第一章1.1回归分析的基本思想及其初步应用
- 格式:doc
- 大小:67.50 KB
- 文档页数:11
人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
1.1 回归分析的基本思想及其初步应用【学习目标】1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。
2. 能作出散点图,能求其回归直线方程。
3. 会用所学的知识对简单的实际问题进行回归分析。
【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:(1) 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。
例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; (2)两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据. 4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。
2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i (i=1,2,…,n )的均值,y 表示数据y i (i=1,2,…,n )的均值,xy 表示数据x i y i (i=1,2,…,n )的均值.a、b 的意义是:以 a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位. 要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。
新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
1.1回归分析的基本思想及其初步应用(一)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析.教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报.二、讲授新课: 1. 教学例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示:编 号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程第三步:代值计算② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. ③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数10203040506070150155160165170175180身高/cm体重/k gy bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.1.1回归分析的基本思想及其初步应用(二)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 教学过程: 一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和. 二、讲授新课:1. 教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即21()ni i SST y y ==-∑.残差平方和:回归值与样本值差的平方和,即21()ni i i SSE y y ==-∑.回归平方和:相应回归值与样本均值差的平方和,即21()ni i SSR y y ==-∑.(2)学习要领:①注意i y 、i y 、y 的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()nnni i i i i i i y y y y y y ===-=-+-∑∑∑;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数22121()1()nii i n ii yy R yy ==-=--∑∑来刻画回归的效果,它表示解释变量对预报变量变化的贡献率. 2R 的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2. 教学例题:例2 关于x 与Y 有如下数据: x 2 4 5 6 8 y3040605070为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论. (答案:52211521()155110.8451000()i i i ii y y R yy ==-=-=-=-∑∑,221R =-521521()18010.821000()ii i ii yy yy ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.)3. 小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.1.1回归分析的基本思想及其初步应用(三)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学过程: 一、复习准备:1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.温度/x C2123 25 27 29 32 35 产卵数/y 个 711212466115325(学生描述步骤,教师演示)2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系. 二、讲授新课:1. 探究非线性回归方程的确定:① 如果散点图中的点分布在一个直线状带形区域,可以选线性回归模型来建模;如果散点图中的点分布在一个曲线状带形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c是待定的参数),故可用指数函数模型来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,而z 与x 间的关系如下:X 21 23 25 27 29 32 35z1.9462.3983.045 3.1784.190 4.7455.784观察z 与x 的散点图,可以发现变换后样本点分布在一条直线的附近,因此可以用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843z x =-,因此红铃虫的产卵数对温度的非线性回归方程为0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2. 