空间几何体的结构(教师版) (2)
- 格式:docx
- 大小:1.11 MB
- 文档页数:14
空间几何体的结构一、棱柱、棱锥、棱台的结构特征1、空间几何体概念定义空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑物体的和,而不考试其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体一般地,我们把由若干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点旋转体我们把由一个平面图形绕它所在平面内的一条定旋转所形成的叫做旋转体,这条定直线叫做旋转体的备注:(1)多面体是由平面多边形围成的,这里的多边形包括它内部的平面部分.(2)多面体最少有四个面.(3)平面图形绕定直线旋转形成旋转体,这条定直线可以是平面图形的边,也可以不是,但定直线一定与平面图形在同一个平面内.Ex1、下列物体不能..抽象成旋转体的是( )A.篮球B.日光灯管C.电线杆D.国家游泳馆水立方[解析]水立方是多面体,不能抽象成旋转体;篮球、日光灯管、电线杆都可抽象成旋转体.答案:D2、棱柱定义一般地,有两个面互相,其余各面都是,并且每两个四边形的公共边都互相,由这些面所围成的叫做棱柱有关概念棱柱中,两个互相的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的叫做棱柱的侧棱;侧面与底面的叫做棱柱的顶点图形表示法用表示底面各顶点的表示棱柱,如上图中的棱柱可记为棱柱ABCDE-A′B′C′D′E′分类按底面多边形的分为三棱柱、四棱柱、五棱柱……备注:有两个面互相平行,其余各面为平行四边形的几何体,却不一定是棱柱,如图所示的几何体就不是棱柱.因为棱柱要求有两个面互相平行,其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行,而该图中有相邻四边形的公共边是不平行的.Ex2、下列几何体中,柱体有( )A .1个B .2个C .3个D .4个 答案:D3、棱锥 定义一般地,有一个面是 ,其余各面都是 的三角形,由这些面所围成的多面体叫做棱锥有关概念多边形面叫做棱锥的底面或底;有 的各个三角形面叫做棱锥的侧面;各侧面的 叫做棱锥的顶点;相邻侧面的 叫做棱锥的侧棱 。
第1讲 空间几何体【要点提炼】考点一 表面积与体积1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr(r +l)(r 为底面半径,l 为母线长).(2)S 圆锥侧=πrl ,S 圆锥表=πr(r +l)(r 为底面半径,l 为母线长).(3)S 球表=4πR 2(R 为球的半径).2.空间几何体的体积公式V 柱=Sh(S 为底面面积,h 为高);V 锥=13Sh(S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径). 【热点突破】【典例】1 (1)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.【答案】 402π【解析】 因为母线SA 与圆锥底面所成的角为45°,所以圆锥的轴截面为等腰直角三角形.设底面圆的半径为r ,则母线长l =2r.在△SAB 中,cos ∠ASB =78,所以sin ∠ASB =158. 因为△SAB 的面积为515,即12SA ·SBsin ∠ASB=12×2r ×2r ×158=515, 所以r 2=40,故圆锥的侧面积为πrl =2πr 2=402π.(2)如图,已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.【答案】 233 【解析】 如图,取BC 的中点O ,连接AO.∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为 3.又11BB C S =12×2×2=2, ∴11D BB C V =13×2×3=233. 易错提醒 (1)计算表面积时,有些面的面积没有计算到(或重复计算).(2)一些不规则几何体的体积不会采用分割法或补形思想转化求解.(3)求几何体体积的最值时,不注意使用基本不等式或求导等确定最值.【拓展训练】1 (1)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π【答案】 B【解析】 设圆柱的底面半径为r ,高为h ,由题意可知2r =h =22,∴圆柱的表面积S =2πr 2+2πr ·h =4π+8π=12π.故选B.(2)如图,在Rt △ABC 中,AB =BC =1,D 和E 分别是边BC 和AC 上异于端点的点,DE ⊥BC ,将△CDE 沿DE 折起,使点C 到点P 的位置,得到四棱锥P -ABDE ,则四棱锥P -ABDE 的体积的最大值为________.