a
和结合律: (a+b)+c=a+(b+c).
2向量的减法
设a为一向量,与a的模相等而方向相反的向量叫做a的负向量 ,记作-a,由此,我们规定两个向量a与b的差: a-b=a+(-b).特别是 a-a=a+(-a)=0由三角形法则可知道,要从a减去b,只要把-b加到 向量a 上去
a -b a-b
3,数乘向量
z
y
x
上下两部分,上面的四个卦限按逆时针分成两个可以确定一 个平面,称为坐标面三个坐标面把空间分成八个部分,每一 个部分叫做一个卦限.xoy平面把它们分成上下两部分,上面 的四个卦限按逆时针分成1,2,3,4卦限;下面的四个卦限
按逆时针分成5,6,7,8卦限
过空间的一点M分别作x轴y轴z轴的垂直平面,它们和三个
两个非零向量如果它们的方向相同或相反,称为平行向量, 记为a∥b.由于零向量的方向认为是任意的,因此零向量与 任何向量都平行. 当平行向量的起点放在同一点时,它们的 终点和公共起点在同一直线上,因此.两向量平行又称两向 量共线.
二
向 量 的 线 性 运 算
向量的加,减法和数乘向量的运算叫做向量的线性运算. 1,向量的加法 规定:两个向量的加法运算, 以两向量为平行四边形的边, 对角线为它们的和.(称为平行四边形法). 把两向量的始点和终点相连接,它们的和是以一个向量 的始点为始点,另一个向量的终点为终点的向量.(三角形 法则)
b
c
c
b b c d
a a 向量加法的平行四边形法则与
a
三角形法则是一致的,这从上面 可明白地看出.但多个向量相加 a+b+c+d
时,用三角形法则明显要方便些. 因为相加的向量只要依次 首尾相连.第一个向量的起点为起点, 最后一个向量的终点 为终点的向量即是所求的和向量.