回归分析的基本思想及其初步应用
- 格式:pptx
- 大小:478.70 KB
- 文档页数:30
个性化教学辅导教案学科: 任课教师:授课时间:年月日(星期) 姓名年级性别课题第九讲回归分析的基本思想及其初步应用知识框架1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。
2. 能作出散点图,能求其回归直线方程。
3. 会用所学的知识对简单的实际问题进行回归分析。
难点重点重点:难点:课前检查作业完成情况:优□ 良□ 中□ 差□作业完成建议:教学过程如下:要点一、变量间的相关关系1. 变量与变量间的两种关系:(1)函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S与半径r之间的关系S=πr2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。
例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系.2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量;(2)两个变量均为随机变量,如某学生的语文成绩与化学成绩.3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据.4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。
例题讲解类型一、利用散点图判断两个变量的线性相关性例1.在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y与腐蚀时间x的一组数据如下表所示.x/秒 5 10 15 20 30 40 50 60y/微米 6 10 11 13 16 17 19 23(1)画出散点图.(2)根据散点图,你能得出什么结论?课堂练习【1】给出x 与y 的数据如下:x 2 4 5 6 8 y3040605070画出散点图,并由图判断x 、y 之间是否具有线性相关关系。
回归分析的基本思想及其初步应用1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型(1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x -,其中x -=1n ∑ni =1x i ,y -=1n∑ni =1y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量.[注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具.(2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.3.刻画回归效果的方式方式方法计算公式 刻画效果R 2R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y )2R 2越接近于1,表示回归的效果越好残差图e ^i 称为相应于点(x i ,y i )的残差,e ^i =y i -y ^i残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高残差平方和∑ni =1(y i -y ^i )2 残差平方和越小,模型的拟合效果越好判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( )(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )(3)利用线性回归方程求出的值是准确值.( ) 答案:(1)× (2)√ (3)×变量x 与y 之间的回归方程表示( )A .x 与y 之间的函数关系B .x 与y 之间的不确定性关系C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 答案:D在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98 B .模型2的相关指数R 2为0.80 C .模型3的相关指数R 2为0.50 D .模型4的相关指数R 2为0.25 答案:A已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值为________. 答案:8.95探究点1 线性回归方程在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间的一组观察值如下表.x (s) 5 10 15 20 30 40 50 60 70 90 120 y (μm)610101316171923252946(1)画出散点图;(2)求y 对x 的线性回归方程;(3)利用线性回归方程预测时间为100 s 时腐蚀深度为多少. 【解】 (1)散点图如图所示.(2)从散点图中,我们可以看出y 对x 的样本点分布在一条直线附近,因而求回归直线方程有意义.x =111(5+10+15+ (120)=51011,y =111(6+10+10+…+46)=21411,a ^=y -b ^x ≈21411-0.304×51011= 5.36. 故腐蚀深度对腐蚀时间的线性回归方程为y =0.304x + 5.36.(3)根据(2)求得的线性回归方程,当腐蚀时间为100 s 时,y ^=5.36+0.304×100=35.76(μm),即腐蚀时间为100 s 时腐蚀深度大约为35.76 μm.求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系. (2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炼料熔化完毕到出钢的时间)的数据(x i ,y i )(i =1,2,…,10)并已计算出=1589,i =110y i =1 720,故冶炼时间y 对钢水的含碳量x 的回归直线方程为y ^=1.267x -30.47. 探究点2 线性回归分析假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求相关指数R 2,并说明残差变量对有效穗的影响占百分之几? 【解】 (1)散点图如下.(2)由图看出,样本点呈条状分布,有比较好的线性相关关系,因此可以用回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,x -=30.36,y -=43.5,(1)该类题属于线性回归问题,解答本题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2型的拟合效果,在此基础上,借助回归方程对实际问题进行分析. (2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适; ②残差平方和法:残差平方和 i =1n(y i -y ^i )2越小,模型的拟合效果越好;关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070由(2)可得y i -y ^i 与y i -y -的关系如下表:y i -y ^i -1 -5 8 -9 -3 y i -y --20-101020由于R 21=0.845,R 22=0.82,0.845>0.82, 所以R 21>R 22.