小结:用回归方程探究非线性回归问题的方法、步骤. 三、巩固练习:为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下:(1(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy=e x +.) 1.1回归分析的基本思想及其初步应用(四)教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法,了解可用残差分析的方法,比较两种模型的拟合效果. 教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 教学过程: 一、复习准备:1. 提问:在例3中,观察散点图,我们选择用指数函数模型来拟合红铃虫的产卵数y 和温度x 间的关系,还可用其它函数模型来拟合吗?t 441529 625 729 841 1024 12252. 讨论:能用二次函数模型234y c x c=+来拟合上述两个变量间的关系吗?(令2t x=,则34y c t c=+,此时y与t间的关系如下:观察y与t的散点图,可以发现样本点并不分布在一条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次曲线234y c x c=+来拟合y与x之间的关系. )小结:也就是说,我们可以通过观察变换后的散点图来判断能否用此种模型来拟合. 事实上,除了观察散点图以外,我们也可先求出函数模型,然后利用残差分析的方法来比较模型的好坏.二、讲授新课:1. 教学残差分析:①残差:样本值与回归值的差叫残差,即i i ie y y=-.②残差分析:通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析.③残差图:以残差为横坐标,以样本编号,或身高数据,或体重估计值等为横坐标,作出的图形称为残差图. 观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,回归方程的预报精度越高.2. 例3中的残差分析:计算两种模型下的残差一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果. 残差平方和越小的模型,拟合的效果越好.由于两种模型下的残差平方和分别为1450.673和15448.432,故选用指数函数模型的拟合效果远远优于选用二次函数模型. (当然,还可用相关指数刻画回归效果)3. 小结:残差分析的步骤、作用三、巩固练习:y7 11 21 24 66 115 325 0100200300400050010001500ty。
数学·选修1-2(人教A版)1.1回归分析的基本思想及其初步应用►达标训练1.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A.①② B.①②③C.①②④ D.①②③④解析:根据函数关系、相关关系、回归关系的概念可知选C.答案:C2.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是()A.总偏差平方和 B.残差平方和C.回归平方和 D.相关指数R2答案:B3.下表是某工厂6~9月份用电量(单位:万度)的一组数据:月份x 6789用电量y 653 2由散点图可知,用电量y与月份x间有较好的线性相关关系,其线性回归直线方程是错误!=-1。
4x+a,则a等于( )A.10.5 B.5。
25C.5。
2 D.14。
5解析:答案:D4.(2013·广东四校联考)某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)423 5销售额y(万元)49263954根据上表可得回归方程错误!=错误!x+错误!中的错误!为9.4,据此模型预报广告费用为6万元时销售额为()A.63。
6万元 B.65.5万元C.67.7万元 D.72.0万元答案:B5.设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n 个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如右图),以下结论正确的是()A.直线l过点(错误!,错误!)B.x和y的相关系数为直线l的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同答案:A6.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( ) A.模型1:相关指数R2为0。
98B.模型2:相关指数R2为0。
1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 了解线性回归模型与函数模型的差异,了解衡量两个变量之间线性相关关系得方法---相关系数. 24 问题1:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?复习1:函数关系是一种 关系,而相关关系是一种 关系.复习2:回归分析是对具有 关系的两个变量进行统计分析的一种常用方法,其步骤: → → → .二、新课导学 ※ 学习探究实例问题:画出散点图,172cm 的女大学生的体重.解:由于问题中要求根据身高预报体重,因此 选 自变量x , 为因变量. (1)做散点图:从散点图可以看出 和 有比较好的 相关关系.(2) x = y =81i ii x y==∑821ii x==∑所以81822188i ii ii x yx y bxx==-==-∑∑ ay bx =-≈ 于是得到回归直线的方程为(3)身高为172cm 的女大学生,由回归方程可以预报其体重为 y =问题:身高为172cm 的女大学生,体重一定是上述预报值吗?思考:线性回归模型与一次函数有何不同?新知:用相关系数r 可衡量两个变量之间 关系.计算公式为r =r >0, 相关, r <0 相关;相关系数的绝对值越接近于1,两个变量的线性相关关系 ,它们的散点图越接近 ;r >,两个变量有 关系.