,0,C C c = ,110AB C C ⋅= ,110AC B B ⋅= 则()()111111111111AB AC AB B B AC C C AB AC AB C C AC B B B B C C⋅=+⋅+=⋅+⋅+⋅+⋅ 1133AB AC b c =⋅+uuu r uuu r,因为()211113311114AB AC AB AC b c AB AC AB AC +⋅+≥⋅≥-⋅≥-,当且仅当点C 为11B C 的中点时,等号成立,可得()2211111244AB AC B C +-=-≥- ,所以2AB AC ⋅≥-,当()1,1,0A ,11222b c b c -=-=,且330b c =时等号成立.故选:B【点睛】关键点点睛:本题形式简洁,但动点很多,且几乎没有约束条件,这时就需要学生对于动点所在的位置进行分类讨论,讨论的顺序、对于对称性的使用都对学生提出了很高的要求.从几何角度来看,点B ,C 不会位于A 所在面的一侧,故如果采用坐标形式计算数量积,一定会有一项是非负的,且可以取到0.找到这一突破口后,即可将问题转化为平面向量的问题,也就很容易得到结果了.8.已知数列{}n a 满足1122n n n a a a ++<<+,11a =,n S 是{}n a 的前n 项和.若2024m S =,则正整数m 的所有可能取值的个数为()A.48B.50C.52D.54【答案】D 【解析】【分析】根据11n n a a ++<可得11n n a a +<-,由累加迭代法可得n a n >,进而可得()14046m m +<,由122n n a a +<+得252,3n n a n -<⨯≥,进而根据等比数列的求和可得406225m <,两种情况结合可得1063,m ≤≤进而可求解.【详解】由11n n a a ++<,得11n n a a +<-,由累加法,当2n ≥时,=−K1+K2+⋅⋅⋅+211>1+1+⋅⋅⋅+1=,因此=1+2+⋅⋅⋅+>1+2+⋅⋅⋅+=2024>所以()14048m m +<,当63m =时,()14032m m +=,故63m ≤;由122n n a a +<+,得()2221321122222222222,a a a a a a <+⇒<+<++=++所以()2233243112222222222a a a a <+<+++=++,以此类推,得1122212222252,3n n n n n n n a a n -----<++=+=⨯≥,因此()12212145222m m m S a a a -<++⋅⋅⋅+<++++⋅⋅⋅+,即()2121220245552512m m ---<+⨯=⨯--,得1202925m ->;又892256,2512==,所以19m -≥,即10m ≥;综上可知,1063m#,故满足条件的正整数m 所有可能取值的个数为6310154-+=个.故选:D【点睛】关键点点睛:本题关键在于利用不等式1122n n n a a a ++<<+将数列的通项公式通过放缩法和累加法可求得n a n >且252,3n n a n -<⨯≥,再由2024m S =解不等式即可得出正整数m 的所有可能取值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()1,0A -,()3,2B,()2,1C -,ABC V 的外接圆为M ,则()A.点M 的坐标为()1,1- B.M 的面积是5πC.点()4,3在M 外D.直线23y x =-与M 相切【答案】BC 【解析】【分析】根据垂直平分线计算交点得到圆心为()1,1,再计算半径为R =个选项得到答案.【详解】()1,0A -,()3,2B 的垂直平分线的斜率满足:131220AB k k +=-=-=--,()1,0A -,()3,2B 的中点为()1,1,故垂直平分线方程为()21123y x x =--+=-+;同理可得()3,2B,()2,1C -的垂直平分线方程为:1433y x =-+,231433y x y x =-+⎧⎪⎨=-+⎪⎩,两条垂直平分线的交点为:()1,1,故圆心为()1,1,R ==,圆方程为()()22115x y -+-=.对选项A :点M 的坐标为()1,1,错误;对选项B :M 的面积是2π5π⨯=,正确;对选项C :()()224131135-+-=>,正确;对选项D :M到直线的距离5d ==<,相交,错误.故选:BC10.