所以(1)的拟合效果好于(2)的拟合效果. 探究点3 非线性回归分析某地今年上半年患某种传染病的人数y (人)与月份x (月)之间满足函数关系,模型为y =a e bx ,确定这个函数解析式.月份x /月 1 2 3 4 5 6 人数y /人526168747883【解】 设u =ln y ,c =ln a , 得u ^=c ^+b ^x ,则u 与x 的数据关系如下表:x12 3 4 56u =ln y 3.95 4.114.224.3044.356 7 4.418 8非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程. (4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果. (5)根据相应的变换,写出非线性回归方程.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x(千册)1 2 3 5 10 20 30 50 100 200 y (元)10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y (元)与印刷册数的倒数1x之间是否具有线性相关关系,如有,求出y 对x 的回归方程,并画出其图形.解:首先作变量置换u =1x,题目中所给的数据变成如下表所示的10对数据.u i 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y i10.155.524.082.852.111.621.411.301.211.15然后作相关性检测.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系,由公式得a ^≈1.125,b ^≈8.973,所以y ^=1.125+8.973u ,最后回代u =1x ,可得y ^=1.125+8.973x.这就是题目要求的y 对x 的回归方程.回归方程的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴C .回归模型中一定存在随机误差D .散点图能明确反映变量间的关系解析:选D.用散点图反映两个变量间的关系时,存在误差. 2.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变; ②回归方程y ^=b ^x +a ^必经过点(x ,y ); ③线性回归模型中,随机误差e =y i -y ^i ;④设回归方程为y ^=-5x +3,若变量x 增加1个单位,则y 平均增加5个单位. 其中正确的为________(写出全部正确说法的序号).解析:①正确;②正确;③线性回归模型中,随机误差的估计值应为e ^i =y i -y ^i ,故错误;④若变量x 增加1个单位,则y 平均减少5个单位,故错误. 答案:①②3.某商场经营一批进价是30元/台的小商品,在市场试销中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:x 35 40 45 50 y56412811(1)画出散点图,并判断y 与x 是否具有线性相关关系;(2)求日销售量y 对销售单价x 的线性回归方程(方程的斜率保留一个有效数字); (3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.(2)因为x -=14×(35+40+45+50)=42.5,(3)依题意有P =(161.5-3x )(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎪⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.故预测当销售单价为42元时,能获得最大日销售利润.知识结构深化拓展线性回归模型的模拟效果(1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好.(3)R 2法:R 2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[注意] r 的绝对值越大说明变量间的相关性越强,通常认为r 的绝对值大于等于0.75时就是有较强的相关性,同样R 2也是如此,R 2越大拟合效果越好.[A 基础达标]1.废品率x %和每吨生铁成本y (元)之间的回归直线方程为y ^=256+3x ,表明( ) A .废品率每增加1%,生铁成本增加259元 B .废品率每增加1%,生铁成本增加3元 C .废品率每增加1%,生铁成本平均每吨增加3元 D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2.已知某产品连续4个月的广告费用为x i (i =1,2,3,4)千元,销售额为y i (i =1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y ^=b ^x +a ^中,b ^=0.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元解析:选B.依题意得x =4.5,y =3.5,由回归直线必过样本点中心得a ^=3.5-0.8×4.5=-0.1,所以回归直线方程为y ^=0.8x -0.1.当x =6时,y ^=0.8×6-0.1=4.7.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得的线性回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x 解析:选A.由题中数据得x =6.5,y =28.5,a ^=y -b ^x =28.5-2.62×6.5=11.47,所以y 与x 的线性回归方程是y ^=2.62x +11.47.故选A.4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过( )A .10亿元B .9亿元C .10.5亿元D .9.5 亿元解析:选C.代入数据y =10+e ,因为|e |≤0.5, 所以9.5≤y ≤10.5,故不会超过10.5亿元.5.某种产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表:y 与x 的线性回归方程为y =6.5x +17.5,当广告支出5万元时,随机误差的效应(残差)为________.