※ 典型例题例1某班5名学生的数学和物理成绩如下表:(2)求物理成绩y对数学成绩x的回归直线方程;(3)该班某学生数学成绩为96,试预测其物理成绩;变式:该班某学生数学成绩为55,试预测其物理成绩;小结:求线性回归方程的步骤:※动手试试练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a=+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=)三、总结提升※学习小结1. 求线性回归方程的步骤:2. 线性回归模型与一次函数有何不同※知识拓展※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列两个变量具有相关关系的是()A. 正方体的体积与边长B. 人的身高与视力C.人的身高与体重D.匀速直线运动中的位移与时间2. 在画两个变量的散点图时,下面哪个叙述是正确的()A. 预报变量在x 轴上,解释变量在y 轴上B. 解释变量在x 轴上,预报变量在y 轴上C. 可以选择两个变量中任意一个变量在x 轴上D. 可选择两个变量中任意一个变量在y 轴上3. 回归直线y bx a=+必过()A. (0,0)B. (,0)x C. (0,)y D. (,)x y4.r越接近于1,两个变量的线性相关关系.5. 已知回归直线方程 0.50.81y x=-,则25x=时,y的估计值为.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有(2)求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10 个,那么机器的运转速度应控制在什么范围内?回归分析的基本思想及其初步应用(二)1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.3.会用相关指数,残差图评价回归效果.47复习1:用相关系数r可衡量两个变量之间关系.r>0, 相关,r<0 相关;r越接近于1,两个变量的线性相关关系,它们的散点图越接近;r>,两个变量有关系.复习2:评价回归效果的三个统计量:总偏差平方和;残差平方和;回归平方和.二、新课导学※学习探究探究任务:如何评价回归效果?新知:1、评价回归效果的三个统计量(1)总偏差平方和:(2)残差平方和:(3)回归平方和:2、相关指数:2R表示对的贡献,公式为:2R=2R的值越大,说明残差平方和,说明模型拟合效果.3、残差分析:通过来判断拟合效果.通常借助图实现.残差图:横坐标表示,纵坐标表示.残差点比较均匀地落在的区的区域中,说明选用的模型,带状区域的宽度越,说明拟合精度越,回归方程的预报精度越.※典型例题为了对x、y两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x=+, 717y x=+,试比较哪一个模型拟合的效果更好?小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.例2 假定小麦基本苗数x与成熟期有效苗穗y之间存在相关关系,今测得5组数据如下:(2)求回归方程并对于基本苗数56.7预报期有效穗数;(3)求2R,并说明残差变量对有效穗数的影响占百分之几.(参考数据:2115101.51,6746.76,n ni i ii ix x y====∑∑521()50.18iiy y=-=∑,521()9.117i iiy y=-=∑)※ 动手试试练1. 某班5名学生的数学和物理成绩如下表:(4)求学生A,B,C,D,E 的物理成绩的实际成绩和回归直线方程预报成绩的差 2i i e y y =-.并作出残差图评价拟合效果.小结:1. 评价回归效果的三个统计量:2. 相关指数评价拟合效果:3. 残差分析评价拟合效果:三、总结提升 ※ 学习小结一般地,建立回归模型的基本步骤:1、确定研究对象,明确解释、预报变量;2、画散点图;3、确定回归方程类型(用r 判定是否为线性);4、求回归方程;5、评价拟合效果. ※ 知识拓展在现行回归模型中,相关指数2R 表示解释变量对预报变量的贡献率,2R 越接近于1,表示回归效果越好.如果某组数据可以采取几种不同的回归方程进行回归分析,则可以通过比较2R 作出选2.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两个变量 y 与x 的回归模型中,分别选择了 4 个不同模型,它们的相关指数 2R 如下 ,其中拟合效果最好的模型是( ).A. 模型 1 的相关指数2R 为 0.98B. 模型 2 的相关指数2R 为 0.80C. 模型 3 的相关指数2R 为 0.50D. 模型 4 的相关指数2R 为 0.252. 在回归分析中,残差图中纵坐标为( ). A. 残差 B. 样本编号 C. x D. n e3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为( ). A.回归分析 B.独立性检验分析 C.残差分析 D. 散点图分析 4.2R 越接近1,回归的效果 .5. 在研究身高与体重的关系时,求得相关指数2R = ,可以叙述为“身高解释了69%的体重变化,而随机误差贡献了剩余 ”所以身高对体重的效应比随机误差的 . 练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=) (4)求相关指数评价模型.回归分析的基本思想及其初步应用(三)1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.3. 了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较. 47 复习1:求线性回归方程的步骤复习2:作函数2x y =和20.25y x =+的图像二、新课导学 ※ 学习探究探究任务:如何建立非线性回归模型?实例一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间(1)根据收集的数据,做散点图上图中,样本点的分布没有在某个 区域,因此两变量之间不呈 关系,所以不能直接用线性模型.由图,可以认为样本点分布在某一条指数函数曲线bx a y e +=的周围(,a b 为待定系数).对上式两边去对数,得ln y =令ln ,z y =,则变换后样本点应该分布在直线y 和x 的非线性回归方程.i i由上表中的数据得到回归直线方程z =因此红铃虫的产卵数y 和温度x 的非线性回归方程为※ 典型例题例1一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,(散点图如由图,可以认为样本点集中于某二次曲线234y c x c =+的附近,其中12,c c 为待定参数)试建立y 与x 之间的回归方程.思考:评价这两个模型的拟合效果.