【答案】 327 【解析】 设CD =DE =x(0<x<1),则四边形ABDE 的面积S =12(1+x)(1-x)=12(1-x 2),当平面PDE ⊥平面ABDE 时,四棱锥P -ABDE 的体积最大,此时PD ⊥平面ABDE ,且PD =CD =x ,故四棱锥P -ABDE 的体积V =13S ·PD =16(x -x 3),则V ′=16(1-3x 2).当x ∈⎝⎛⎭⎪⎫0,33时,V ′>0;当x ∈⎝ ⎛⎭⎪⎫33,1时,V ′<0. ∴当x =33时,V max =327. 【要点提炼】考点二 多面体与球解决多面体与球问题的两种思路(1)利用构造长方体、正四面体等确定直径.(2)利用球心O 与截面圆的圆心O 1的连线垂直于截面圆的性质确定球心.【典例】2 (1)已知三棱锥P -ABC 满足平面PAB ⊥平面ABC ,AC ⊥BC ,AB =4,∠APB =30°,则该三棱锥的外接球的表面积为__________.【答案】 64π【解析】 因为AC ⊥BC ,所以△ABC 的外心为斜边AB 的中点,因为平面PAB ⊥平面ABC ,所以三棱锥P -ABC 的外接球球心在平面PAB 上,即球心就是△PAB 的外心,根据正弦定理AB sin ∠APB=2R ,解得R =4, 所以外接球的表面积为4πR 2=64π.(2)(2020·全国Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【答案】 23π 【解析】 圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB ,如图所示,则△PAB 的内切圆为圆锥的内切球的大圆.在△PAB 中,PA =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π. 规律方法 (1)长方体的外接球直径等于长方体的体对角线长.(2)三棱锥S -ABC 的外接球球心O 的确定方法:先找到△ABC 的外心O 1,然后找到过O 1的平面ABC 的垂线l ,在l 上找点O ,使OS =OA ,点O 即为三棱锥S -ABC 的外接球的球心.(3)多面体的内切球可利用等积法求半径.【拓展训练】2 (1)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C【解析】 如图所示,设球O 的半径为R ,因为∠AOB =90°,所以S △AOB =12R 2,因为V O -ABC =V C -AOB ,而△AOB 的面积为定值,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,此时V O -ABC =V C -AOB =13×12R 2×R =16R 3=36, 故R =6,则球O 的表面积为S =4πR 2=144π.(2)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =5,ED =3,若鳖臑P -ADE 的外接球的体积为92π,则阳马P -ABCD 的外接球的表面积为________.【答案】 20π【解析】 ∵四边形ABCD 是正方形,∴AD ⊥CD ,即AD ⊥CE ,且AD =5,ED =3,∴△ADE 的外接圆半径为r 1=AE 2=AD 2+ED 22=2, 设鳖臑P -ADE 的外接球的半径为R 1,则43πR 31=92π,解得R 1=322. ∵PA ⊥平面ADE ,∴R 1=⎝ ⎛⎭⎪⎫PA 22+r 21, 可得PA 2=R 21-r 21=102,∴PA =10. 正方形ABCD 的外接圆直径为2r 2=AC =2AD =10,∴r 2=102,∵PA ⊥平面ABCD ,∴阳马P -ABCD 的外接球半径R 2=⎝ ⎛⎭⎪⎫PA 22+r 22=5, ∴阳马P -ABCD 的外接球的表面积为4πR 22=20π.专题训练一、单项选择题1.水平放置的△ABC 的直观图如图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( )A .等边三角形B .直角三角形C .三边中只有两边相等的等腰三角形D .三边互不相等的三角形【答案】 A【解析】 AO =2A ′O ′=2×32=3,BC =B ′O ′+C ′O ′=1+1=2.在Rt △AOB 中,AB =12+32=2,同理AC =2,所以原△ABC 是等边三角形.2.(2020·全国Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12 【答案】 C【解析】 设正四棱锥的底面正方形的边长为a ,高为h ,侧面三角形底边上的高(斜高)为h ′,则由已知得h 2=12ah ′. 如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝ ⎛⎭⎪⎫a 22, ∴h ′2=12ah ′+14a 2, ∴⎝ ⎛⎭⎪⎫h ′a 2-12·h ′a -14=0, 解得h ′a =5+14(负值舍去). 3.