解析:因为y 与x 的线性回归方程为y ^=6.5x +17.5,当x =5时,y ^=50,当广告支出5万元时,由表格得:y =60,故随机误差的效应(残差)为60-50=10. 答案:106.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),且e i 恒为0,则R 2为________.解析:由e i 恒为0,知y i =y ^i ,即y i -y ^i =0, 故R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2=1-0=1.答案:17.某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系见表:已知∑7i =1x 2i =280,∑7i =1x i y i =3 487. (1)求x ,y ;(2)已知纯利y 与每天销售件数x 线性相关,试求出其回归方程. 解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597.(2)因为y 与x 有线性相关关系,所以b ^=∑7i =1x i y i-7x y ∑7i =1x 2i -7x 2=3 487-7×6×5597280-7×36=4.75,a ^=5597-6×4.75=71914≈51.36.故回归方程为y ^=4.75 x +51.36.8.已知某校5个学生的数学和物理成绩如下表:(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程; (3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?参考数据和公式:y ^=b ^x +a ^,其中.解:(1)记事件A 为“恰有2名学生的物理成绩是自己的实际成绩”, 则P (A )=2C 25A 55=16.(2)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,学生的编号i 1 2 3 4 5 数学x i 80 75 70 65 60 物理y i7066686462[B 能力提升]9.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.010.(选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高x(cm)60708090100110体重y(kg) 6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05 (1)(2)如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm 、体重82 kg 的在校男生体重是否正常? 解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y =c 1e c 2x的周围, 于是令z =ln y ,得下表:x 60 70 80 90 100 110 z 1.81 2.07 2.30 2.50 2.71 2.86 x 120 130 140 150 160 170 z3.043.293.443.663.864.01作出散点图如图所示:由表中数据可得z 与x 之间的回归直线方程为 z ^=0.662 5+0.020x ,则有y ^=e 0.662 5+0.020x .(2)当x =175时,预报平均体重为y ^=e 0.662 5+0.020×175≈64.23, 因为64.23×1.2≈77.08<82,所以这个男生偏胖.。
1.1回归分析的基本思想及其初步应用(第1课时)教案教材:人民教育出版社A版必修3授课教师:中卫市第一中学俞清华【教学目标】在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在人教A版选修1-2第一章第一节“回归分析的基本思想及其初步应用”这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容《教师用书》共计4课时,第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果;第二课时:从相关系数、相关指数和残差分析角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用. 本节课是第一课时的内容.1、知识与技能目标认识随机误差;2、过程与方法目标(1)会使用函数计算器求回归方程;(2)能正确理解回归方程的预报结果.3、情感、态度、价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性.【教学重点】随机误差e的认识【教学难点】随机误差的来源和对预报变量的影响【教学方法】启发式教学法【教学手段】多媒体辅助教学【教学流程】【教学过程设计】.几点注明:1、复习引入时教师做示范——提供5组身高与体重的数据,用Excel展示如何画散点图、用最小二乘法求线性回归方程.随机抽样并列表如下:2、计算机做散点图的步骤如下:(1)进入Excel软件操作界面,在A1,B1分别输入“身高”和“体重”,在A,B 列输入相应的数据.(2)点击“图表向导”图标,进入“图表类型”对话框,选择“标准类型”中的“XY散点图”,单击“下一步”.(3)在“图表向导”中的“图表数据源”对话框中,选择“系列”选项,单击“添加”按钮添加系列1,在“X值”栏中输入身高所在数据区域,在“Y值”栏中输入体重所在数据区域,单击“下一步”.(4)进入“图表向导”中的图表选项对话框,对图表的一些属性进行设置. (5)单击“完成”按钮.注:也可以直接使用我们提供的文件来给学生演示,相对节约课堂时间.3、学生使用函数计算器求回归方程的过程如下:MODE SHIFT CLR =1 13 , DT 165 49 ,DT17565, DT 165 58 , DT 157 51 , DT 170 53 SHIFT CLRSHIFTCLR2==1 (进入回归计算模式)(清除统计存储器)(输入五组数据)所以回归方程为 yˆ0.673x-56.79 (计算参数a) (计算参数b)(学生还会使用更先进的计算器)4、课堂使用的数据如下高二女生前15组数据列表:高二女生中间15组数据列表:高二女生后15组数据列表:课本P2例题1 女大学生8组数据列表:例1.1.1回归分析的基本思想及其初步应用(第1课时)教案说明教材:人民教育出版社A版必修3授课教师:中卫市第一中学俞清华1、设计理念《数学课程标准》明确指出:有效的数学学习活动不能单纯地模仿与记忆,动手实践、自主探索与合作交流,可以促进学生自主、全面、可持续的发展,是学生学习数学的重要方式.为使教学真正做到以学生为本,我对教材P2—P3的知识进行了适当地重组和加工,力求给学生提供研究、探讨的时间与空间,让学生充分经历“做数学”的过程,促使学生在自主中求知,在合作中获取,在探究中发展.2、授课内容的数学本质与教学目标定位回归分析,是一种从事物因果关系出发进行预测的方法.