连续投掷一枚均匀的骰子3次,记3次掷出点数之积为X ,掷出点数之和为Y ,则()A.事件“X 为奇数”发生的概率18B.事件“17Y <”发生的概率为5354C.事件“2X =”和事件“4Y =”相等D.事件“4X =”和事件“Y =6”独立【答案】ABC 【解析】【分析】利用相互独立事件、对立事件的概率公式计算判断AB ;写出事件的所有基本事件判断C ;利用相互独立事件的定义判断D.【详解】对于A ,事件“X 为奇数”等价于“3次掷出的点数都为奇数”,其发生的概率为311()28=,A 正确;对于B ,事件“17Y <”的对立事件为“17Y =或18Y =”,而“18Y =”等价于“3次掷出的点数均为6”,其概率为311(6216=,“17Y =”等价于“掷出的3个点数中有2个6和1个5”,其概率为13311C (672=,因此()11531712167254P Y <=--=,B 正确;对于C ,事件“2X =”和事件“4Y =”包含相同的样本点(2,1,1,(1,2},1,(1),1,2)),因此是相等事件,C 正确;对于D ,事件“4X =”等价于“3次掷出的点数中有2个1和1个4,或者2个2和1个1”,其概率为6121636=,事件“6Y =”等价于“3次掷出的点数中有3个2,或者2个1和1个4,或者1个1,1个2和1个3”,其概率为1365216108++=,而积事件等价于“3次掷出的点数中有2个1和1个4”,其概率31152167236108=≠⨯,D 错误.故选:ABC11.设1a >,n 为大于1的正整数,函数的定义域为R ,()()()yf x f y a f x y -=-,()10f ≠,则()A.()00f =B.()f x 是奇函数C.()f x 是增函数D.()()11n f n a n f +>+【答案】AD 【解析】【分析】运用赋值判定A;运用赋值结合反证法判定B;运用特例判定C;运用赋值加累加法判定D .【详解】令y x =可知,()()()00xa f f x f x =-=,所以()00f =,A 正确;令1x =,1y =-得()()()1112f f f a--=,令1x =-,1y =得()()()112f f af --=-,则()()1220f af a+-=.若()f x 是奇函数,则()()22f f -=-,结合1a >知()20f =.而令2,1x y ==得()()()211f f af -=,所以()10f =,矛盾!,故()f x 不是奇函数,B 错误;取()()11xf x a a =-+>,则()()()yxyf x f y a a a f x y -=-=-,满足题设要求,但此时()f x 为减函数,故C 错误;由()()()211f f af -=,()()()2321f f a f -=,…,()()()11nf n f n a f +-=,累加可得()()121111n nf n a a a a f a ++-=+++=- .设()()()()1111n n n F n aa a n a na n +=---+=-+-,()()()()111110n n n F n F n a a a a a ++-=--+=-->,故()()10F n F >=,即()()11n f n a n f +>+,D 正确.故选:AD.【点睛】知识点点睛:本题考查抽象函数、函数的基本性质、函数与不等式.抽象函数作为近年来的热门考点,以形式简洁、内涵丰富而常见于各大模拟卷及高考卷.本题属于难题.三、填空题:本题共3小题,每小题5分,共15分.12.对于各数位均不为0的三位数abc ,若两位数ab 和bc 均为完全平方数,则称abc 具有“S 性质”,则具有“S 性质”的三位数的个数为__________.【答案】4【解析】【分析】先列出具有两位数,且每一位都不为0的完全平方数,然后根据题意组合即可.【详解】已知22416,525==2222636,749,864,981====经过组合可知:具有“S 性质”的组合有:16,64ab bc ==;36,64ab bc ==;64,49ab bc ==;81,16ab bc ==,此时的三位数分别为:164,364,649,816,共4个.故答案为:413.过双曲线2213x y -=的一个焦点作倾斜角为60o 的直线,则该直线与双曲线的两条渐近线围成的三角形的面积是__________.【答案】2【解析】【分析】求出过焦点的直线方程和渐近线方程后可求三角形的面积.