小结:利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.三、总结提升 ※ 学习小结利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行.※ 知识拓展非线性回归问题的处理方法: 1、 指数函数型bx a y e +=① 函数bx a y e +=的图像:② 处理方法:两边取对数得ln ln()bx a y e +=,即ln y bx a =+.令ln ,z y =把原始数据(x,y )转化为(x,z ),再根据线性回归模型的方法求出,b a . 2、对数曲线型ln y b x a =+ ① 函数ln y b x a =+的图像② 处理方法:设ln x x '=,原方程可化为y bx a '=+ 再根据线性回归模型的方法求出,a b . 3、2y bx a =+型处理方法:设2x x '=,原方程可化为y bx a '=+,再根据线性回归模型的方法求出,a b .※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当预报变量10x =时( ).A. 解释变量30y e -=B. 解释变量y 大于30e -C. 解释变量y 小于30e -D. 解释变量y 在30e -左右2. 在回归分析中,求得相关指数20.89R =,则( ). A. 解释变量解对总效应的贡献是11% B. 解释变量解对总效应的贡献是89% C. 随机误差的贡献是89% D. 随机误差的贡献是0.89%3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为( ). A .回归分析 B .独立性检验分析 C .残差分析 D. 散点图分析4.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线bx a y e +=的周围,令ln z y =,求得回归直线方程为0.25 2.58z x =- ,则该模型的回归方程为 .5. 已知回归方程 0.5ln ln 2y x =-,则100x =时,y 的估计值为 .为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下:(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图; (2)试求出预报变量对解释变量的回归方程.§1.2.1 独立性检验的基本思想及其初步应用1.通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的必要性;2.会根据22⨯列联表求统计量2K .1214复习1:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.二、新课导学 ※ 学习探究 新知1:1.分类变量: .2. 22⨯列联表: .试试:你能列举出几个分类变量吗?探究任务:吸烟与患肺癌的关系1.由列联表可粗略的看出:(1)不吸烟者有 患肺癌; (2)不吸烟者有 患肺癌.因此,直观上课的结论: .2.用三维柱柱图和二维条形图直观反映: (1)根据列联表的数据,作出三维柱形图:由上图可以直观地看出, 吸烟与患肺癌.(2) 根据列联表的数据,作出二维条形图:由上图可以直观地看出, 吸烟与患肺癌.根据列联表的数据,作出等高条形图:由上图可以直观地看出, 吸烟与患肺癌 .反思:(独立性检验的必要性)通过数据和图形,我们得到的直观印象是患肺癌有关.那是否有一定的把握认为“吸烟与患肺癌有关”呢?新知2:统计量2K吸烟与患肺癌列联表假设0H :吸烟与患肺癌没关系,则在吸烟者和不吸烟者中患肺癌不患肺癌者的相应比例 .即因此, 越小,说明吸烟与患肺癌之间关系 ;反之, .2K =※ 典型例题例1 吸烟与患肺癌列联表 求2K .※ 动手试试求K .三、总结提升 ※ 学习小结1. 分类变量:. 2. 22⨯列联表: .3. 统计量2K : . ※ 知识拓展1. 分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级,等等. 分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义. 如用“0”表示“男”,用“1”表示“女”. 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:求2K.§1.2.2 独立性检验的基本思想及其初步应用通过探究“秃顶是否与患心脏病有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示患心脏病的秃顶比例比患其它病的秃顶比例高,让学生亲身体验独立性检验的实施1416复习1:统计量2K:复习2:独立性检验的必要性:二、新课导学※学习探究新知1:独立性检验的基本思想:1、独立性检验的必要性:探究任务:吸烟与患肺癌的关系第一步:提出假设检验问题H:第二步:根据公式求2K观测值k=(它越小,原假设“H:吸烟与患肺癌没有关系”成立的可能性越;它越大,备择假设“H1:”成立的可能性越大.)第三步:查表得出结论※典型例题例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?小结:用独立性检验的思想解决问题: 第一步: 第二步: 第三步:例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300由表中数据计算得到K 的观察值 4.513k ≈. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?※ 动手试试练1. 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表: 请问有多大把握认为“高中生学习状况与生理健康有关”?三、总结提升 ※ 学习小结1. 独立性检验的原理:2. 独立性检验的步骤:※ 知识拓展.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A. 若k =6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B. 从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能性患肺病.C. 若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使推断出现错误.D. 以上三种说法都不对. 2. 