操作中,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式),预测今后事物发展的趋势.然而,所建立的回归方程与样本点的分布之间还存在有差异,这一差异就是我们本节课学习的主要内容:随机变量.3、学习本课内容的基础以及应用本课内容安排在《数学3(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,会利用最小二乘法求回归直线方程等内容.以此为基础,进一步讨论一元线性回归模型,分析产生模型中随机误差项的原因,从而让学生了解线性回归模型与函数模型之间的区别与联系,体会统计思维与确定性思维的区别与联系.通过本节课的学习,为后继课程了解偏差平方和分解思想和相关指数的含义、了解相关指数R2和模型拟合的效果之间的关系、了解残差图的作用,体会什么是回归分析、回归分的必要性,都起到铺垫作用.在本节课的教学中,学生使用了函数计算器,教师则利用电脑Excel表格完成对数据的整理,需要学生有一定的动手能力.4、学习本课内容时容易了解与容易误解的地方由于学生对必修3中的线性回归知识已经熟悉,会抽取样本、会画散点图、会利用最小二乘法求出线性回归方程,所以本节课学生容易了解:(1)从散点图看出,样本点呈条状分布,体重与身高具有线性相关关系,因此可以用线性回归方程来近似刻画它们之间的关系.(2)可以发现样本点并不完全落在回归方程上,有随机误差存在.(3)容易理解由一条回归方程预测到的身高172cm的女生体重不是都一样,它只是一个平均值.在学习过程中,相对不易理解的地方有:(1)对于随机误差的来源,学生是能够从样本的个体差异上来理解的,但是对于由用线性回归模型近似真实模型所引起的误差,学生理解还是有一定困难的.(2)随机误差对预报变量的影响,学生从感性上很好理解,当然是随机误差越小越好.但是从理性上认识,怎样从数据上刻画出随机误差是否变小了呢?学生还有困难.5、本节课的教法特点以及预期效果分析5.1 改造创新教师通过分析教材和学生认知规律,创造性地使用教材,做到既重视教材,更重视学生.具体说来有以下改造:(1)创设生活情景.利用学生的“体检经验”设置问题,既没有脱离课本例题1的相关内容,又能激发学生对数学的亲切感,引发学生看个究竟的冲动,兴趣盎然地投入学习.(2)充分体现随机观念.课本上仅仅希望利用8组数据就要学生体会到统计的思想和后继课程中回归分析的必要性,实在是为难学生了.在本课教学设计学生操作时强调“增多数据,加强比较”. 帮助学生体会“不同事件(如课本例1女大学生和高二女生)”,则统计结果不同、“同一事件(如都是高二女生),采样不同结果也不同”的基本事实.(3)教师的作用. 在这节课里,教师在学生操作结束后,利用更多数据的操作,形成一个与学生结果的对比,这一操作与展示为学生创造了新的思维增长点,引领学生进入更深层领悟.5.2 问题性本课教学以问题引导学习活动,通过恰时恰点地提出问题,提好问题,给学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动和有兴趣地学,逐步培养学生的问题意识,孕育创新精神.例如,在“结果的分析”中的问题4、“预测出的体重值都不同,那么它还有参考价值吗?”目的是让学生充分认识随机误差e的来源和对预报变量的影响,而这一问题的提出,立刻吸引学生细细体会随机观念,同时激发出学生的好奇心,提升深入探求的欲望.5.3 合作、探究的学习方式本节课的合作学习体现在两个方面:除了体现在每个小组内部成员之间,还体现在整堂课的教学结构上.小组成员内部提倡“不同的人作不同的事”,面对不同分组,学生可以自主选择的不同工作,动手带动动脑,遇到小的问题,通过探讨和帮助,能做到“学生的问题由学生自己解决”,促进对某一问题更清晰的认识,还能感受到团结合作的好处与必要.同时,每个小组的劳动成果共同构成课堂教学需要的多条回归方程,组与组之间的合作推动整节课的比较与区分得以实现.5.4教学手段本课积极将数学课程与信息技术进行整合,采用多种技术手段,特点主要体现如下:(1)以PPT 为操作平台,界面活泼,操作简单,能有效支持多种其它技术;(2)教师用Excel图表展示,直观形象,节约时间,帮助学生顺利完成学习内容;(3)学生使用函数计算器动手操作,求出回归方程.本课预期:(1)学生可以很好地复习使用函数计算器求回归方程,虽然在要求学生自己操作前教师有一个示例,但是还是会有一少部分人不会使用,所以在教学前要有一定的思想准备,和必要措施.(2)在分析各个组的预测结果为什么有差异时,由于个体经验不同,对问题的挖掘深度产生不同,这时教师的启发引导可能会十分必要,不能完全由学生漫无目的的“讨论”,使学生活动流于形式.(3)“结果分析”前,由学生展示操作成果,这些结果已经够用来说明问题,教师不要急于参与.在“结果分析”的第4个问题中引入教师利用电脑求出的由45 组数据得到的回归方程,让学生再一次通过比较得到新的思考点——怎样知道自己模拟的回归方程身高变化对体重变化影响有多大呢?这样会使学生自然而然渴望进一步了解相关回归分析的知识,为后继课程做好伏笔.对于体现本节课承上启下的作用,可能更好一些.6 教学反思通过本节课的教学实践,我再次体会到什么是由“关注知识”转向“关注学生”,在教学过程中,注意到了由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”,课堂上的真正主人应该是学生.一堂好课,师生一定会有共同的、积极的情感体验.本节课的教学中,知识点均是学生通过探索“发现”的,学生充分经历了探索与发现的过程.教学中没有以练习为主,而是定位在知识形成过程的探索,注重数学的思想性,如统计思想、随机观念、函数思想、数形结合的思想方法等,引导学生体验数学中的理性精神,加强数学形式下的思考和推理。
3.1回归分析的基本思想及其应用教材分析本节内容是数学选修2-3 第三章 统计案例 的起始课,是在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容《教师用书》共计4课时,第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第二课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用. 本节课是第一课时的内容.本节课的重点是回归分析的基本方法、随机误差e 的认识、残差,难点是回归分析的基本方法.课时分配本节内容用1课时的时间完成,主要介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果.教学目标重点: 回归分析的基本方法、随机误差e 的认识、残差. 难点:回归分析的基本方法.知识点:回归分析的基本方法、随机误差e 、残差.能力点:如何探寻回归分析的基本方法,数形结合的数学思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何运用最小二乘法求回归直线方程.考试点:求解线性回归方程,从残差的角度讨论回归模型的拟合效果. 