第4章_非线性系统线性化
- 格式:ppt
- 大小:3.35 MB
- 文档页数:112
第四章 控制系统的稳定性3-4-1 试确定下列二次型是否正定。
(1)3123212322212624)(x x x x x x x x x x v --+++= (2)232123222126410)(x x x x x x x x v ++---= (3)312321232221422410)(x x x x x x x x x x v --+++= 【解】: (1)04131341111,034111,01,131341111<-=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数不定。
(2)034101103031,0110331,01,4101103031<-=--->=--<-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P二次型函数为负定。
(3)017112141211003941110,010,1121412110>=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数正定。
3-4-2 试确定下列二次型为正定时,待定常数的取值范围。
312321231221211242)(x x x x x x x c x b x a x v --+++=【解】:312321231221211242)(x x x x x x x c x b x a x v --+++=x c b a x T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1112121110212111,011,0111111>---->>c b a b aa 满足正定的条件为:⎪⎩⎪⎨⎧++>+>>1111111114410ca b c b a b a a3-4-3 试用李亚普诺夫第二法判断下列线性系统的稳定性。
;1001)4(;1111)3(;3211)2(;1110)1(x x x x x x x x ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=【解】: (1)设22215.05.0)(x x x v +=⎩⎨⎧≠≤==-=--=+=)0(0)0(0222221212211)(x x x x x x x x x x x x x v为半负定。
垫拯生』选盆煎非线性动力系统的连续线性化模型及其数值计算方法。
苏志霄郑兆昌(清华大学工程力学系,北京,100084)谁≮'I广摘要秭4用Taylor级数展开导出了任意自治或非自治非线性动力系统的瞬时线性化方程,该线性方程的连续变化描述了系统的全部复杂动力行为。
进一步求解系统的线性化方程,得到一种非线性动力系统数值计算的新的递推格式,计算实例表明其精度高于传统的Houbolt、Wilson.o及Newmark-13等方法,且在计算时间步长较大时,仍然具有足够的计算精度3文末通过数值计算研究了Duffing方程和vanderPol方程的混沌及周期特性。
关键词非线性动力系统连续线性化模型Dumng方程vailderPol方程近年来,非线性动力系统的定性分析方法在低维系统中的应用已逐步完善。
然而。
由于非线性系统一般不存在解析解,因此通常利用逐步积分法、有限差分法[1,2]及其他方法,如Taylor变换法[3】等数值算法得到其数值解。
各种数值方法均是基于时间历程上的差分方法,也即通过各种形式的函数曲线来近似代替时间步长上振动系统的实际响应形式。
运动学研究历史上,静止被认为是运动的瞬时存在状态。
与此类似,线性结构可认为是非线性系统的瞬时表现形式,线性系统的连续变化反映了非线性动力系统的全部复杂行为。
非线性系统的瞬态响应依赖于该瞬时的线性结构,而该时刻线性结构的确定又依赖于上一连续瞬时非线性系统的响应。
因此,非线性系统的响应具有连续递推性。
由此观点可发展为非线性动力系统的连续线性模型理论。