【详解】由双曲线的对称性不妨设倾斜角为60o的直线过右焦点,由双曲线2213x y -=可得渐近线方程为3y x =±,双曲线的半焦距为2c =,故右焦点坐标为()2,0F ,过倾斜角为60o的直线方程为)2y x =-,由)23y x y x ⎧=-⎪⎨=⎪⎩可得交点坐标为(A ,由)233y x y x ⎧=-⎪⎨=-⎪⎩可得交点坐标为3,22B ⎛⎫- ⎪ ⎪⎝⎭,倾斜角为60o的直线与双曲线的两条渐近线围成的三角形的面积为12222⎛⎫⨯--= ⎪ ⎪⎝⎭,故答案为:2.14.已知四面体ABCD 各顶点都在半径为3的球面上,平面ABC ⊥平面BCD ,直线AD 与BC 所成的角为90︒,则该四面体体积的最大值为_________________.【答案】【解析】【分析】根据给定条件,探求四面体体积的表达式,并确定体积最大时四面体的结构特征,结合球半径、球心O 到平面ABC 和平面BCD 的距离及BC 长表示出最大体积的关系式,再利用均值不等式、导数求最值求解作答.【详解】在ABC V 中,过A 作AH BC ⊥于H ,连接DH ,因为AD BC ⊥,,,AH AD A AH AD =⊂ 平面ADH ,则⊥BC 平面ADH ,显然DH ⊂平面ADH ,有DH BC ⊥,而平面ABC ⊥平面BCD ,则90AHD ∠= ,四面体ABCD 的体积1136AHD V S BC BC AH DH =⋅=⋅⋅ ,当BC 长固定时,DH 经过DBC △的外接圆圆心2O 时,DH 最大,此时H 为BC 中点,并且AH 经过ABC V 外接圆圆心1O ,四面体ABCD 的体积V 最大,令四面体ABCD 外接球球心为O ,连接12,OO OO ,则1OO ⊥平面ABC ,2OO ⊥平面BCD ,令1122,,2OO d OO d BC a ===,显然四边形12OO HO 是矩形,于是222222129d d a OH CH OC ++=+==,且21AH d DH d ==+,21(AH DH d d ⋅=≤9d d =+21d d +=,即21d d =时取等号,此时21d d ==,929AH DH ⋅=+=,因此1(93V a ≤,令()(93f a a a =+<<,4()9f a '=+,由()0f a '=,得a =0a <<()0f a '>3a <<时,()0f a '<,因此()f a 在上单调递增,在上单调递减,所以当a =()f a 取得最大值f =V 的最大值为故答案为:【点睛】关键点睛:解决与球有关的内切或外接问题时,关键是确定球心的位置,再利用球的截面小圆性质求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知()sin f x x a x =+,曲线()y f x =在点()π,πP 处的切线斜率为2.(1)求a 的值;(2)求不等式()()1320f x f x ++->的解集.【答案】(1)1-(2)(),4-∞【解析】【分析】(1)求导,根据导数的几何意义可得参数值;(2)根据导数判断函数单调性,再结合函数的奇偶性解不等式即可.【小问1详解】由已知()sin f x x a x =+,得()1cos f x a x =+',又函数=在点()π,πP 处的切线斜率为2,即()π1cos π12f a a =+=-=',解得1a =-;【小问2详解】由(1)得()sin f x x x =-,()1cos f x x =-',则()1cos 0f x x ='-≥恒成立,即()f x 在R 上单调递增,又()()()sin sin f x x x x x f x -=---=-+=-,即函数()f x 为奇函数,由()()1320f x f x ++->,可知()()()13223f x f x f x +>--=-,即123x x +>-,解得4x <,即不等式的解集为(),4∞-.16.如图,在三棱台111ABC A B C -中,上、下底面是边长分别为4和6的等边三角形,1AA ⊥平面ABC ,设平面11AB C 平面=ABC l ,点,E F 分别在直线l 和直线1BB 上,且满足1,EF l EF BB ⊥⊥.(1)证明:⊥EF 平面11BCC B ;(2)若直线EF 和平面ABC 所成角的余弦值为63,求该三棱台的体积.【答案】(1)证明见解析(2)【解析】【分析】(1)根据线面平行的性质定理可得11B C ∥l ,再结合线面垂直的判定定理可得结果;(2)建立空间直角坐标系,分别求出平面11BCC B 与平面ABC 的法向量,利用线面角的向量求法及棱台的体积公式可得结果.