已知一个圆锥的侧面积是底面积的2倍,记该圆锥的内切球的表面积为S 1,外接球的表面积为S 2,则S 1S 2等于( ) A.12 B.13 C.14 D.18【答案】 C【解析】 如图,由已知圆锥侧面积是底面积的2倍,不妨设底面圆半径为r ,l 为底面圆周长,R 为母线长, 则12lR =2πr 2, 即12·2π·r ·R =2πr 2, 解得R =2r ,故∠ADC =30°,则△DEF 为等边三角形,设B 为△DEF 的重心,过B 作BC ⊥DF ,则DB 为圆锥的外接球半径,BC 为圆锥的内切球半径,则BC BD =12,∴r 内r 外=12,故S 1S 2=14. 4.(2020·大连模拟)一件刚出土的珍贵文物要在博物馆大厅中央展出,如图,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1 000元,则气体的费用最少为( )A .4 500元B .4 000元C .2 880元D .2 380元【答案】 B【解析】 因为文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米,所以由正方形与圆的位置关系可知,底面正方形的边长为0.9+2×0.3=1.5米,又文物高1.8米,文物顶部与玻璃罩上底面至少间隔0.2(米),所以正四棱柱的高为1.8+0.2=2(米),则正四棱柱的体积V =1.52×2=4.5(立方米).因为文物的体积为0.5立方米,所以罩内空气的体积为4.5-0.5=4(立方米),因为气体每立方米1 000元,所以气体的费用最少为4×1 000=4 000(元),故选B.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,动点E 在BB 1上,动点F 在A 1C 1上,O 为底面ABCD 的中心,若BE =x ,A 1F =y ,则三棱锥O -AEF 的体积( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】 B【解析】 由已知得V 三棱锥O -AEF =V 三棱锥E -OAF =13S △AOF ·h(h 为点E 到平面AOF 的距离).连接OC ,因为BB 1∥平面ACC 1A 1,所以点E 到平面AOF 的距离为定值.又AO ∥A 1C 1,OA 为定值,点F 到直线AO 的距离也为定值,所以△AOF 的面积是定值,所以三棱锥O -AEF 的体积与x ,y 都无关.6.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B.4π3 C.5π3 D .2π 【答案】 C【解析】 如图,过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3. 7.(2020·全国Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】 A【解析】 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a.由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.8.(2020·武汉调研)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为( ) A.32π3 B .3π C.4π3 D .8π【答案】 A【解析】 设△ABC 外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23,∠BAC =2π3, ∴2r =AB sin ∠ACB =112=2, 即O 1A =1,O 1O =12AA 1=3, ∴OA =O 1O 2+O 1A 2=3+1=2,∴球O 的体积V =43π·OA 3=32π3.故选A. 9.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭的几何体内部放入一个小圆柱体,且小圆柱体的上、下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A.2 000π9B.4 000π27 C .81πD .128π【答案】 B 【解析】 小圆柱的高分为上、下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h(0<h<5),底面半径为r(0<r<5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱的体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h<5),把V 看成是关于h 的函数,求导得V ′=-π(3h -5)(h +5).当0<h<53时,V ′>0,V 单调递增;当53<h<5时,V ′<0,V 单调递减.所以当h =53时,小圆柱的体积取得最大值.即V max =π⎝⎛⎭⎪⎫25-259×⎝ ⎛⎭⎪⎫53+5=4 000π27,故选B. 10.