本文即从此出发,推导了一般自治或非自治非线性动力系统的瞬态线性方程,精确求解该线性化方程得到非线性系统的一种新的数值算法。
该方法本质上以瞬态线性结构的精确响应来近似代替离散时间段内非线性系统的响应,区别于传统差分方法中以直线或各种曲线近似代替的思想。
计算实例表明该方法较传统方法相比,大大提高了计算精度。
文末计算了强迫Duffmg方程与强迫vallderP01方程的混沌及周期特性。
⾮线性系统线性化综述翻译┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊⾮线性系统线性化综述程代展,李志强(中国科学院数学与系统科学研究院,北京100190)摘要:⾮线性系统的线性化是设计⾮线性系统控制的强有⼒⼯具。
这⼀⽅法已经在飞⾏器控制、电⼒系统的安全控制、化学反应器控制、经济系统、⽣物学系统和机器⼈控制等领域得到⼴泛应⽤。
本⽂阐述了⾮线性系统线性化的发展历史以及有深刻意义的结果。
⾸先回顾从⾮线性系统的近似线性化到精确线性化的发展。
主要内容Poincare线性化、系统能通过状态反馈线性化的充要条件和算法。
然后介绍各种不同的线性化⽅法:动态反馈线性化,近似线性化,Cralema3/l线性化等。
本⽂主要⽬的是对⾮线性系统线性化的历史,现状和⼀些重要问题进⾏⼀个较完整全⾯的介绍,从⽽提供从事线性化理论与应⽤研究的基础。
关键词:线性化;Poincare定理;状态反馈;⾮正则;部分线性化1 介绍⾮线性系统线性化处理与⾮线性(控制)系统是最有效的⽅法之⼀. 它已被⼴泛⽤于研究很长⼀段时间, 已获得许多有价值的理论成果. 线性化也已被⼴泛⽤于各种⼯程问题。
例如,飞机控制,动⼒系统,化学反应,经济系统,⽣物系统,神经⽹络,空调系统,⽣态系统,机器⼈控制系统等。
垂直起降飞⾏器模型不是静态状态反馈线性化⽽是动态状态反馈线性化。
双旋翼直升机模型的飞⾏控制器的设计。
局部线性化的设计⽅法主要运⽤静态反馈线性和较低的⼦系统层次实现。
输⼊输出反馈线性化⽅法被⽤来设计⼀个分散的⼤型电⼒系统的⾮线性控制器,事实证明,输⼊输出线性化类型的反馈可以接近反应器任意设定点的运动轨迹,即使有参数的不确定性。
状态空间精确线性化⽅法应⽤于Kaldor和Bonhoeffer-Van Der Pohl⾮线性控制系统的⾮线性反馈控制律的设计。
线性化的应⽤分别列举了⽣物系统和物理系统这两个系统的综合分析。
作为多输⼊多输出双线性系统的⼀个V AV AC电⼚的动态模型推导和制定。
非线性系统的线性方法
非线性系统的线性方法包括线性化方法和仿射变换方法。
1. 线性化方法
线性化方法是将非线性系统在某一工作点处进行线性近似,然后应用线性控制理论对其进行分析和控制。
线性化方法通常包括泰勒级数展开和雅可比矩阵的计算。
2. 仿射变换方法
仿射变换方法是将非线性系统通过一系列仿射变换,变换成一个线性系统,然后应用线性控制理论对其进行分析和控制。
仿射变换方法常用的变换包括积分变换、对数变换、指数变换等。
需要注意的是,虽然非线性系统可以通过线性化方法和仿射变换方法进行线性化处理,但当系统存在强非线性、硬约束、不可逆性等特点时,这些方法的适用性会受到严重限制,需要考虑其他非线性控制方法。
非线性系统Nonlinear Systems Analysis•第一章绪论3学时•第二章相平面分析3学时•第三章稳定性理论基础6学时•第四章非线性系统的线性化方法6学时•非线性控制理论应用(讨论)3学时•第五章变结构控制6学时•第六章混沌与分岔3学时•第七章自适应控制2学时•第八章非线性系统的H∞控制1学时•非线性控制理论应用(讨论)3学时•根据实际情况,各章所用学时会稍微有所调整。
主要内容及学时安排参考书目[1] 高为炳. 非线性控制系统导论(第2版),科学出版社,1991.[2] 冯纯伯,费树岷.非线性控制系统分析与设计(第2版),电子工业出版社,[3] J.-J.E.斯洛廷李卫平著.应用非线性控制.[4] 贺昱曜,闫茂德.菲线性控制理论及应用.西安电子科技大学出版社,[5] 刘小河. 非线性系统分析与控制引论. 清华大学出版社[6] H.K.Khalil. Nonlinear Systems. Macmillan PublishingCompany第一章绪论系统控制理论的研究对象1、系统:由相互关联和相互制约的若干“部分”组成的具有特定功能的一个“整体”。