【小问1详解】由三棱台111ABC A B C -知,11B C ∥平面ABC ,因为11B C ⊂平面11AB C ,且平面11AB C 平面=ABC l ,所以11B C ∥l ,因为EF l ⊥,所以EFBC ⊥,又11,EF BB BC BB B ⊥⋂=,1,BC BB ⊂平面11BCC B ,所以⊥EF 平面11BCC B ;【小问2详解】取BC 中点M ,连接AM ,以A 为原点,AM 为y 轴,1AA 为z 轴,过点A 做x 轴垂直于yOz 平面,建立空间直角坐标系如图,设三棱台的高为h ,则()()()()113,33,0,2,3,,6,0,0,1,3,,B B h CB BB h ==-设平面11BCC B 的法向量为 =s s ,则100CB n BB n ⎧⋅=⎪⎨⋅=⎪⎩ ,即6030x x zh =⎧⎪⎨-+=⎪⎩,令3z =,可得平面11BCC B 的一个法向量(0,3n h = ,易得平面ABC 的一个法向量()0,0,1m =,设EF 与平面ABC 夹角为θ,23,31m n n h m ⋅==+=,所以23cos ,31m nm n m n h ⋅==⋅+⨯由6cos 3θ=,得3sin 3θ=,由(1)知EF∥n,所以233sin cos ,|331m n h θ===+⨯,解得6h =(11923V h s s ss +'='=+.17.在ABC V 中,角,,A B C 所对的边分别为,,a b c .已知,,a b c 成公比为q 的等比数列.(1)求q 的取值范围;(2)求tantan 22A C的取值范围.【答案】(1)5151,22q ⎛⎫∈ ⎪ ⎪⎝⎭(2)135,32⎡⎪⎢⎪⎣⎭.【解析】【分析】(1)根据等比数列性质与三角形三边关系列出不等式求解即可;(2)利用正弦定理、余弦定理化简根据q 的取值范围利用对勾函数的单调性即可求解.【小问1详解】由题意知2,b aq c aq ==,根据三角形三边关系知:22222201110q q q a aq aq q qa aq aq q q aq aq a q >⎧+>⎧⎪⎪+>+>⎪⎪⇒⎨⎨+>+>⎪⎪⎪⎪+>>⎩⎩,解得11,22q ⎛⎫∈ ⎪ ⎪⎝⎭;【小问2详解】由(1)及正弦定理、余弦定理知:222222221sin 1cos 2tan tan 221cos sin 12a b c A C A C a a c b a aq aq ab c b a A C c a c b a aq aq bc +---+-+-=⋅=⋅==+-++-+++222122111111q q q q q q q q q+-==-=-++++++,由对勾函数的性质知:()11f q q q=++在1,12⎛⎫- ⎪⎪⎝⎭上单调递减,在11,2⎛⎫+ ⎪ ⎪⎝⎭上单调递增,所以())111f q q q ⎡=++∈⎣,则2131,1321q q⎡-∈⎪⎢⎪⎣⎭++,即tantan 22A C的取值范围为13,32⎡⎫-⎪⎢⎪⎣⎭.18.已知椭圆2222:1(0)x y C a b a b+=>>过点(A ,且C 的右焦点为()2,0F .(1)求C 的方程:(2)设过点()4,0的一条直线与C 交于,P Q 两点,且与线段AF 交于点S .(i )若AS FS =,求PQ ;(ii )若APS △的面积与FQS 的面积相等,求点Q 的坐标.【答案】(1)22184x y +=(2)(i )5PQ =;(ii )2⎫⎪⎪⎭或2⎛⎫ ⎪ ⎪⎝⎭.【解析】【分析】(1)将点A 坐标代入椭圆方程,再由222a b c =+的关系式即可得出结果;(2)(i )由AS FS =可知S 为AF 的中点,即可得2,2S ⎛⎫⎪ ⎪⎝⎭,求出直线PQ 的方程并与椭圆联立,利用弦长公式即可得出结果;(ii )易知直线SF 平分PFQ ∠,由两三角形面积相等以及三角形相似可证明//PF AQ ,再由点Q 在线段AF 的垂直平分线上,与C 的方程联立可得2⎫⎪⎪⎭或2⎛⎫⎪ ⎪⎝⎭.【小问1详解】根据题意有221(0)42a b a b+=>>,且由椭圆的几何性质可知22224a b c b =+=+,所以228,4a b ==.所以C 的方程为22184x y +=.