已知在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等.若点P ,A ,B ,C 都在半径为1的球面上,则球心到平面ABC 的距离为( )A.36B.12C.13D.32【答案】 C【解析】 ∵在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,且长度相等,∴此三棱锥的外接球即以PA ,PB ,PC 为三边的正方体的外接球O ,∵球O 的半径为1, ∴正方体的边长为233,即PA =PB =PC =233, 球心到截面ABC 的距离即正方体中心到截面ABC 的距离,设P 到截面ABC 的距离为h ,则正三棱锥P -ABC 的体积V =13S △ABC ×h =13 S △PAB ×PC =13× 12×⎝ ⎛⎭⎪⎫2333, ∵△ABC 为边长为263的正三角形, S △ABC =233,∴h =23, ∴球心(即正方体中心)O 到截面ABC 的距离为13. 二、多项选择题11.(2020·枣庄模拟)如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图③所示时,AE ·AH 为定值【答案】 AD【解析】 由于AB 固定,所以在倾斜的过程中,始终有CD ∥HG ∥EF ∥AB ,且平面AEHD ∥平面BFGC ,故水的部分始终呈棱柱形(三棱柱或四棱柱),且AB 为棱柱的一条侧棱,没有水的部分也始终呈棱柱形,故A 正确;因为水面EFGH 所在四边形,从图②,图③可以看出,EF ,GH 长度不变,而EH ,FG 的长度随倾斜度变化而变化,所以水面EFGH 所在四边形的面积是变化的,故B 错;假设A 1C 1与水面所在的平面始终平行,又A 1B 1与水面所在的平面始终平行,则长方体上底面A 1B 1C 1D 1与水面所在的平面始终平行,这就与倾斜时两个平面不平行矛盾,故C 错;水量不变时,棱柱AEH -BFG 的体积是定值,又该棱柱的高AB 不变,且V AEH -BFG =12·AE ·AH ·AB ,所以AE ·AH =2V AEH -BFG AB ,即AE ·AH 是定值,故D 正确. 12. (2020·青岛检测)已知四棱台ABCD -A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22,A 1B 1=2,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A .该四棱台的高为 3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π【答案】 AD【解析】 将四棱台补为如图所示的四棱锥P -ABCD ,并取E ,E 1分别为BC ,B 1C 1的中点,记四棱台上、下底面中心分别为O 1,O ,连接AC ,BD ,A 1C 1,B 1D 1,A 1O ,OE ,OP ,PE.由条件知A 1,B 1,C 1,D 1分别为四棱锥的侧棱PA ,PB ,PC ,PD 的中点,则PA =2AA 1=4,OA =2,所以OO 1=12PO =12PA 2-OA 2=3,故该四棱台的高为3,故A 正确;由PA =PC =4,AC =4,得△PAC 为正三角形,则AA 1与CC 1所成角为60°,故B 不正确;四棱台的斜高h ′=12PE =12PO 2+OE 2=12×232+22=142,所以该四棱台的表面积为(22)2+(2)2+4×2+222×142=10+67,故C 不正确;易知OA 1=OB 1=OC 1=OD 1=O 1A 21+O 1O 2=2=OA =OB =OC =OD ,所以O 为四棱台外接球的球心,所以外接球的半径为2,外接球表面积为4π×22=16π,故D 正确.三、填空题13.(2020·浙江)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.【答案】 1【解析】 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π,即r ·l =2.由于侧面展开图为半圆,可知12πl 2=2π, 可得l =2,因此r =1.14.在如图所示的斜截圆柱中,已知圆柱的底面直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.【答案】 2 600π【解析】 将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =12×(π×40)×(50+80)=2 600π(cm 2). 15.已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为________.【答案】 823π 【解析】 将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径2R =22,则球O 的体积V =43πR 3=823π. 16.