2、动态系统:运动状态按确定规律或统计规律随时间演化的一类系统,也称动力学系统。
是系统控制理论研究的主体。
表征系统动态过程的数学描述具有两类基本形式:内部描述和外部描述。
动态系统可以分为:连续变量系统和离散事件动态系统、线性系统和非线性系统、连续时间系统和离散时间系统。
一、控制理论所研究的控制系统的问题:简单地讲就是系统的输入、输出问题。
1、给定输入时系统的输出怎样变化?这属于系统分析问题。
2、怎样使系统的输出按照希望的方式运动?该问题称为系统的综合问题。
二、控制系统的分类对于一个实际的控制系统,不论是进行分析还是进行设计,首先一项任务就是要求出受控对象的物理模型和数学模型。
如:光、电、磁、力、热等的传导,及刚体、弹性体、液体和气体的运动。
非线性动态逆设计方式简介一.设计原理1.需求:气动布局转变;气动参数非线性;状态间非线性耦合;… 2.非线性系统设计问题:不具有线性特性,大幅值与小幅值输入响应不同; 非线性系统的平稳点不同,稳固性较难评定; 不能用线性系统的方式分析(根轨迹,频率特性等) 3.非线性系统设计方式• 扩展线性化设计:考虑一阶导数项,近似为线性模型(较少利用) • 定量反馈设计:频率域设计,时频转换(工程上可用),高增益 • 动态逆设计:逆动力学反馈线性化(理论上通用,经常使用)• 精准线性化:利用状态转换实现精准的线性化(关于复杂非线性系统较难利用)二.动态逆设计1.伪线性动态逆方式(p289)考虑知足仿射非线性条件的非线性方程:()()x f x g x uy x=+= (1), 仿射非线性——状态与操纵不耦合取1()[()]d u g x f x x -=-+ (2), d x 为期望的动态进程闭环:{}1()()()()()[()]d dx f x g x u f x g x g x f x x x x -=+=+-+∴= (3)系统变成线形形式,能够利用线性系统设计方式与概念,如取:d d x Ax Bv =+ (4),式中,A 、B 为理想模型动态方程矩阵,v 为外输入变量,能够取得对外输入的理想的动态进程。
系统结构图:x要求:(1)系统能够写为仿射非线性形式(2)g (x )的逆存在,操纵量的维数=状态量的维数2.基于李导数的动态逆方式(输入输出反馈线性化,p288) 逆动力学理论:• 系统的动态逆系统;• 通过反馈达到输入输出解耦线性化; • 对解耦线化系统设计鲁棒线性操纵律。
系统描述:仿射非线性()()()x A x B x uy C x =+= (5)逆动力学通过对输出y (t )微分充分次取得:00()A y C x L C ==10()[()()]()()()A B A C C y t x A x B x u x xC C A x B x u L C L L C u x x∂∂==+∂∂∂∂=+=+∂∂设:0()()0B A CB x u L LC u x∂==∂11211()[()()][()()]()()()()()()0A A AB A B A y yC C y t x A x B x u A x B x u t x x x x L C A x L C B x u x xL C L L C uL L C u ∂∂∂∂∂===++∂∂∂∂∂∂∂=+∂∂=+=设: 直至:1()r r r A B A y L C L L C u -=+式中:12()()0r r B A A L L C u L C B x--∂=≠∂ 上述求导进程中的李导数概念为:0A L C C =,1()A C L C A x x ∂=∂,…1()()r r A A L C L C A x x -∂=∂ (6) 0()B A C L L C B x ∂=∂,11()()B A