易错易混点:随机误差e 与残差之间的区别与联系.拓展点:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.教具准备 多媒体课件 课堂模式 学案导学 一、引入新课对于一组具有线性相关关系的数据112233(,),(,),(,),,(,).n n x y x y x y x y 其回归直线方程的截距和斜率的最小二乘法估计公式分别为:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑11n i i x x n ==∑ 11ni i y y n ==∑ (,)x y 称为样本点的中心. 如何推导这两个计算公式?【设计意图】由学生所熟悉的最小二乘法引入新课,消除了学生对新知的恐惧感,引出最小二乘法的中的系数,a b ∧∧的计算公式的推导过程.二、探究新知从已经学过的知识,截距a 和斜率b 分别是使21(,)()niii Q y x αββα==--∑取最小值时,αβ的值,由于212212211(,)[((]{[(2[([(][(]}[(2[([(](ni i i ni i i i i nni i i i i i Q y x y x y x y x y x y x y x y x y x y x y x y x y x y x n y x αββββαβββββαβαβββββαβα=====-----=---+---⋅--+--=---+---⋅--+--∑∑∑∑)+))])])))])]))因为1111[((([(([(]([(]0,nniiiii i n ni i i i y x y x y x y x y x y x y x y x n y x y x ny n x n y x βββαβαβββαβββαββ====-----=-----=-----=-----=∑∑∑∑)])))]))))所以2212222111222221122111[([(]()2()()()(()()[()()](()[]()()()ni i i n n ni i ii i i i nniii i ni i i i nni i iii i Q y x y x n y x x x x x y y y y n y x x x y y x x y y n y x x x y y x x x x αββββαβββαβαβ==========---+--=----+-+------=--+---+---∑∑∑∑∑∑∑∑∑(,))])))1n=∑在上式中,后两项和,αβ无关,而前两项为非负数,因此要使Q 取得最小值,当且仅当前两项的值均为0.,既有121()()()niii nii x x y y x x β==--=-∑∑y x αβ=-通过上式推导,可以训练学生的计算能力,观察分析能力,能够很好训练学生数学能力,必须在老师引导下让学生自己推出.所以:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑这正是我们所要推导的公式.三、理解新知准确理解最小二乘法中系数,a b ∧∧的计算公式,以及回归方程的求解过程. 【设计意图】为准确地运用新知,作必要的铺垫.四、运用新知例1、 从某大学中随机选取8名女大学生,其身高和体重的数据如图所示:(1) 画出以身高为自变量x,体重为因变量y 的散点图;(2) 求根据女大学生的身高预报体重的回归方程;(3) 求预报一名身高为172cm 的女大学生的体重. 解:(1)由于问题中要求根据身高预报体重,因此选取身高为自变量x ,体重为因变量y 作散点图:(2)0.849,85.712:0.84985.712.b a y x ==-∴=-回归方程(3)对于身高172cm 的女大学生,由回归方程可以预报体重为:0.84917285.71260.316()y kg =⨯-=ˆ0.849b=是斜率的估计值,说明身高x 每增加1个单位时,体重y 就增加0.849 个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱?【设计意图】通过具体例子让学生感受回归分析思想的应用.最后的问题为接下来引入残差做了铺垫.在必修 3 中,我们介绍了用相关系数;来衡量两个变量之间线性相关关系的方法.本相关系数的具体计算公式为()()niix x y y r --=∑当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常,当r 的绝对值大于0. 75 时认为两个变量有很强的线性相关关系.165在本例中,可以计算出r =0. 798.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的.显然,身高172cm 的女大学生的体重不一定是60. 316 kg ,但一般可以认为她的体重接近于60 . 316 kg .图3 . 1- 2 中的样本点和回归直线的相互位置说明了这一点.由于所有的样本点不共线,而只是散布在某一条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示:y bx a e =++, ( 3 )这里a 和b 为模型的未知参数,e 是y 与y bx a =+之间的误差.通常e 为随机变量,称为随机误差,它的均值 E (e )=0,方差D (e )=2()D e σ=>0 .这样线性回归模型的完整表达式为:2,()0,().y bx a e E e D e σ=++⎧⎨==⎩ (4) 在线性回归模型(4)中,随机误差e 的方差越小,通过回归直线y bx a =+ (5)预报真实值y 的精度越高.随机误差是引起预报值y 与真实值y 之间的误差的原因之一,大小取决于随机误差的方差.另一方面,由于公式(1)和(2)中a 和b 为截距和斜率的估计值,它们与真实值a 和b 之间也存在误差,这种误差是引起预报值y 与真实值y 之间误差的另一个原因.【设计意图】引入随机误差e 后,将回归方程推广到回归模型. 思考:产生随机误差项e 的原因是什么?一个人的体重值除了受身高的影响外,还受许多其他因素的影响.例如饮食习惯、是否喜欢运动、度量误差等.事实上,我们无法知道身高和体重之间的确切关系是什么,这里只是利用线性回归方程来近似这种关系.这种近似以及上面提到的影响因素都是产生随机误差 e 的原因.因为随机误差是随机变量,所以可以通过这个随机变量的数字特征来刻画它的一些总体特征.均值是反映随机变量取值平均水平的数字特征,方差是反映随机变量集中于均值程度的数字特征,而随机误差的均值为0,因此可以用方差2σ来衡量随机误差的大小.为了衡量预报的精度,需要估计护的值.一个自然的想法是通过样本方差来估计总体方差.如何得到随机变量e 的样本呢?由于模型(3)或(4)中的e 隐含在预报变量y 中,我们无法精确地把它从y 中分离出来,因此也就无法得到随机变量e 的样本.解决问题的途径是通过样本的估计值来估计2σ.根据截距和斜率的估计公式(1)和(2 ) , 可以建立回归方程y bx a =+,因此y 是(5)中y 的估计量.由于随机误差e y y =-,所以e y y =-是e 的估计量.