2 实验二三态门实验
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
简单的物理实验初步认识物质三态及变化规律物质的三态是指固态、液态和气态,它们之间存在着相互转化的规律。
通过进行简单的物理实验,我们可以初步认识到这些物态的特点以及它们之间的变化规律。
1. 实验一:冰的熔化过程材料:冰块、温度计、容器、火柴实验步骤:将冰块放入容器中,使用温度计测量冰块的温度。
然后,点燃火柴,将火焰放在冰块上方。
观察冰块的变化过程,并及时记录观察结果。
实验结果与讨论:初始状态下,冰块的温度为零度。
随着火焰的接近,冰块开始融化,温度逐渐上升。
当冰块全部融化成水时,温度不再上升。
通过实验我们可以得出结论,固态物质在一定温度下会转化为液态物质。
2. 实验二:水的沸腾过程材料:水、酒精灯、温度计、容器实验步骤:将水倒入容器中,使用温度计测量水的初始温度。
然后,将酒精灯放在容器底部,点燃酒精灯。
观察水的变化过程,并记录观察结果。
实验结果与讨论:初始状态下,水的温度为室温。
随着酒精灯的加热,水开始加热并逐渐升温。
当水温达到一定温度时,水表面开始冒泡并产生水蒸气。
这时,水正在沸腾。
通过实验我们可以得出结论,液态物质在一定温度下会转化为气态物质。
3. 实验三:水的冷凝过程材料:热水、温度计、玻璃杯、冰块实验步骤:将热水倒入玻璃杯中,使用温度计测量水的初始温度。
然后,将冰块放入热水中。
观察水的变化过程,并记录观察结果。
实验结果与讨论:初始状态下,热水温度较高。
在冰块的作用下,热水开始冷却并逐渐降温。
当温度降低到一定程度时,水蒸气开始凝结,形成水滴。
这时,水正在冷凝为液态物质。
通过实验我们可以得出结论,气态物质在一定温度下会转化为液态物质。
综上所述,通过上述实验我们初步认识到了物质的三态及其变化规律。
固态物质可以通过加热转化为液态物质,液态物质可以通过加热转化为气态物质,气态物质可以通过降温转化为液态物质。
这些物质态之间的相互转化是由温度的变化引起的。
通过继续深入学习和实践,我们可以更加全面地了解物质三态的性质及其变化规律,从而更好地应用于实际生活和科学研究中。
实验二三态门,OC门的设计与仿真一、实验目的熟悉三态门、OC门的原理,用逻辑图和VHDL语言设计三态门、OC门,并仿真。
二、实验内容1.用逻辑图和VHDL语言设计三态门,三态门的使能端对低电平有效。
2.用逻辑图和VHDL语言设计一个OC门(集电极开路门)。
三、实验原理1.三态门,又名三态缓冲器(Tri-State Buffer)用途:用在总线传输上,有效而又灵活地控制多组数据在总线上通行,起着交通信号灯的作用。
功能:三态逻辑输出三种不同的状态,其中两种状态常见的逻辑1和逻辑0,第三个状态高阻值,称为高阻态,用Hi-Z或者Z或z表示三态缓冲器比普通缓冲器多了一个使能输入EN,即连接到缓冲器符号底部的信号。
从真值表可以看出,如果是EN=1.则OUT等于IN,就像普通缓冲器一样。
但是当EN=0时,无论输入的值什么,输出结果为高阻态(Hi-Z)。
逻辑图真值表EN A OUT0 0 Hi-Z0 1 Hi-Z1 0 01 1 1波形图2.OC门,又名集电极开路门(opndrn)用途:集电极开路门(OC门)是一种用途广泛的门电路。
典型应用是可以实现线与的功能。
逻辑图真值表A B0 01 Hi-Z波形图四、实验方法与步骤实验方法:采用基于FPGA进行数字逻辑电路设计的方法。
采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。
实验步骤:1、编写源代码。
打开QuartusⅡ软件平台,点击File中得New建立一个文件。
编写的文件名与实体名一致,点击File/Save as以“.vhd”为扩展名存盘文件。