(2020·新高考全国Ⅰ)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2π2【解析】 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q ,连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形,则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2.又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ. 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1,同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点,∴∠PEQ =π2, 知PQ 的长为π2×2=2π2,即交线长为2π2.。
《空间几何体的结构(二)》教学设计 柱、锥、台、球的结构特征(1)一、教学目标1.通过观察实物、图片,使学生理解并能归纳出柱、锥、台、球的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力。
二、教学重、难点1.教学重点:让学生通过观察实物及图片概括出棱柱、棱锥、棱台的结构特征;2.教学难点:棱柱、棱锥、棱台的结构特征的概括。
三、教学过程(一)创设情境 引入新课在我们周围存在着各种各样的物体,它们都占据着空间的一部分,如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
本节课我们主要从结构特征方面认识几种最基本的空间几何体。
观察自己书桌上和课本上的图片思考下面的问题: 1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状? 3.组成这些几何体的每个面有什么特点?面与面之间有什么关系? (二)讲授新课 1.两类几何体通过观察可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形(学生总结)。
一般地,我们把有若干个平面多边形围成的几何体叫做多面体(图1)。
围成多面体的各个多边形叫做多面体的面,如面ABCD ,面//B BCC ;相邻两个面的公共边叫做多边形的棱,如棱AB ,棱/AA ;棱与棱的公共点叫做多面体的顶点,如顶点/,D A 。
如(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)这些物体都具有多面体的形状。
我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体(图2)。
这条定直线叫做旋转体的轴。
(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)这些物体都具有旋转体的形状。
空间几何体的结构____________________________________________________________________________________________________________________________________________________________________掌握棱柱、棱锥、棱台等多面体结构特征.掌握圆柱、圆锥、圆台、球等旋转体的结构特征.概括简单组合体的结构特征.1.几何体只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)构成空间几何体的基本元素:点、线、面是构成空间几何体的基本元素.(2)平面及其表示方法:①平面的概念:平面是处处平直的面,它是向四面八方无限延展的.②平面的表示方法:图形表示:在立体几何中,通常画平行四边形表示一个平面并把它想象成无限延展的符号表示:平面一般用希腊字母α,β,γ…来命名,还可以用表示它的平行四边形对角顶点的字母来命名.深刻理解平面的概念,搞清平面与平面图形的区别与联系是解决相关问题的关键.平面与平面图形的区别与联系为:平面是没有厚度、绝对平展且无边界的,也就是说平面是无限延展的,无厚薄,无大小的一种理想的图形.平面可以用三角形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形是平面,只能说平面可以用平面图形来表示.(3)用运动的观点理解空间基本图形之间的关系:①点动成线:运动方向始终不变得到直线或线段;运动方向时刻变化得到的是曲线或者曲线的一段.②线动成面:直线平行移动可以得到平面或者曲面;固定射线的端点,让其绕一个圆弧转动,可以形成锥面.③面动成体:面运动的轨迹(经过的空间部分)可以形成一个几何体. 3.棱柱 (1)棱柱的定义一般地,由一个平面多边形(凸多边形)沿某一方向平移形成的空间几何体叫做棱柱。