【小问2详解】(i )如下图所示:若AS FS =可得,S 为AF的中点,可得2,2S ⎛⎫ ⎪ ⎪⎝⎭,即PQ的斜率为202244PQ k -==--,所以直线PQ的方程为()44y x =--;设()()1122,,,P x y Q x y ,联立直线和椭圆方程可得252404x x --=,所以1212168,55x x x x +==-,即可得5PQ===因此可得5PQ =;(ii )显然PQ 的斜率存在,设PQ 的方程为()4y k x =-,代入C 的方程有:()222221163280kx k x k +-+-=,其中Δ0>.则可得2212122216328,2121k k x x x x k k -+==++,以下证明:直线SF 平分PFQ ∠,易知AF x ⊥轴,故只需满足直线FP 与FQ 的斜率之和为0.设,FP FQ 的斜率分别为12,k k ,则:()()()()121212121212121244242222224k x k x k x x y y k k k x x x x x x x x --+-+=+=+=------++,()()1212121238224x x x x k x x x x -++=⨯-++,代入2212122216328,2121k k x x x x k k -+==++,有120k k +=,故直线AF 平分PFQ ∠,即AFP AFQ ∠=∠.因为APS △的面积等于FQS 的面积,故SA SP SF SQ =,即SA SQ SFSP=,故//PF AQ .故,AFQ AFP FAQ AQ FQ Q ∠=∠=∠⇒=在线段AF 的垂直平分线上.易知线段AF的垂直平分线为2y =,与C 的方程联立有27x =,故Q的坐标为2⎫⎪⎪⎭或2⎛⎫⎪ ⎪⎝⎭.19.设5n ≥为正整数,120n a a a <<<< 为正实数列.我们称满足j i k ja a r a a -=-(其中1≤<<≤i j k n )的三元数组(,,)i j k 为“r -比值组”.(1)若5n =,且{}n a 为等差数列,写出所有的1-比值组;(2)给定正实数r ,证明:中位数为4(即(,,)i j k 中4j =)的r -比值组至多有3个;(3)记r -比值组的个数为()n f r ,证明:2()4n n f r <.【答案】(1)(1,2,3),(1,3,5),(2,3,4),(3,4,5);(2)证明见解析;(3)证明见解析.【解析】【分析】(1)由15i j k ≤<<≤以及等差数列性质得1j i k ja a j ia a k j--==--,进而根据r -比值组的定义对i 和相应j i -的取值进行分类讨论即可得解.(2)依据题意得,i j 固定时,则至多有一个k 使得j i k ja a r a a -=-成立,接着由4j =得i 的取值有三种即可得证.(3)由,i j 固定时,则至多有一个k 使得j i k ja a r a a -=-成立,结合i 值的取法数可得j i k ja a r a a -=-的三元数组的个数为()1j g r j ≤-,同理得,j k 固定时()j g r n j ≤-,进而得(){}min ,1j g r n j j ≤--,再对n 分偶数和奇数两种情况计算()12()n n jj f r g r -==∑即可得证.【小问1详解】因为{}n a 为等差数列,设其公差为d ,若5,1n r ==,则15i j k ≤<<≤,()()1j i k ja a j i d j ia a k j dk j---===---,所以当1i =且1j i -=时,2j =,1k j -=即3k =,此时1-比值组为()1,2,3;当1i =且2j i -=时,3j =,2k j -=即5k =,此时1-比值组为()1,3,5;当1i =且3j i -=时,4j =,3k j -=即7k =,不符合;当2i =且1j i -=时,3j =,1k j -=即4k =,此时1-比值组为()2,3,4;当2i =且2j i -=时,4j =,2k j -=即6k =,不符合;当3i =且1j i -=时,4j =,1k j -=即5k =,此时1-比值组为()3,4,5;当3i =且2j i -=时,5j =,不符合;当4i =且1j i -=时,5j =,不符合;综上,若5n =且{}n a 为等差数列的所有的1-比值组为(1,2,3),(1,3,5),(2,3,4),(3,4,5).【小问2详解】因为120n a a a <<<< ,1≤<<≤i j k n ,所以当,i j 固定时,则至多有一个k 使得j i k ja a r a a -=-成立,因为4j =,所以2i =或3或4共三种取法,所以中位数为4(即(,,)i j k 中4j =)的r -比值组至多有3个.