VHDL 设计源代码如下:三态门:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY tri_s ISPORT (enable,datain:IN STD_LOGIC;dataout:OUT STD_LOGIC);END tri_s;ARCHITECTURE bhv OF tri_s ISBEGINPROCESS (enable,datain)BEGINIF enable='1' THEN dataout<=datain;ELSE dataout<='Z';END IF;END PROCESS;END bhv;OC门:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY oc ISPORT(datain:IN STD_LOGIC;dataout:OUT STD_LOGIC);END oc;ARCHITECTURE bhv OF oc ISBEGINPROCESS (datain)BEGINIF (datain='0') THEN dataout<='0';ELSE dataout<='Z';END IF;END PROCESS;END bhv;2、按照实验箱上FPGA的芯片名更改编程芯片的设置。
实验二集电极开路门电路及三态门电路的研究实验目的:
1.掌握集电极开路门电路及三态门电路的工作原理;
2.通过实验验证集电极开路门电路及三态门电路的工作状态;
3.思考电路中不同元器件参数的变化对电路工作状态的影响。
实验原理:
1.集电极开路门电路:
集电极开路门电路是由晶体管单管实现的基本逻辑电路,其原理是通过晶体管的放大作用,实现输入信号与输出信号的逻辑关系。
当输入为高电平时,晶体管处于饱和状态,输出为低电平;当输入为低电平时,晶体管为截止状态,输出为高电平。
而当输入为浮空时,晶体管的控制端处于开路状态,整个电路无法判断输出状态。
实验器材及元器件:
集电极开路门电路实验:电源、电容、电阻、三极管、万用表。
三态门电路实验:电源、电容、电阻、三极管、二极管、万用表。
实验步骤:
1.集电极开路门电路实验:
(1)按照电路图连接电路,注意器件的极性。
(2)将控制端接入电源的正极和负极,分别记录输出电压的高低电平值。
(3)将控制端不接入电源,即处于浮空状态,记录输出电压值并分析原因。
实验结果及分析:
1.集电极开路门电路实验:
(1)控制端输入高电平时,输出为低电平;控制端输入低电平时,输出为高电平。
(2)控制端浮空时,晶体管无法放大,整个电路处于不稳定状态,输出值也不能确定。
实验分析:
1.集电极开路门电路工作原理简单,但在实际应用中容易受到噪声等因素的干扰,造成输出不稳定。
2.三态门电路具有较好的输出稳定性和电路适应性,在数字集成电路、计算机等领域应用广泛。
实验二三态门实验一、实验目的1、掌握三态门逻辑功能和使用方法。
2、掌握三态门构成总线的特点和方法。
3、初步学会用示波器测量简单的数字波形。
二、实验所用器件和仪表1、四2输入与非门74LS00 1片2、三态输出的四总线缓冲门74LS125 1片3、万用表4、示波器三、实验内容1、74LS125三态门的输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接低电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
2、74LS125三态输出负载为74LS00一个与非门输入端。
74LS00同一个与非门的另一个输入端接高电平,测试74LS125三态门三态输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00输出值。
3、用74LS125两个三态门输出构成一条总线。
使两个控制端一个为低电平,另一个为高电平。
一个三态门的输入接1MH Z信号,另一个三态门的输入接500kH Z信号。
用示波器观察三态门的输出。
四、实验提示1、三态门74LS125的控制端EN为低电平有效。
2、用实验板上的逻辑开关输出作为被测器件作为被测器件的输入。
按入或弹出开关,则改变器件的输入电平。
五、实验接线图和实验结果1、实验内容1和内容2接线图图 3.1 实验内容1和内容2接线图图3.1 实验内容1和内容2接线图,图中K1、K2和K3是逻辑开关输出,电压表指示电压测量点。
按入或弹出逻辑开关K3、K2、K1,则改变74LS00一个与非门输入端、74LS125三态门控制端、三态门输入端的电平。