A L L C L C B x ∂=∂ , …()()rr B AA L L C L CB x∂=∂ (7) 关于系统的每一个输出:i=1…m ,别离以李导数的形式描述为:11()ii j mr r r iAi B A i j j y L C L L C u -==+∑,i,j=1…m (8)写成向量形式:11111221111111112**211(),()()(),()m m mm r r r r B AB A Ar rA r r r r mB A m B A m m A L LC L L C y L C u u y L C A x B u u L L C L L C y L C ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ (9) 假设B*可逆,取:*1**1()()()u B x A x B x v --=-+,式中,v 为新的外输入,代入(9)式,可得:121122m r r r m m y v v y v y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ (10), 式中,12...m r r r n ++=上式说明了在逆动态反馈下系统输出解耦,每一个输出量1,...m y y 能够通过外输入,1i v i m =独立操纵。
非线性系统的线性化处理方法,√j}/Z非线性系大连晨光科技开发邮王士和Tp~?/,2.在各种电气设备,自动控制装置,检查与测线段联结,用于分f与”0,则得到分段线性量用仪器仪表中经常碰到线性或近似线性系统.但是,在很多情况下,也会碰到非线性系统问题关于线性系统的理论分析与计算方法在许多文献中已有讨论但是,非线性系统的理论分析与计算方法在近二十年来一直引起人们的关注还有许多线性系统问题尚待讨论.本文试图就非线性系统中一些分支问题,探讨若干处理方法这里讨论的是稳态情况下若干种非线性问题的处理方法:1.线性化法(或分段线性化法);2.函数化法(或分段函数化法),或称经验公式法;3.数字化法等等.‘一,线性化法(或分段线性化法)假设有一含非线性铁心的电路.其磁化曲线具有图1a所示形状.由图可以看出,这是非线性的但是,如果通过原点至急剧弯曲部分画一条斜线oa代替oa弯曲线时,在理论分析与计算上可以得到符合工程实际需要的分析结论与计算结果.这一类处理工程计算的方法.称谓线性化法.H图1如果将磁化曲线画分成若干段.如图1b所……示.将O1,12,23,34,蛎,56各弯曲段甩近似直线n《■气开曩》(199鼍蹄Io-●)化法显然.它比线性化法更逼真一步.在工程分析与计算上将给出更满意的结果.二,函数化法(或分段函数化法)函数化法是将非线性特性曲线近似地用一个经验公式表达,用来分析各种工程技术问题. 显然,它能够给出的计算精确度决定于经验公式与实际曲线逼近程度例如.图l给出的磁化曲线可以用下式表示,即B:,(H)(1)或H一()(2)详见参考文献1中表1—1所示由各作者给出的磁化曲线经验公式.分段函数法是将非线性曲线分割成若干段,然后对各小段分别用某一函数表示.用这些表达式分析与处理各种技术问题.显然,比前一种方法更逼真一步.但是,应用上会带来许多麻烦.计算机的出现,给解决这类工程问题带来了方便.可以看出,分段线性化方法可视作分段函数法的一个特倒.三,数字化方法数字化方法实际上是将一连续变化的非线性特性曲线实施离散化,将其储存在计算机内, 根据计算程序需要随时调用(详见文献2)以上讨论了非线性系统的直接处理方法.主要用于:非线性元件,非线性线路非线性控制,测量与检查等系统的分析与计算.下面讨论若干间接处理方法四,非线性系统的线性变换法图2中的A环节是一个非线性元件或网路,B环节是另一个非线性元件或网络.此方法的基本思想是A环节在系统中无法直接应用其非线性输入一输出特性用B环节具有另一种非线性输入输出特性来补偿.如果B环节设一25—._,●计合理.可使总的输入一输出特性线性化,如图3所示.因此B环节称作对-A环节的整直环节(或元件).设A环节具有非缉眭函数关系X2= f.