【小问3详解】对给定的()1j j n <<,满足1≤<<≤i j k n ,且j i k ja a r a a -=-①的三元数组的个数记为()j g r ,因为120n a a a <<<< ,所以当,i j 固定时,则至多有一个k 使得①成立,因为i j <,所以i 值有1j -种取法,故()1j g r j ≤-,同理,若当,j k 固定时,则至多有一个i 使得①成立,因为j k <,所以k 值有n j -种取法,故()j g r n j ≤-,所以(){}min ,1j g r n j j ≤--,当n 为偶数时,设2,N n m m *=∈,则当2j m ≤≤时,(){}min ,11j g r n j j j ≤--=-,当121m j m +≤≤-时,(){}min ,12j g r n j j n j m j ≤--=-=-,所以()()()121221()n m m n jjj j j j m f r g r g r g r --===+==+∑∑∑()()()()()2121121211221mm j j m j m j m m m -==+≤-+-=++⋯+-+-+-+⋯++⎡⎤⎡⎤⎣⎦⎣⎦∑∑()()22211224m m m m n m m m --=+=-<=,当n 为奇数时,设21,N n m m *=+∈,则当2j m ≤≤时,(){}min ,11j g r n j j j ≤--=-,当12m j m +≤≤时,(){}min ,121j g r n j j n j m j ≤--=-=+-,则有()()()()()12222121()121n mmmmn j j j j j j j j m j j m f r g r g r g r g j g m j-===+==+==+≤-++-∑∑∑∑∑()()()()()22111211221224m m m m n m m m m m -+=++⋯+-++-+-+⋯++=+==⎡⎤⎡⎤⎣⎦⎣⎦,所以综上,记r -比值组的个数为()n f r ,则2()4n n f r <.【点睛】关键点睛:求证2()4n n f r <的关键1是得出,i j 固定时至多有一个k 使得j i k j a a r a a -=-成立,从而结合i 值的取法数可得j i k ja a r a a -=-的三元数组的个数为()1j g r j ≤-,同理得,j k 固定时()j g r n j ≤-,进而得(){}min ,1j g r n j j ≤--,关键2是明确到()21j j n ≤≤-影响到,1n j j --的大小,而n 的奇偶性影响()12n jj g r -=∑的取值,进而对n 分偶数和奇数两种情况计算()12()n nj j fr g r -==∑并将()12n j j g r -=∑分成两部分计算即可得证.。
一、选择题(5×12=60)1.已知集合{{},1,,A B m B A ==⊆则m = ( )A.00或3 C.1或32.函数2cos y x x =的导数为( )A. 2'2cos sin ?y x x x x =-B. 2'2cos sin y x x x x =+C. 2'cos 2sin y x x x x =-D. 2'cos sin y x x x x =-3.已知函数()1,0,0x x f x ax x -≤⎧=⎨>⎩,若(1)(1)f f -=,则实数a 的值为( )A. 1B. 2C. 0D. 1- 4函数的图像大致是( )5.已知函数()y f x =在R 上是增函数且()()2f m f m >-,则实数m 的取值范围是( )A. (],1-∞-B. ()0,+∞C.(-1,0)D. (,1)(0,)-∞-⋃+∞6.设函数()f x 的导函数为()'f x ,且()()22'1f x x xf =+,则()'0f = ( )A. 0B. 2C. 4-D. 2-7.函数()2sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A. 1B. 12C. 32D. 18.设函数122,1,(){1log ,1x x f x x x -≤=->则满足()2f x ≤的x 的取值范围是( )A. []1,2-B. []0,2C. [)1,+∞D. [)0,+∞9.