高中数学:定积分及其应用
- 格式:doc
- 大小:264.50 KB
- 文档页数:7
高中数学中的积分与积分应用的计算技巧解析积分是数学中的一个重要概念,被广泛应用于各个领域。
在高中数学课程中,积分是一个重要的内容,它与微分一起构成了微积分的基础。
本文将详细解析高中数学中的积分与积分应用的计算技巧。
一、积分的概念与性质积分的概念源自于求导的逆运算,它表示了函数曲线下面的面积。
在高中数学中,我们主要学习了不定积分和定积分两种形式。
不定积分表示的是一个函数的原函数,它可以看作是求导运算的逆运算。
在不定积分中,我们常用的记号是∫f(x)dx,其中f(x)表示被积函数,dx表示对x进行积分。
定积分表示的是一个函数在一定区间上的累积变化量,它可以表示曲线下面的面积。
在定积分中,我们常用的记号是∫[a,b]f(x)dx,其中f(x)表示被积函数,[a,b]表示积分的区间。
积分具有一些重要的性质,比如线性性质、积分与导数的关系等。
线性性质表示积分可以分解为两个函数积分的和,即∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx。
积分与导数的关系则体现了微积分的基本思想,即导数是积分的逆运算,积分是导数的逆运算。
二、积分的基本计算技巧在高中数学中,我们接触到的主要是一些简单的函数的积分计算。
下面介绍一些常见函数的积分计算技巧:1. 幂函数的积分计算:对于幂函数的积分计算,常用的方法是使用幂函数的导函数公式。
比如对于函数f(x)=x^n,其中n是常数,它的积分结果为∫x^n dx=(1/(n+1))x^(n+1)+C,其中C为常数。
2. 指数函数的积分计算:对于指数函数的积分计算,可以利用指数函数的性质进行计算。
比如对于函数f(x)=e^x,它的积分结果为∫e^x dx=e^x+C,其中C为常数。
3. 三角函数的积分计算:对于三角函数的积分计算,可以利用三角函数的性质进行计算。
比如对于函数f(x)=sinx,它的积分结果为∫sinx dx=-cosx+C,其中C为常数。
高中数学定积分的概念及相关题目解析在高中数学中,定积分是一个重要的概念,它在数学和实际问题中都有广泛的应用。
本文将介绍定积分的概念,并通过具体的题目解析来说明其考点和解题技巧,帮助高中学生更好地理解和应用定积分。
一、定积分的概念定积分是微积分中的一个重要概念,它是对函数在一个区间上的积分结果的确定值。
定积分的符号表示为∫,下面是定积分的定义:设函数f(x)在区间[a, b]上有定义,将[a, b]分成n个小区间,每个小区间的长度为Δx,选取每个小区间中的一个点ξi,作为f(x)在该小区间上的取值点。
那么,定积分的近似值可以表示为:∫[a, b]f(x)dx ≈ Σf(ξi)Δx当n趋向于无穷大时,定积分的近似值趋向于定积分的准确值,即:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx这个准确值就是函数f(x)在区间[a, b]上的定积分。
二、定积分的考点和解题技巧1. 计算定积分的基本方法对于一些简单的函数,可以直接使用定积分的定义进行计算。
例如,计算函数f(x) = x²在区间[0, 1]上的定积分:∫[0, 1]x²dx = lim(n→∞)Σf(ξi)Δx = lim(n→∞)Σ(ξi)²Δx在这个例子中,可以将区间[0, 1]等分成n个小区间,每个小区间的长度为Δx = 1/n。
然后,选取每个小区间中的一个点ξi,可以选择ξi = i/n。
这样,定积分的近似值可以表示为:∫[0, 1]x²dx ≈ Σ(ξi)²Δx = Σ(i/n)²(1/n)当n趋向于无穷大时,可以求出定积分的准确值。
在这个例子中,计算过程如下:∫[0, 1]x²dx = lim(n→∞)Σ(i/n)²(1/n)= lim(n→∞)(1/n³)Σi²= lim(n→∞)(1/n³)(1² + 2² + ... + n²)= lim(n→∞)(1/n³)(n(n+1)(2n+1)/6)= 1/3因此,函数f(x) = x²在区间[0, 1]上的定积分的值为1/3。