对于样本点(11,x y ) , (22,x y ) ,…, (,n n x y ) 而言,相应于它们的随机误差为,1,2,,i i i i i e y y y bx a i n =-=--=,其估计值为,1,2,,i i i i i e y y y b x a i n ∧∧∧∧=-=--=,i e ∧称为相应于点(,)i i x y 的残差(residual ).类比样本方差估计总体方差的思想,可以用22111(,)(2)22n i i e Q a b n n n σ∧∧∧∧===>--∑ 作为2σ的估计量, 其中a 和b 由公式(1) (2)给出,Q (a ,b )称为残差平方和(residual sum of squares ).可以用2σ∧衡量回归方程的预报精度.通常,2σ∧越小,预报精度越高.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差12,,,n e e e ∧∧∧来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析. 【设计意图】引入残差的概念,使学生会运用残差分析的思想分析模型的拟合效果. 表3- 2 列出了女大学生身高和体重的原始数据以及相应的残差数据.e -6.373 的估计值等,这样作出的图形称为残差图.【设计意图】通过例1的具体数据让学生感受残差分析的应用. 【变式练习】观察两相关变量得如下数据:求两个变量的回归方程. 解:10102110,0,110,110,i i i i i x y x x y ======∑∑10110221101101001,000.11010010i ii i i x y x yb a y b x b x x∧∧∧∧==--⨯∴====-=-⋅=-⨯-∑∑ 所以所求回归直线方程为y x =【设计意图】让学生自己动手解决求回归方程的问题,加深对回归分析思想的印象.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.回归直线方程,随机误差及残差.2.思想:回归分析的思想、数形结合的思想、残差分析的思想.教师总结: 公式的证明过程用到了前面两章学过的知识,提醒学生: 在学习新知时,也要经常复习前面学过的内容,“温故而知新”.在应用中增强对知识(如本节的随机误差和残差)的理解,及时查缺补漏,从而更好地运用知识,解题要有目的性,加强对数学知识、思想方法的认识与自觉运用. 【设计意图】 加强对学生学习方法的指导,做到“授人以渔”.六、布置作业1.阅读教材P80—84;2.书面作业 P89 习题3.1 1.(1)、(2)、(4).3.课外思考:如何运用回归分析的思想对未知量进行预报轨迹呢?【设计意图】设计作业1,2,是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用回归分析的思想,解决简单的数学问题;课外思考的安排,是让学生理解回归分析的思想,从而让学生深刻地体会随机误差,残差分析的思想,培养学生回归分析的基本思想,起到承上启下的作用.七、教后反思1.由于各校的情况不同,建议教师在使用本教案时灵活掌握,但必须在公式的证明思路的探寻上下足功夫.2.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊断与分析.八、板书设计1i nb ==∑bx。
庖丁巧解牛知识·巧学 一、回归分析回归分析是根据变量观测数据分析变量间关系的常用统计分析方法.通常把变量观测数据称为样本.1.散点图与回归方程(1)设对y 及x 做n 次观测得数据(x i ,y i )(i=1,2,…,n).以(x i ,y i )为坐标在平面直角坐标系中描点,所得到的这张图便称之为散点图.其中x 是可观测、可控制的普通变量,常称它为自变量,y 为随机变量,常称其为因变量.知识拓展 散点图是直观判断变量x 与y 是否相关的有效手段. (2)a 与回归系数b 的计算方法若散点呈直线趋势,则认为y 与x 的关系可以用一元回归模型来描述.设线性回归方程为y=a+bx+ε.其中a 、b 为未知参数,ε为随机误差,它是一个分布与x 无关的随机变量.最小二乘估计aˆ和b ˆ是未知参数a 和b 的最好估计. x b y aˆˆ-=,b ˆ=∑∑==---ni ini i ix xy y x x121)())((.深化升华 bˆ的计算还可以用公式b ˆ=∑∑==--ni ini ii x n xyx n yx 1221来计算,这时只需列表求出相关的量代入即可. 2.相关性检验如下图中的两个散点图,很难判断这些点是不是分布在某条直线附近.假如不考虑散点图,按照最小二乘估计计算a 与b ,我们可以根据一组成对数据,求出一个回归直线方程.但它不能反映这组成对数据的变化规律.为了解决上述问题,我们有必要对x 与y 作线性相关性的检验,简称相关性检验.对于变量x 与y 随机抽取到的n 对数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),检验统计量是样本相关系数r.r=∑∑∑∑∑∑======---=----ni i ni i ni ii ni i n i i ni i iy n y x n x yx n yx y y x x y y x x122122112121)()()()())((.r 具有以下性质:当r 大于0时,表明两个变量正相关,当r 小于0时,表明两个变量负相关;|r|≤1;|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱.通常当|r|大于0.75时,认为两个变量有很强的线性相关关系.相关性检验临界值如下表所示.相关性检验的临界值表深化升华 相关性检验的步骤也可如下: (1)作统计假设:X 与Y 不具有线性相关关系.(2)根据小概率0.05与n-2在相关性检验的临界值表中查出r 的一个临界值r 0.05. (3)根据样本相关系数计算公式算出r 的值.(4)作出统计推断.如果|r|>r 0.05,表明有95%的把握认为X 与Y 之间具有线性相关关系.如果|r|≤r 0.05,我们没有理由拒绝原来的假设.这时寻找回归直线方程是没有意义的. 3.回归分析的基本概念(1)在数学上,把每个效应(观测值减去总的平均值)的平方和加起来,即用∑=-ni iy y12)(表示总的效应,称为总偏差平方和.(2)数据点和它在回归直线上相应位置的差异(y i -i yˆ)是随机误差的效应,称i e ˆ=(y i -i y ˆ)为残差.(3)分别将残差的值平方后回来,用数学符号表示为∑=-ni i iy y12)(称为残差平方和.它代表了随机误差的效应.(4)总偏差平方和与残差平方和的差称为回归平方和.(5)回归效果的刻画我们可以用相关指数R 2反映.R 2=1-∑∑==--n i ini i iy y yy1212)()ˆ(.显然,R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.4.