下面是一个22⨯列联表 则表中a,b 的之分别是( ) A. 94,96 B. 52,50 C. 52,54 D. 54,52 3.某班主任对全班50名学生进行了作业量多少的调查,数据如下表: 则认为喜欢玩游戏与认为作业量多少有关系的把握大约为( ) A. 99% B. 95% C. 90% D.无充分依据4. 在独立性检验中,当统计量2K 满足时,我们有99%的把握认为这两个分类变量有关系.5. 在22⨯列联表中,统计量2K = .为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表 能以97.5%的把握认为药物有效吗?为什么?统计案例检测题测试时间:90分钟 测试总分:100分一、选择题(本大题共12小题,每题4分) 1、散点图在回归分析中的作用是 ( ) A .查找个体数目 B .比较个体数据关系 C .探究个体分类D .粗略判断变量是否呈线性关系2、对于相关系数下列描述正确的是 ( ) A .r >0表明两个变量相关 B .r <0表明两个变量无关C .r 越接近1,表明两个变量线性相关性越强D .r 越小,表明两个变量线性相关性越弱3、预报变量的值与下列哪些因素有关 ( ) A .受解释变量影响与随机误差无关 B .受随机误差影响与解释变量无关 C .与总偏差平方和有关与残差无关 D .与解释变量和随机误差的总效应有关4、下列说法正确的是 ( ) A .任何两个变量都具有相关系 B .球的体积与球的半径具有相关关系 C .农作物的产量与施肥量是一种确定性关系 D .某商品的产量与销售价格之间是非确定性关系5、在画两个变量的散点图时,下面哪个叙述是正确的 ( ) A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上 C. 可以选择两个变量中任意一个变量在x 轴上 D. 可以选择两个变量中任意一个变量在 y 轴上6、回归直线 y bx a =+ 必过 ( ) A .(0,0) B .(,0)x C .(0,)y D .(,)x y7、三维柱形图中,主、副对角线上两个柱形高度的 相差越大,要推断的论述成立的可能性就越大( )A .和B .差C .积D .商 8、两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当预报变量10x = ( )A. 解释变量30y e -=B. 解释变量y 大于30e -C. 解释变量y 小于30e -D. 解释变量y 在30e -左右 9、在回归分析中,求得相关指数20.89R =,则( ) A. 解释变量解对总效应的贡献是11% B. 解释变量解对总效应的贡献是89% C. 随机误差的贡献是89% C. 随机误差的贡献是0.89%10、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A .若k =6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能 性患肺病.C .若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使得推断出现错误.D .以上三种说法都不对.11、3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为( )A .回归分析B .独立性检验分析C .残差分析 D. 散点图分析12、在独立性检验时计算的2K 的观测值k =3.99,那么我们有 的把握认为这两个分类变量有关系 ( )A .90%B .95%C .99%D .以上都不对 二、填空题(本大题共4小题,每题4分)13、已知回归直线方程 0.50.81y x =-,则25x =时,y 的估计值为 . 14、如下表所示:22计算2K = . 15、下列关系中:(1)玉米产量与施肥量的关系; (2)等边三角形的边长和周长; (3)电脑的销售量和利润的关系;(4)日光灯的产量和单位生产成本的关系. 不是函数关系的是 .16、在一项打鼾与患心脏病的调查中,共调查1768人,经计算的2K =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是 的.(填“有关”“无关”) 三、解答题(本大题共2小题,每题18分)18、为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表能以97.5%的把握认为药物有效吗?为什么?18、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值3 2.543546 4.566.5⨯+⨯+⨯+⨯=)。
第一章1.1回归分析的基本思想及其初步应用
一、选择题
1、某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel软件计算得=0.577x-0.448(x为人的年龄,y为人体脂肪含量).对年龄为37岁的人来说,下面说法正确的是( )
A.年龄为37岁的人体内脂肪含量都为20.90%
B.年龄为37岁的人体内脂肪含量为21.01%
C.年龄为37岁的人群中的大部分人的体内脂肪含量为20.90%
D.年龄为37岁人群中的大部分人的体内脂肪含量为31.5%
2、回归分析中,相关指数R2的值越大,说明残差平方和( )
A.越大B.越小
C.可能大也可能小D.以上均错
3、已知x与y之间的一组数据如下表:
实用文档
则y关于x
A.(2,2)点B.(1.5,0)点
C.(1,2)点D.(1.5,4)点
4、两个变量成负相关关系时,散点图的特征是( )
A.点散布特征为从左下角到右上角区域
B.点散布在某带形区域内
C.点散布在某圆形区域内
D.点散布特征为从左上角到右下角区域内
5、下列说法正确的是( )
A.y=2x2+1中的x、y是具有相关关系的两个变量
B.正四面体的体积与其棱长具有相关关系
C.电脑的销售量与电脑的价格之间是一种确定性的关系
D.传染病医院感染甲型H1N1流感的医务人员数与医院收治的甲型流感人数是具有相关关系的实用文档
两个变量
6、对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(u i,v i)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断( )
(1) (2)
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关
二、填空题
7、已知线性回归方程为=0.50x-0.81,则x=25时,y的估计值为________.