已知向量()4sin ,cos a αα=-,(1,2)b =-,若2a b ⋅=-,则22sin cos 2sin cos αααα=- ( ) A. 1 B. 1- C. 27- D. 12-10.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A. 1ω=,6πϕ=B. 1ω=,6πϕ=-C. 2ω=,6πϕ=D. 2ω=,6πϕ=-第10题11.已知,,则( )A. B.C.D.、的夹角为αβ+12.设函数()2xf x =,则下列结论中正确的是( )A. (1)(2)(f f f -<<B. ((1)(2)f f f <-<C. (2)((1)f f f <<-D. (1)((2)f f f -<<二、填空题(4×5=20)13.若集合2{|10}x ax x ++=有且只有一个元素,则实数a 的取值集合是___________;14.若非零向量a 、b ,满足a b =,()2a b b +⊥,则a 与b 的夹角为___________; 15在三角形ABC 中,若,则的值是___________;16.下列函数:①232y x x =-+;②(]2,2,2y x x =∈;③3y x =;④1y x =-.其中是偶函数的有___________;三、简答题(17题10分,18-22题每题12分) 17.已知4a =,3b =,()()23261a b a b -⋅+=. 1.求a 与b 的夹角θ; 2.求a b +;18.设全集I R =,已知集合(){}{}2230,6||0M x x N x x x =+≤=+-=1.求()I C M N ⋂2.记集合(),I A C M N =⋂已知集合{}15,|,B x a x a a R =-≤≤-∈若A B A ⋃=,求实数a 的取值范围.19. 已知函数()2sin 2x f x x =- 1.求函数()f x 的最小正周期; 2.求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.20.已知函数()22ln f x x x =-,()2h x x x a =-+.1.求函数()f x 的极值;2. 设函数()()(),k x f x h x =-若函数在[]1,3上恰有两个不同的零点,求实数a 的取值范围.21.已知向量()[],,0,,a cos sin θθθπ=∈向量()3,1.b =-1.若a b ⊥,求θ的值;2.若2a b m -<恒成立,求实数m 的取值范围.22.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且sin cos b A B =. 1.求角B 的大小;2.若3,sin 2sin b C A ==,求,a c 的值及ABC ∆的周长.参考答案一、选择题1-5 B A B C D 6-10 C C D A D 11-12 C D 1.答案:B 解析:因为,所以或若,则,满足若,解得或①若,则,满足②若,则不满足集合中元素的互异性,舍去 综上,或,故选B2.答案:A解析:函数2cos y x x =,求导得: ()22'2cos sin 2cos sin y x x x x x x x x =+-=-,故选A3.答案:B解析:因为(1)(1)f f -=,所以1(1)a --=,所以2a =,故选B 4答案: C解析: [法一]首先看到四个答案支中,A,B 是偶函数的图象,C,D 是奇函数的图象,因此先判断函数的奇偶性,因为 ,所以函数f (x )是奇函数,排除A 、B ;又x>0时,,选择C 是明显的.[法二]化为分段函数 ,画出图象,选C考点:本题考查函数的图象点评:解决本题的关键是绝对值函数化简为分段函数,或从函数的性质入手,例如奇偶性,周期性,单调性等 5.答案:D 解析: 6.答案:C 解析: 7.答案:C解析:()1cos 212sin 2226x f x x x π-⎛⎫==+- ⎪⎝⎭, 因为42x ππ≤≤,所以52366x πππ≤-≤,所以()max 13122f x =+=,故选C. 8.答案:D解析:()112{22x x f x -≤≤⇔≤或21{011log 2x x x >⇔≤≤-≤或1x >,故x 的取值范围是[)0,+∞,故选D 。