平移起止位置的两个平面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面. 两侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点. (2)棱柱的本质特征:①两个底面是全等的多边形,且互相平行; ②其余各面每相邻两个面的公共边都互相平行. (3)正棱柱底面是正多边形,每个侧面都是矩形的棱柱叫正棱柱.4.棱锥 (1)棱锥的定义当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥。
由棱柱的一个底面 收缩而成的点叫棱锥的顶点。
原棱柱的底面叫棱锥的底面。
原棱柱的侧面收缩后的面 叫做棱锥的侧面。
相邻侧面的公共边叫棱锥的侧棱. (2)棱锥的本质特征:①有一个面是多边形; ②其余各面是有一个公共顶点的三角形. (3)正棱锥如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心,这样的棱锥叫正棱锥. 5.棱台 (1)棱台的定义用平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫棱台。
原棱锥的底面和截面分别叫做棱台的下底面和上底面。
其它各面叫做棱台的侧面,相邻侧面的公共边叫做棱台的侧棱. (2)棱台的本质特征①上、下底面平行,且是相似多边形; ②各侧面是梯形; ③各侧棱延长后交于一点.F 1E 1D 1C 1B 1A 1FEDCBA D 1C 1B 1A 1DA(3)正棱台用正棱锥截得的棱台叫做正棱台. 6.多面体(1)多面体的定义:由若干个平面多边形围成的几何体叫做多面体. (2)几面体:多面体有几个面就称为几面体. 7.圆柱 (1)圆柱的定义以矩形的一边所在直线为旋转轴,旋转一周形成的几何体叫做圆柱. 如右图,旋转轴叫圆柱的轴;垂直于的边旋转而成的圆面叫做圆柱的底面; 平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂 直于轴的边都叫做圆柱的母线. (2)圆柱的简单性质①平行于底面的截面是与底面大小相同的圆; ②过轴的截面(轴截面)是全等的矩形; ③圆柱的侧面展开图是矩形.8.圆锥(1)圆锥的定义以直角三角形的一条直角边所在直线为旋转轴,直角三角形旋转一周形成的几何体叫圆锥. 如右图,轴为SO ,底面为O ,母线为SA 或SB ,S 叫做圆锥的顶点,OA (或OB ) 叫底面O 的半径,线段SO 是圆锥的高. (2)圆锥的简单性质①平行于底面的截面都是圆; ②过轴的截面是全等的等腰三角形; ③圆锥的侧面展开图是扇形. 9.圆台 (1)圆台的定义以直角梯形垂直于底边的腰所在的直线为旋转轴,旋转一周所形成的集合体叫做圆台. 如右图,旋转轴叫圆台的轴(即上、下底面圆心的连线);在轴上这条边 的长度叫圆台的高;垂直于轴的边旋转而成的圆面叫做圆台的底面;不垂 于轴的边旋转而成的曲面叫做圆台的侧面,无论旋转到什么位置,这条边 都叫做圆台的母线. (2)圆台的简单性质①平行于底面的截面都是圆面;②过轴的截面(轴截面)是全等的等腰梯形;③圆台的侧面展开图是扇环. 10.球(1)球的定义半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球.心;半圆的半径叫做球的半径; 半圆的直径叫做球的直径;半圆弧旋转而成的曲面叫做球面.(2)球的简单性质用一个平面去截球,截面是圆面,而且球心和截面圆心的连线 直径底面B 'A 'O '底面母线高、轴侧面BOA垂直于截面,球心到截面的距离d 与球的半径R 及截面圆的半径r 有下面 的关系:22r R d =-11.旋转体一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫做旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫做旋转体. 12.简单组合体常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图(2)所示的组合体.类型一 平面概念的理解例1:下列说法中正确的是________.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面; (3)平静的太平洋面就是一个平面; (4)圆和平行四边形都可以表示平面.解析:(1)不正确.我们用平行四边形来表示平面,但不能说平行四边形是一个平面.平行四边形仅是平面上四条线段构成的图形,它是不能无限延展的.(2)不正确.平面图形和平面是完全不同的两个概念,平面图形是有大小的,它是不可能无限延展的,而平面是无限延展的,故没有大小.(3)不正确.太平洋再大也会有边际,也不可能是绝对平的.太平洋只是给我们一种平面的印象. (4)正确.在需要时,除用平行四边形表示平面外,还能用三角形、梯形、圆等来表示平面. 答案:(4)练习1:有下列结论:(1)平面是处处平直的;(2)平面是无限延展的;(3)平面的形状是平行四边形;(4)一个平面的厚度可以为0.001mm.其中正确结论的个数是( )A .1B .2C .3D .4答案:B练习2:1.