8、今年一轮又一轮的寒潮席卷全国.某商场为了了解某品牌羽绒服的月销售量y(件)与月平均气实用文档
温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,数据如下表:
6℃,据此估计,该商场下个月羽绒服的销售量的件数约为________.
9、在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是________.
三、解答题
10、某企业上半年产品产量与单位成本资料如下:
实用文档
(1)求出线性回归方程;
(2)指出产量每增加1 000件时,单位成本平均变动多少?
(3)假定产量为6 000件时,单位成本为多少元?
11、假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
x i y i=112.3.
根据上表,通过计算机画出的散点图呈线性相关,并且已经得到∑n
i=1
(1)求线性回归方程=x+的回归系数、的值;
(2)求残差平方和;
实用文档
(3)求相关指数R2;
(4)估计使用年限为10年时,维修费用是多少?
12、某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:
(1)求年推销金额y
(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.
实用文档
以下是答案
一、选择题
1、C [当x=37时,=0.577×37-0.448=20.901≈20.90,由此估计:年龄为37岁的人群中的大部分人的体内脂肪含量为20.90%.]
2、B [相关指数R2越大,说明回归模型拟合的效果越好,残差平方和越小,反之也是.]
3、D [在本题中,样本点的中心为(1.5,4),所以回归直线过(1.5,4)点.]
4、D [散点图的主要作用是直观判断两个变量之间的相关关系.一般地说,当散点图中的点是呈“由左下角到右上角”的趋势时,则两个变量之间具有正相关关系;而当散点图中的点是呈“由左上角到右下角”的趋势时,则两个变量之间具有负相关关系.]
5、D [感染的医务人员数不仅受医院收治的病人数的影响,还受防护措施等其他因素的影响.]
6、C [图(1)中的数据随着x的增大而y减小,因此变量x与变量y负相关;图(2)中的数据随着u的增大,v也增大,因此u与v正相关.]
实用文档
二、填空题
7、11.69
解析y的估计值就是当x=25时的函数值,即0.50×25-0.81=11.69.
8、46
解析∵样本点的中心为(10,38),
∴38=-2×10+,∴=58,
∴当x=6时,=-2×6+58=46.
9、甲
三、解答题
10、解(1)n=6,∑6
i=1x i=21,∑6
i=1
y i=426,x=3.5,
y=71,∑6
i=1x2i=79,∑6
i=1
x i y i=1 481,
=∑6
i=1
x i y i-6x y
∑6
i=1
x2i-6x2
=
1 481-6×3.5×71
79-6×3.52
≈-1.82.
=y-x=71+1.82×3.5=77.37.
实用文档
实用文档
线性回归方程为 = + x =77.37-1.82x .
(2)因为单位成本平均变动 =-1.82<0,且产量x 的计量单位是千件,所以根据回归系数 的意义有:
产量每增加一个单位即1 000件时,单位成本平均减少1.82元.
(3)当产量为6 000件时,即x =6,代入线性回归方程:
=77.37-1.82×6=66.45(元)
当产量为6 000件时,单位成本为66.45元.
11、解 (1)由已知数据制成下表.
于是有 =112.3-5×90-5×42
=1.23,
=y-x=5-1.23×4=0.08,
∴=1.23x+0.08.
(2)由公式1=1.23×2+0.08=2.54,
2=1.23×3+0.08=3.77,
3=1.23×4+0.08=5,
4=1.23×5+0.08=6.23,
5=1.23×6+0.08=7.46,
∴1=2.2-2.54=-0.34,
2=3.8-3.77=0.03,
3=5.5-5=0.5,
4=6.5-6.23=0.27,
5=7.0-7.46=-0.46.
∴残差平方和为(-0.34)2+0.032+0.52+0.272+(-0.46)2=0.651.
(3)R2=1-0.651
(-2.8)2+(-1.2)2+0.52+1.52+2.02≈0.958 7.
实用文档
(4)线性回归方程为=1.23x+0.08,
当x=10时,=1.23×10+0.08=12.38,
即估计使用10年时维修费用是12.38万元.12、解(1)设所求的线性回归方程为=x+,
则=∑5
i=1
(x i-x)(y i-y)
∑5 i=1 (x i-x)2
=
10
20
=0.5,
=y-x=0.4.
所以年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.
(2)当x=11时,=0.5×11+0.4=5.9(万元).
所以可以估计第6名推销员的年推销金额为5.9万元.
实用文档。