某某省某某市肥城市第三中学高中数学教案定积分及其应用学案新人教A版选修2-2yy记作f(x)dx 。
即f(x)dx =)(1lim i ni n f n ab ξ∑=∞→-。
其中)(x f 称为被积函数,dx x f )(称为被积式,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为 积分上限和积分下限。
2定积分的几何意义:①若0)(≥x f ,则积分⎰badxx f )(表示如图所示的曲边梯形的面积,即S dx x f ba=⎰)(②若0)(≤x f ,则积分⎰ba dx x f )(表示如图所示的曲边梯形面积的负值,即S dx x f ba-=⎰)(③一般情况下,定积分⎰b adxx f )(表示介于x 轴、曲线()f x及b x a x ==,之间的曲边梯形面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴上方的面积等于该区间上的积分值的相反数, 3定积分的性质。
(1)⎰badx x kf )(=k ⎰ba dxx f )(。
(2)[]dx x fx f ba)()(21±⎰=。
(3)dx x f ba⎰)(= 。
4微积分基本定理:一般地,若f(x)为在][b a ,上的连续函数,且有)()(x f x F =',那么⎰=badx x f )(,这个结论叫做微积分基本定理,又叫牛顿—莱布尼兹公式,可记作⎰=badx x f )(= 。
常见求定积分的公式新知得到知识1n B.1n C.1n D.3lim n n →∞由落体的速,则落体从到0t t =所走路程为B.gtC.2012gtD.2014gt答案: 234-125+2l 4n四.精讲点拨: 例1:计算下列定积分:(1)dx x ⎰402sin π(2)。
dx x e x⎰⎪⎭⎫ ⎝⎛+2121(3)dx x ⎰-2123答案:(1)418-π(2)21e 4+ln2-21e 2 (3)21例2利用定积分求图形的面积:求由抛物线,12-=x y 直线x=2,y=0围成的图形的面积。
高中数学积分与定积分1. 引言数学中的积分与定积分是高中数学的重要内容,它们被广泛应用于微积分、物理学等许多领域。
本文将重点介绍高中数学中的积分与定积分的定义、性质和应用。
2. 积分的定义积分是微积分的重要概念,它是对函数在某个区间上的累积变化的度量。
在高中数学中,我们主要学习了定积分的概念和性质。
定积分是把曲线下的面积分成无穷小的矩形,然后对这些矩形的面积进行求和得到的极限。
3. 定积分的基本性质定积分具有一些基本的性质。
首先,定积分与原函数具有关系,定积分可以看作是函数的反导函数在区间上的表现。
其次,定积分的值与区间的选取有关,选取不同的区间可能得到不同的定积分值。
此外,定积分具有线性性质,即对于任意常数a和b,有∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx。
4. 定积分的计算方法在高中数学中,我们主要学习了用换元法和分部积分法进行定积分的计算。
换元法是通过变量代换,将原函数的变量转化为另一个新的变量,从而简化定积分的计算。
分部积分法是积分算法中的一种方法,它将一个复杂函数的积分转化为两个简单函数的积分,通过计算这两个简单函数的积分再进行求和得到最终的结果。
5. 定积分的应用定积分在实际问题中具有广泛的应用。
例如,在物理学中,定积分可以用来计算物体的质量、体积和物体受力作用下的功率等。
在经济学中,定积分可以用来计算市场供需曲线之间的面积,从而得到市场的总消费和总生产等。
6. 积分的进一步学习高中数学中所学习的积分与定积分只是微积分的基础部分,随着学习的深入,我们可以进一步学习不定积分、曲线积分等更高级的积分概念和技巧。
掌握这些更高级的积分知识将为我们在大学或进一步的研究中打下坚实的数学基础。
7. 结论通过本文对高中数学中的积分与定积分的介绍,我们可以看到它们在数学和科学领域中的重要性和应用价值。
定积分作为积分的一种重要形式,其定义、性质和计算方法都需要我们进行深入的学习与理解。