2、当74LS00引脚2为低电平时,测试74LS125引脚3和74LS00引脚3,结果如下:三态门输出高电平 4.09V三态门输出低电平0.12V三态门高阻输出0.38V74LS00引脚3输出 4.04V3、当74LS00引脚2为高电平时,测试74LS125引脚3和74LS00引脚3,结果如下:三态门输出高电平 4.09V三态门输出低电平0.12V三态门高阻输出 1.50V74LS00引脚3输出0.10V4、用三态门构成总线接线图图3.2 三态门构成总线用三态门74LS125构成总线时,只要将三态门输出并联即可,在任何时刻,构成总线的三态门中只允许一个控制端为低电平,其余控制端均为高电平。
集成门电路功能测试实验报告一实验内容1 三态门的静态逻辑功能测试。
2 动态测试三台门。
并画出三态门的输出特性曲线。
输入为CP矩形波。
3 测试三态门的传输延迟时间。
4 动态测试三态门的电压传输特性曲线。
输入为三角波。
二实验条件硬件基础实验箱,函数信号发生器,双踪示波器,数字万用表,74LS125。
三实验原理1 首先测试实验箱上提供的频率电源参数是否正确。
打开实验箱电源,把分别把5MHz的脉冲接入红表笔上,黑表笔接地。
观察示波器显示波形的频率是否为5MHz,经过观察计算,波形频率接近5M。
误差很小,从下图可以看出,ch1为输入波形一个周期占四个格子,可计算得到f=5MHz。
2 三态门的静态逻辑功能测试。
(后面四个实验都是通过示波器在同一时刻测试3动态测试三台门。
并画出三态门的输出特性曲线。
输入为CP矩形波。
使能端无效是波形:使能端有效时输出波形4 测试三态门的传输延迟时间。
通过测量同一时刻的输入输出波形,可以观察到三态门的输出延迟。
得到波形图为CH1,CH2分别为输入输出波形,可以看出在上升沿的输出延迟为10ns然而下降沿的时候的截图已经丢失了,依稀记得在实验时候,测得是数据下降沿的输出延迟与上升沿的不一致,并且比上升沿的短。
为9.6ns,其传输延迟为两个延迟的平均值9.8ns。
5 测试三态门的电压传输特性曲线。
输入为三角波。
得到输入输出波形为:CH1为输入,CH2为输出。
得到阀值电压为0.92V。
四总结这次实验基本上和上次实验的方法一样,没遇到什么大的问题。
就是还是粗心。
五评价实验效果挺好。
巩固了对逻辑器件的功能测试的方法和操作。
三态门实验报告三态门实验报告引言:在科学研究中,实验是获取真实数据和验证理论的重要方法之一。
本次实验旨在研究三态门的工作原理和应用。
通过实验,我们能够深入了解三态门的特性,并进一步探究其在现实生活中的应用。
一、实验目的本次实验的目的是通过搭建三态门电路,观察和分析三态门的工作原理,探究其在数字电路中的应用。
二、实验材料和仪器本次实验所需材料和仪器如下:1. 电路板2. 三态门芯片3. 连接线4. 电源5. 开关6. LED灯三、实验步骤1. 将三态门芯片插入电路板中,并用连接线连接芯片和其他元件。
2. 将电源接入电路板,确保电路板正常供电。
3. 通过开关控制输入信号,观察LED灯的亮灭情况。
四、实验结果和分析通过实验观察和数据记录,我们得出以下实验结果和分析:1. 当输入信号为低电平时,LED灯熄灭。
2. 当输入信号为高电平时,LED灯点亮。
3. 当输入信号为无效电平时,LED灯保持上一状态。
根据实验结果,我们可以得出以下结论:三态门是一种数字逻辑门,具有三个输入端和一个输出端。
它的工作原理是根据输入信号的不同状态,输出相应的电平。
当输入信号为低电平时,输出为低电平;当输入信号为高电平时,输出为高电平;当输入信号为无效电平时,输出保持上一状态。
五、三态门的应用三态门在数字电路中有广泛的应用。
以下是一些常见的应用场景:1. 数据总线控制:在计算机系统中,三态门常用于数据总线的控制,实现数据的传输和共享。
2. 内存芯片:三态门可以用于内存芯片的控制线路,实现数据的读取和写入。
3. 多路选择器:三态门可以用于多路选择器的实现,根据输入信号的不同状态,选择不同的输入通路。
4. 缓冲器:三态门可以用作缓冲器,将信号从一个电路传递到另一个电路,保持信号的强度和波形。
六、实验总结通过本次实验,我们深入了解了三态门的工作原理和应用。
三态门作为一种重要的数字逻辑门,在现代电子技术中起着重要的作用。
通过进一步研究和实践,我们可以更好地应用三态门,推动数字电路技术的发展。
三态输出门与集电极开路门一、实验目的1.学习中规模集成门电路的使用。
2.掌握三态输出门的逻辑功能。