9.答案:A 解析: 10.答案:D解析:∵T π=,∴2ω= 由五点作图法知232ππϕ⨯+=∴6πϕ=-.11.答案:C 解析:2222cos sin (cos sin )0ααββ=+-+=12.答案:D解析:由函数解析式,知函数()f x 为偶函数,且在(0,)+∞上为增函数()()(,11f f f f-==,所以()()(11f f f f f -=<=<,故选D 二、填空题13.答案:{|0a a =或1}4a = 解析:14.答案:解析:由题意得()222222cos ,0a b b a b b b a b b +⋅=⋅+=〈〉+=,所以1cos ,2a b 〈〉=-,则a 、b 的夹角为120, 15、答案:解析: 在三角形ABC 中,由题设得:,即所以,,而,所以,所以,,故选A .考点:1、诱导公式;2、两角知与差的三角函数公式. 16.答案解析:①()()()232f x x x f x -=---+=,为偶函数 ②定义域(-2,2]关于原点不对称,非奇非偶函数③()()33f x x x -=-=-,为奇函数④()()1()f x x f x f x -=--≠≠-),非奇非偶函数三、解答题17.答案:1.因为()()23261a b a b -⋅+=, 所以2244361a a b b -⋅-=. 因为4a =,3b =,所以2244443cos 3361θ⨯-⨯⨯-⨯=,解得1cos 2θ=-,所以120θ=. 2. 22216243cos120913a b a a b b +=+⋅+=+⨯⨯+=, 所以13a b +=,同样可求22237a b a a b b -=-⋅+=. 解析:18.答案:1.∵(){}{}23,|03M x x =+≤=-{}2603,{2,|)N x x x =+-==-{|I C M x x R ∴=∈且3},x ≠-(){}12C M N ∴⋂=2. (){}2,I A C M N =⋂=∵,A B A B A ⋃=∴⊆,∴B =∅或{}2,B =当B =∅时,15a a ->-,得3a >;当{}2B =时,解得3a =,综上所述,所求a 的取值范围为{}|3a a ≥ 解析:19.答案:1.因为()sin f x x x =2sin 3x π⎛⎫=+ ⎪⎝⎭所以() f x 的最小正周期为2π.2.因为203x π≤≤,所以33x πππ≤+≤. 当3x ππ+=,即23x π=时, () f x 取得最小值.所以() f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值为23f π⎛⎫= ⎪⎝⎭解析:20.答案:1.由题意知()2'2f x x x=-,令()'0,f x =得1x =. ()'f x ,()f x 随x 的变化情况如下表所示:所以()f x 的极小值为()11f =,无极大值. 2.因为()()()k x f x h x =-2ln x x a =-+-, 所以()2'1k x x=-+,0x >,令()'0k x =,得2x =.当[)1,2x ∈时, ()'0k x <;当[)2,3x ∈时, ()'0k x >.故()k x 在[)1,2上单调递减,在[)2,3上单调递增,所以()()()10,{20,30,k k k ≥<≥所以22ln 332ln 3a -<<-所以实数a 的取值范围是(]22ln3,32ln3--.解析:21.答案:1.∵a b ⊥sin 0θθ-=,得tan θ=又[0,]θπ∈,∴3πθ=2.∵()22cos 1a b θθ-=+,∴2221|2|(2cos (2sin 1)88sin 2a b θθθθ⎛⎫-=-++=+ ⎪ ⎪⎝⎭ 88sin 3πθ⎛⎫=+- ⎪⎝⎭, 又∵[0,]θπ∈,∴2,333πππθ⎡⎤-∈-⎢⎥⎣⎦,∴sin 3πθ⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦, ∴2|2|a b -的最大值为16, ∴2a b -的最大值为4,又2a b m -<恒成立, ∴4m >.解析:22.答案:1.∵sin cos b A B=由正弦定理得sin sin cos B A A B =∵在ABC ∆中, sin 0,0A B π≠<<∴tanB =即=3B π;2.∵sin 2sin C A =,由正弦定理得2c a = 又222=2cos ,3,3b a c ac B b B π+-== ∴229=422cos 3a a a a π+-⋅解得a =负根舍去),2c a ∴==∴ABC ∆的周长=3a b c ++=+ 解析:。