高中数学中的积分与积分应用解析积分是微积分中的重要概念之一,它在高中数学中扮演着重要的角色。
本文将重点讨论积分以及积分应用的解析方法。
一、积分的定义与性质在高中数学中,积分常常被定义为一个函数的反导数。
具体来说,设函数f(x)在区间[a, b]上连续,则函数F(x)在区间[a, b]上为f(x)的一个原函数。
则函数f(x)在区间[a, b]上的积分定义为∫[a, b]f(x)dx = F(b) -F(a)。
根据积分的定义,我们可以得出一些重要的性质。
首先,积分具有线性性质,即对于任意的常数c和函数f(x)、g(x),有∫[a, b](cf(x) +g(x))dx = c∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
其次,如果函数f(x)在某个点x=c处连续,则∫[a, a]f(x)dx = 0。
最后,如果函数f(x)在区间[a, b]上非负,则∫[a, b]f(x)dx ≥ 0。
二、积分法则在解析求解积分问题时,我们通常运用一些积分法则。
以下为常见的积分法则:1. 基本积分法则:对于函数f(x)的原函数F(x),有∫f'(x)dx = F(x) + C。
其中,C为常数。
2. 定积分法则:若F(x)是f(x)的一个原函数,则对于[a, b]上的定积分,有∫[a, b]f(x)dx = F(b) - F(a)。
3. 代换法则:当被积函数中存在复杂的部分时,可以通过代换变量来简化求解过程。
设u=g(x)是可导函数,F(u)是其原函数,则∫f(g(x))g'(x)dx = ∫f(u)du。
4. 分部积分法则:当被积函数是两个函数的积时,可以通过分部积分法则求解。
设u=u(x)和v=v(x)都是可导函数,则有∫u(x)v'(x)dx =u(x)v(x) - ∫v(x)u'(x)dx。
三、积分应用解析积分在数学的各个领域都有广泛的应用。
以下,我们将介绍一些常见的积分应用。
图1-1图1-2a =x x x x x x x i1定积分的应用微积分学是微分学和积分学的统称,它的创立,被誉为“人类精神的最高胜利”。
在数学史上,它的发展为现代数学做出了不朽的功绩。
恩格斯曾经指出:微积分是变量数学最重要的部分,是数学的一个重要的分支,它实现带科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具。
凡是复杂图形的研究,化学反映过程的分析,物理方面的应用,以及弹道﹑气象的计算,人造卫星轨迹的计算,运动状态的分析等等,都要用得到微积分。
正是由于微积分的广泛的应用,才使得我们人类在数学﹑科学技术﹑经济等方面得到了长足的发展,解决了许多的困难。
以下将讲述一下定积分在数学﹑经济﹑工程﹑医学﹑物理方面的中的一些应用。
1 定积分的概念的提出问题的提出曲边梯形的面积(如图1)所谓曲边梯形,是指由直线a x =、b x =(b a <),x 轴及连续曲线)(x f y =(0)(≥x f )所围成的图形。
其中x 轴上区间],[b a 称为底边,曲线)(x f y =称为曲边。
不妨假定0)(≥x f ,下面来求曲边梯形的面积。
由于cx f ≠)((],[b a x ∈)无法用矩形面积公式来计算,但根据连续性,任两点],[,21b a x x ∈ ,12x x -很小时,)(1x f ,)(2x f 间的图形变化不大,即点1x 、点2x 处高度差别不大。
于是可用如下方法求曲边梯形的面积。
(1) 分割 用直线1x x =,2x x =,1-=n x x (b x x x a n <<<<<-121 )将整个曲边梯形任意分割成n 个小曲边梯形,区间上分点为:b x x x x x a n n =<<<<<=-1210这里取0x a =,n x b =。