非线性回归问题 在实际问题中,当变量之间的相关关系不是线性相关关系时,不能用线性回归方程描述它们之间的相关关系,需要进行非线性回归分析,然而非线性回归方程一般很难求,因此把非线性回归化为线性回归应该说是解决问题的好方法.首先,所研究对象的物理背景或散点图可帮助我们选择适当的非线性回归方程yˆ=μ(x;a,b).其中a及b为未知参数,为求参数a及b的估计值,往往可以先通过变量置换,把非线性回归化为线性回归,再利用线性回归的方法确定参数a及b的估计值.问题·探究问题函数关系是一种确定性关系,而对一种非确定性关系——相关关系,我们如何研究?导思:由于相关关系不是一种确定性关系,我们经常运用统计分析的方法,即回归分析,按照画散点图,求回归方程,用回归方程预报等步骤进行.探究:我们可以知道,相关关系中,由部分观测值得到的回归直线,可以对两个变量间的线性相关关系进行估计,这实际上是将非确定性问题转化成确定性问题来研究.由于回归直线将部分观测值所反映的规律性进行了延伸,它在情况预报、资料补充等方面有着广泛的应用,从某种意义上看,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还要使我们对函数关系的认识上升到一种新的高度.典题·热题思路解析:散点图是表示具有相关关系的两个变量的一组数据的图形.解:散点图如下:例2每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压强度(单位:kg/cm2)之间的关系有如下数据:(2)如果y与x之间具有线性相关关系,求回归直线方程.思路解析:求回归直线方程和相关系数,可以用计算器来完成.在有的较专门的计算器中,可通过直接按键得出回归直线方程的系数和相关系数,而如果要用一般的科学计算器进行计算,则要先列出相应的表格,有了表格中的那些相关数据,回归方程中的系数和相关系数就都容易求出了.解:(1)r=)6.721294.64572)(20512518600(6.722051218294322⨯-⨯-⨯⨯-≈0.999>0.75.说明变量y 与x 之间具有显著的线性正相关关系.bˆ=143004347205125186006.72205121829432=⨯-⨯⨯-≈0.304, x b y aˆˆ-==72.6-0.304×205=10.28. 于是所求的线性回归方程为yˆ=0.304x+10.28. 深化升华 为了进行相关性检验,通常将有关数据列成表格,然后借助于计算器算出各个量,为求回归直线方程扫清障碍.若由资料知y 对x 有线性相关关系.试求:(1)线性回归方程yˆ=b ˆx+a ˆ的回归系数a ˆ,b ˆ. (2)使用年限为10年时,估计维修费用是多少?思路解析:因为y 对x 有线性相关关系,所以可以用一元线性相关的方法解决问题.利用公式bˆ=∑∑==--ni i ni ii x n x yx n yx 1221,aˆ=y -b ˆx 来计算回归系数.有时为了方便常列表对应写出x i y i ,x i 2,以利于求和.解:(1)x =4,y =5,∑=ni ix12=90,∑=ni ii yx 1=112.3,于是bˆ=245905453.112⨯-⨯⨯-=1.23,aˆ=y -b ˆx =5-1.23×4=0.08. (2)回归直线方程为yˆ=1.23x+0.08.当x=10年时,y ˆ=1.23×10+0.08=12.38(万元),即估计使用10年的维修费用是12.38万元.方法归纳 知道y 与x 呈线性相关关系,就无需进行相关性检验,否则,应首先进行相关性检验.如果本身两个变量不具有相关关系,或者说,它们之间相关关系不显著,即使求出了回归方程也是毫无意义的,而且估计和预测的量也是不可信的.例4一只红铃虫的产卵数y与x有关,现收集了7组观测数据列于表中,试建立y与x之间思路解析:首先要作出散点图,根据散点图判定y与x之间是否具有线性相关关系,若具有线性相关关系,再求线性回归方程.在散点图中,样本点并没有分布在某个带状区域内,因此两个变量不呈线性相关关系,所以不能直接利用线性回归方程来建立两个变量之间的关系.根据已有的函数知识,可以发现样本分布在某一指数函数曲线的周围.解:散点图如下所示:由散点图可以看出:这些点分布在某一条指数函数y=pe qx(p,q为待定的参数)的周围.现在,问题变为如何估计待定的参数p和q,我们可以通过对数变换把指数关系变为线性关系.令z=lny,则变换后样本点应该分布在直线z=bx+a(a=lnp,b=q)周围.这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了.由下图可看出,变换后的样本点分布在一条直线的附近,因此可以用线性回归方程来拟合.经过计算得到线性回归方程为zˆ=0.272x-3.843.因此红铃虫的产卵数对温度的非线性回归方程为yˆ=e0.272x-3.843.方法归纳线性回归问题在解决前可以先画散点图,通过散点图判断是否为线性回归,如果不是线性回归,要先转换为线性回归问题.。
3.1 回归分析的基本思想及其初步应用[学习目标]1.了解随机误差、残差、残差图的概念.2.会通过分析残差判断线性回归模型的拟合效果. 3.掌握建立线性回归模型的步骤. [知识链接]1.什么叫回归分析?答 回归分析是对具有相关关系的两个变量进行统计分析的一种方法. 2.回归分析中,利用线性回归方程求出的函数值一定是真实值吗?答 不一定是真实值,利用线性回归方程求的值,在很多时候是个预报值,例如,人的体重与身高存在一定的线性关系,但体重除了受身高的影响外,还受其他因素的影响,如饮食、是否喜欢运动等. [预习导引] 1.线性回归模型(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系. (2)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (3)对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),回归直线的斜率和截距的最小二乘估计公式分别为b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i-nx -y-∑n i =1x 2i -nx -2,a ^=y --b ^x -,其中(x -,y -)称为样本点的中心.(4)线性回归模型y =bx +a +e ,其中a 和b 是模型的未知参数,e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量. 2.残差的概念对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n )而言,它们的随机误差为e i =y i -bx i -a ,i =1,2,…,n ,其估计值为e ^i =y i -y ^i =y i -b ^x i -a ^,i =1,2,…,n ,e ^i 称为相应于点(x i ,y i )的残差. 3.