构成空间几何体的基本元素为( )A .点B .线C .面D .点、线、面 答案: D类型二 构成几何体的基本元素例2:试指出下列各图中几何体的基本元素.解析:此类题要联想到实物,正确理解概念,只有暴露在外面的部分才是面,像(1)中把中间的四边形误认为面就错了.答案:由几何体的构成可知:(1)中几何体有6个顶点,12条棱和8个三角形面;(2)中几何体有12个顶点,18条棱和8个面;(3)中几何体有6个顶点,10条棱和6个面;(4)中几何体有2条曲线,3个面(2个圆面和1个曲面).练习1:指出所给两个几何图形的面、顶点、棱,并指出它们分别由几个面围成,各有多少条棱?多少个顶点?答案:(1)中,面SAB、面SBC、面SCD、面SAD、面ABCD,共5个,棱SA、SB、SC、SD、AB、BC、CD、DA,共8条,顶点S、A、B、C、D,共5个.(2)中,面ABCD、面A1B1C1D1、面ABB1A1、面BCC1B1、面CDD1C1、面DAA1D1,共6个,棱AB、BC、CD、DA、A1B1、B1C1、C1D1、D1A1、A1A、B1B、C1C、D1D,共12条,顶点A1、B1、C1、D1、A、B、C、D,共8个.练习2:下列说法:①任何一个几何体都必须有顶点、棱和面;②一个几何体可以没有顶点;③一个几何体可以没有棱;④一个几何体可以没有面.其中正确的个数是()A.1B.2C.3D.4答案:B例3:下列说法错误的是________(填序号).(1)射线运动后的轨迹不可能是整个平面;(2)直线绕着一个点转动,只能形成曲面;(3)将一个矩形沿同一方向移动一段距离,其轨迹是长方体.解析:(1)错误.水平放置的射线绕顶点在水平面内旋转一周,可形成平面.(2)错误.直线绕一个点左右转动也能形成平面.(3)错误.矩形上各点沿铅垂线方向移动相同的距离,其轨迹才形成长方体.答案:(1)(2)(3)练习1:如图所示,画出①②③中线段L绕着直线l旋转一周形成的曲面.答案:类型三多面体与旋转体的问题例4:下列几何体中是棱柱的个数为()A.1B.2C.3D.4解析:①③⑤为棱柱,故选C.答案:C练习1:下面没有体对角线的一种几何体是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱答案:A练习2:棱柱的侧面都是()A.三角形B.四边形C.五边形D.矩形答案:B练习3:给出下列三个命题,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A例5:下列说法不正确的是()A.圆柱的平行于轴的截面是矩形B.圆锥的过轴的截面是等边三角形C.圆台的平行于底面的截面是圆面D.球的任意截面都是圆面解析:当圆锥的母线长与底面圆的直径不相等时,过圆锥的轴的截面是等腰三角形,但不是等边三角形.答案:B练习1:(·江西丰城三中高一期末测试)半圆绕着它的直径所在直线旋转一周所得的轨迹是() A.球B.球面C.球或球面D.以上均不是答案:B练习2:(·甘肃庆阳市西峰育才中学高一期末测试)如图(1)所示的几何体是由如图(2)所示的哪个平面图形绕虚线旋转一周得到的?()答案:A例6:请描述如图所示的组合体的结构特征.解析:将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.答案:图(1)是由一个圆锥和一个圆台拼接而成的组合体;图(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.练习1:(1)说出下列物体可以近似地看作由哪几种几何体组成?(2)如图(1)、(2)所示的两个组合体有什么区别?答案:(1)图(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.(2)图4(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.练习2:(1)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.(2)如图所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,说出它形成的几何体的结构特征答案:(1)如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.(2)一个大球内部挖去一个同球心且半径较小的球.1.下面没有体对角线的一种几何体是A 三棱柱B 四棱柱C 五棱柱D 六棱柱答案:A2.下列平面图形旋转后能得到下边几何体的是(1) (2) (3) (4)A (1)B (2)C (3) D(4)答案:A3.下列说法中不正确的是A 棱柱的侧面不可以是三角形B 有六个大小一样的正方形所组成的图形是正方体的展开图C 正方体的各条棱都相等D 棱柱的各条侧棱都相等答案:B4. 指出下图分别包含的几何体(1)(2)(3)(1)(2)(3)答案:(1)球、圆柱(2)圆锥、圆柱、圆台(3)圆柱、长方体5.用一个平面去截正方体,得到的截面可能是、、、、边形。