区间],[b a 被分割成n 个小区间],[1i i x x -,用i x ∆表示小区间],[1i i x x -的长度,i S ∆表示第i 块曲边梯形的面积,),,2,1(n i =,整个曲边梯形的面积S 等于n 个小曲边梯形的面积之和,即∑=∆=ni i S S 1(2)近似代替: 对每个小曲边梯形,它的高仍是变化的,但区间长度i x ∆很小时,每个小曲边梯形各点处的高度变化不大,所以用小矩形面积近似代替小曲边梯形的面积,就是,在第i 个小区间],[1i i x x -上任取一点i ξ,用以],[1i i x x -为底,)(i f ξ为高的小矩形面积i i x f ∆)(ξ,近似代替这个小曲边梯形的面积(图1-1), 即i i i x f S ∆≈∆)(ξ.(3)求和 整个曲边梯形面积的近似值为 n 个小矩形面积之和,即n S S S S ∆++∆+∆= 21=∆++∆+∆≈n n x f x f x f )()()(2211ξξξ ini ix f ∆∑=)(1ξ上式由于分割不同,i ξ选取不同是不一样的,即近似值与分割及i ξ选取有关(图1-2)。
高中定积分的计算在高中数学学习中,定积分是一个重要的概念和计算方法。
它不仅在数学领域有着广泛的应用,而且在物理、经济等其他学科中也具有重要意义。
本文将介绍高中定积分的基本概念、计算方法和一些常见的应用场景。
一、定积分的基本概念定积分是微积分中的重要内容,是对曲线下面积的一种度量。
定积分的计算可以理解为将曲线下的面积划分为无限多个无穷小的矩形,并将这些矩形的面积加起来,得到整个曲线下的面积值。
在高中数学中,定积分可以用下面的形式表示:∫[a,b] f(x) dx其中,f(x)表示被积函数,[a,b]表示积分区间,dx表示积分的自变量。
定积分的结果是一个数值,表示被积函数在积分区间内的曲线下面积。
二、定积分的计算方法高中定积分的计算方法主要有三种:几何法、代数法和牛顿-莱布尼茨公式。
1. 几何法:这种方法利用几何图形的面积性质来计算定积分。
常见的几何图形包括矩形、三角形、梯形等。
通过将曲线下的面积分割成这些几何图形,然后计算它们的面积并相加,就可以得到定积分的值。
2. 代数法:代数法是通过对被积函数进行积分运算来计算定积分。
这种方法可以利用积分的基本性质和常见函数的积分公式来进行计算。
通过将被积函数进行积分并确定积分上下限,就可以得到定积分的结果。
3. 牛顿-莱布尼茨公式:这是一种基于导数和原函数的关系来计算定积分的方法。
根据牛顿-莱布尼茨公式,如果一个函数F(x)是f(x)的原函数,那么在积分区间[a,b]上,有:∫[a,b] f(x) dx = F(b) - F(a)这种方法适用于已知被积函数的原函数的情况,可以直接通过求原函数的差值来计算定积分。
三、定积分的应用场景高中数学的定积分不仅仅是一种计算方法,还具有一些实际应用场景。
以下是一些常见的应用示例:1. 面积计算:定积分可以用来计算曲线下的面积,例如计算二次曲线的面积、圆的面积等。
2. 长度计算:通过对曲线方程求导得到曲线的斜率,再利用定积分计算曲线的弧长。
高中数学:定积分及其应用
1、基本积分表
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
2、运算公式
(1)
(2)
(3)
3、
例1、若曲线在x处的导数为且曲线经过点A (1,3),求解析式。
解:,过A ∴∴
例2、求下列不定积分。
(1)
(2)
例3、求下列定积分(1)
(2)
∵
∴
例4、,为何值时,M最小。
解:
∴时,
例5、已知,,试求的取值范围。
解:
即
设∴为方程
两根
∴或
∴
例6、求抛物线与直线所围成的图形的面积。
解:由∴ A(1,-1)B(9,3)
例7、求由抛物线,所围成图形的面积。
解:
例8、由抛物线及其在点A(0,-3),B (3,0)处两切线所围成图形的面积。
解:,∴ P()
例9、曲线C:,点,求过P的切线与C围成的图形的面积。
解:设切点,则
切线:过P()
∴
∴ A(0,1)
∵∴
∴ B()
∴
例10、抛物线在第一象限内与直线相切。
此抛物线与x轴所围成的图形的面积记为S。
求使S达到最大值的a,b值,并求。
解:依题设可知抛物线为凸形,它与x轴的交点的横坐
标分别为,所以(1)又直线与抛物线相切,即它们有唯一的公共点
由方程组
得,其判别式必须为0,即
于是,代入(1)式得:
令;在时得唯一驻点,且当时,;当时,。
故在时,取得极大值,也是最大值,即时,S取得最大值,且
▍ ▍
▍。