3.学会三态输出门的应用。
二 实验原理三态门是一种特殊的门电路,它与普通的门电路有所不同,它的输出端除了通常为高、低电平两种状态外,还有第三种输出状态—高阻状态,处于高阻状态时,电路与负载之间相当于开路。
它有一个控制端(禁止端或使能端)。
三态门按逻辑功能及控制方式来分有各种不同类型,本实验所采用的型号是74LS125为三态输出四总线缓冲器。
三态门主要用途之一是分时实现总线传输,即用一个传输通道(总线),以选通方式传送多路信息。
电路中将若干个三态门输出端直接接在一总线上,使用时,要求只有一个传输信息的TS 三态输出门控制端处于使能,而其余各TS 门的控制端均处于禁止态。
因为由理论课学习我们知道TS 门输出端不允许并联使用。
所以显然不能同时有两个或两个以上的TS 门的控制端处于使能。
2. 本实验所用OC 与非门(集电极开路门)型号为74LS03(2输入四与非门)。
OC 与非门的输出管的集电极是悬空的,工作时输出端必须通过一只外接电阻R L 和电源V CC ’相连接,以保证输出电平符合电路要求。
OC 门的应用主要有以下三个方面1、 利用电路的“线与”特性,可方便的完成某些特定的逻辑功能。
如下图13.2(A )所示,将两个OC 与非门输出端直接并联在一起,则它们的输出Y = F A +F B = 21A A ·21B B =2121B B A A即把两个或两个以上OC 与非门“线与”后,可完成“与或非”的逻辑功能。
2、实现多路信息采集,使两路以上的信息共用一个传输通道(总线)。
3、实现逻辑电平的转换,以推动荧光数码管、继电器、MOS 器件等多种数字集成电路。
图13.1 OC 与非门内部逻辑图(A)(B )图13.2OC 门输出并联运用时负载电阻R L 的选择:图13.1(B )中由n 个OC 与非门“线与”驱动有m 个输入端的N 个TTL 与非门,为保证OC 与非门输出电平符合逻辑要求,负载电阻R L 阻值的选择范围为;R L (max ) =IHH H CCmInI V V --'00R L (min ) =ILLML CC I m I V V '--'0式中:I 0H :OC 门输出管截止时(输出高电平)的漏电流(约50uA ) I LM :OC 门输出低电平时允许最大灌入负载电流(约20mA ) I IH :负载门高电平输入电流(<50uA)I IL:负载门低电平输入电流(<1.6m A=V CC’:R L外接电源电压n:OC门个数N:负载门个数m:接入电路的负载门输入端总个数。
实验二、三态门实验
一、实验目的
1、掌握三态门逻辑功能和使用方法。
2、掌握用三态门构成总线的特点和方法。
3、初步学会用示波器测量简单的数字波形。
二、实验所用仪器和芯片
1、四二输入与非门74LS00 1片
2、三态输出的四总线缓冲门74LS125 1片
3、TEC-5实验系统 1台
4、示波器 1台
三、实验内容
1、74LS125三态门的输出负载为74LS00的一个与非门输入端。
74LS00同一个与非门的另一个输入端接低电平,测试74LS125三态门的三态(高阻)输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00的输出值。
2、74LS125三态门的输出负载为74LS00的一个与非门输入端。
74LS00同一个与非门的另一个输入端接高电平,测试74LS125三态门三态(高阻)输出、高电平输出、低电平输出的电压值。
同时测试74LS125三态输出时74LS00的输出值。
*3、用74LS125两个三态门输出构成一条总线。
使两个控制端一个为低电平,另一个为高电平。
一个三态门的输入接50kHz信号,另一个三态门的输入接
500KHz信号。
用示波器观察三态门的输出。
四、实验提示
1、三态门74LS125的控制端C为低电平有效。
2、用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
五、实验报告要求
1、画出实验的逻辑电路图。
2、分析每个实验的实验现象。
3、分析实验1和实验2中三态门输出电压不同的原因。
*4、用三态门74LS125构成总线时,三态门输出应怎样连接?为什么在任何时刻,构成总线的三态门中只允许一个控制端为低电平,其余控制端应为高电平。