(x),B环节具有另_非线性爵数关系Xa—f(x).经过综合后.得到总的输入一输出特性为X.一c.X+线性关系.这就是通过整直环节(或元件)B将非线性环节(或元件)A的菲线性系统实现线性化的线性变换法.如果得到图3的直线,再进行技术处理就很方便.例如.如欲得到X一O时.xf一0{在x正向增加时x也正向增加.只需要在B环节后再增设一级移位倒向环节C就可H实现如图4,5趼示,网?I警l3—26I4瞄5五,非线性系统的补偿网路法非线性元件(或装置)采用线性R,L,C或非线性半导体器件等组成元件或网路可以对其非线性逐段地进行朴偿,以l达到更精确的变换, 例如,目前工业上应用的热电偶上采用的各种温度一电压线性变换网路等.六,非线性系统的数字化处理方法此方法与第四章相似,只是将非线性元件(或装置)输出的模拟量用集成电路(模片)交换成数字量,即进行A/D转换.但此数字量尚须经过专用单片机(例如EPROM或EEPR0M)处理之后,才能整直,送给数字显示器或其他控制部件.这时显示器的指示量与非线性元件(或装置)的输入量呈线性关系,关于其它特殊类型的非线性元件(或装胃=)的非线性特性需要根据要求进行线性化,例如, 开关控制元件对发电机进行电压自动调整等需要特殊处理,而不一定要求对其作线性化处理, 关于这些问题,可参考文献3,4.综上所述.在遇到非线性系统问题时.可以参考上面提出的方法进行处理当然.还可根据不同的具体问题提出新的处理方法,对于这方面的具体理论和技术工作,不仅需要对控制系统及其控制的对象有深刻的了解.而且还要有丰富的元器件的理论与实际知识.参考文献[1]王士和缩自动电礁装置,大连铁道学院, 1985[2:张冠生主编电器学,规被】:业m版社】980_l3]扬自厚主编自动控制原理,精金1:业出暖社,198O[4]蔡尚峰主编.自动控制理沧,机被业m版社,198l[5]尤德裴主编数字化酬量技术眨但器.机械】= 业出版社1980[6]常健生缩.捡j羹I与转换技术.机被丁=业m版社,1981[7]王士和郭永波带热电阻捡渊播的解舟折法电杂志】99o3[8]王士和孝章武王常有智艟化湿度控制倥●气开善》(1995N0_4)。
稳定性当系统承受这种干扰之后,能否稳妥地保持预定的运动轨迹或者工作状态,这就是稳定性。
使问题简化,而不得不忽略某些次要因素。
近似的数学模型能否如实反映实际的运动,在某种意义上说,也是稳定性(鲁棒性)问题。
平衡状态(4-2)受扰运动:平衡状态:(4-5)0 x t t"³?是李雅普诺夫意义下稳定的。
李雅普诺夫稳定性就是要研究微分方程的解在tÎ[t,+¥)上的有界性。
1. 此处d 随着e 、t 0而变化;时有‖x (t ;t 0,x 0)‖<e "t ≥t 0成立初值变化充分小时,解的变化(t ≥ t 0)可任意小(不是无变化);(t 0,e )£e 。
edt0x (t 0)d (t 0,e )x 0x (t )李雅普诺夫意义下稳定的几何意义(t 0)‖一致稳定:(4-9)00(,,)0(,,)T t T t m d m d >()S e ()H e 0x x()S d ()S e 0x ()x t T()S d t固定的吸引区,不是<m ,t >t 0+ T(m ,t 0,x 0)t 0mt 0+ T(m , t 0, x 0)e00lim (,,)0®¥=t x t t x数量吸引区局部幸好,就我们所讨论的线性系统而言,全局和局部是一致的。
可见,即使初始值很大地偏离了平衡状态,系统最终0x1otl nx 非线性系统的解,),<。
故系统是李氏稳定的。
又与t d ddx xdt tttd<,,故其零解一致稳定。
又0t t 0t t()S e 0x ()x t ()S d cx ()e指数渐近稳定稳定渐近稳定一致渐近稳定一致稳定第一方法线性化的间接第二方法直接判断直接法李雅普诺夫第二方法目前仍是研究非线性、时变系统最有效的方法,是许多系统控制律设计李雅普诺夫第二法的主要定理(4-16)李雅普诺夫函数充分条件4-17)),则称系统原点平衡状态为大范围一致渐近稳定。