刻画回归效果的方式 (1)残差图法作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高. (2)残差平方和法残差平方和∑ni =1 (y i -y ^i )2,残差平方和越小,模型拟合效果越好. (3)利用R 2刻画回归效果R 2=1-∑ni =1(y i -y ^i )2∑n i =1 (y i -y -)2;R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.要点一 求线性回归方程例1 某班5名学生的数学和物理成绩如下表:(1)画出散点图;(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 解 (1)散点图如图.(2)x -=15×(88+76+73+66+63)=73.2, y -=15×(78+65+71+64+61)=67.8.∑5i =1x i y i=88×78+76×65+73×71+66×64+63×61=25 054. ∑5i =1x 2i =882+762+732+662+632=27 174. 所以b ^=∑5i =1x i y i -5x -y -∑5i =1x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625. a ^=y --b ^x -≈67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程是y ^=0.625x +22.05. (3)x =96,则y ^=0.625×96+22.05≈82, 即可以预测他的物理成绩是82.规律方法 (1)散点图是定义在具有相关关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析.(2)求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.跟踪演练1 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m 2时的销售价格. 解 (1)数据对应的散点图如下图所示:(2)x -=15∑5i =1x i =109,∑5i =1 (x i -x -)2=1 570, y -=23.2,∑5i =1 (x i -x -)(y i -y -)=308.设所求回归直线方程为y ^=b^x +a ^, 则b^=∑5i =1(x i -x -)(y i -y -)∑5i =1(x i -x -)2=3081 570≈0.196 2,a ^=y --b ^x -=0.181 42.故所求回归直线方程为y ^=0.196 2x +1.814 2. 回归直线如上图所示.(3)据(2),当x =150 m 2时,销售价格的估计值为 y ^=0.196 2×150+1.814 2=31.244 2(万元). 要点二 线性回归分析例2 为研究重量x (单位:克)对弹簧长度y (单位:厘米)的影响,对不同重量的6个物体进行测量,数据如下表所示:(1)作出散点图并求线性回归方程; (2)求出R 2; (3)进行残差分析. 解 (1)散点图如图x -=16(5+10+15+20+25+30)=17.5,y -=16(7.25+8.12+8.95+9.90+10.9+11.8)≈9.487,∑6i =1x 2i=2 275,∑6i =1x i y i =1 076.2 计算得,b^≈0.183,a ^≈6.285, 所求回归直线方程为y ^=0.183x +6.285. (2)列表如下:所以∑6i =1 (y i -y ^i )2≈0.013 18,∑6i =1 (y i -y -)2=14.678 4.所以,R 2=1-0.013 1814.678 4≈0.999 1, 回归模型的拟合效果较好.(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正数据,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与拉力成线性关系.规律方法 在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,通过残差e ^1,e ^2,…,e^n来判断模型拟合的效果,判断原始数据中是否存在可疑数据.若残差点比较均匀地分布在水平带状区域内,带状区域越窄,说明模型拟合精度越高,回归方程预报精度越高.跟踪演练2 已知某种商品的价格x (元)与需求量y (件)之间的关系有如下一组数据:求y 对x 的回归直线方程,并说明回归模型拟合效果的好坏.解 x -=15(14+16+18+20+22)=18, y -=15(12+10+7+5+3)=7.4,∑5i =1x 2i =142+162+182+202+222=1 660, ∑5i =1x i y i=14×12+16×10+18×7+20×5+22×3=620, 所以b^=∑5i =1x i y i-5x -y -∑5i =1x 2i -5x -2=620-5×18×7.41 660-5×182=-1.15.a^=7.4+1.15×18=28.1, 所以所求回归直线方程是y ^=-1.15x +28.1. 列出残差表:所以,∑5i =1 (y i -y ^i )2=0.3,∑5i =1 (y i -y -)2=53.2,R 2=1-∑5i =1 (y i -y ^i )2∑5i =1 (y i -y -)2≈0.994,所以回归模型的拟合效果很好. 要点三 非线性回归分析 例3 下表为收集到的一组数据:(1)作出x 与y 的散点图,并猜测x 与y 之间的关系; (2)建立x 与y 的关系,预报回归模型并计算残差; (3)利用所得模型,预报x =40时y 的值.解 (1)作出散点图如下图,从散点图可以看出x 与y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y =c 1e c 2x 的周围,其中c 1,c 2为待定的参数.(2)对两边取对数把指数关系变为线性关系,令z =ln y ,则有变换后的样本点应分布在直线z =bx +a (a =ln c 1,b =c 2)的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为求得回归直线方程为z ^=0.272x -3.849, ∴y ^=e 0.272x -3.849. 残差(3)当x=40时,y=e0.272x-3.849≈1 131.规律方法解决非线性回归问题的方法及步骤(1)确定变量:确定解释变量为x,预报变量为y;(2)画散点图:通过观察散点图并与学过的函数(幂、指数、对数函数、二次函数)作比较,选取拟合效果好的函数模型;(3)变量置换:通过变量置换把非线性回归问题转化为线性回归问题;(4)分析拟合效果:通过计算相关指数等来判断拟合效果;(5)写出非线性回归方程.跟踪演练3为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下:(1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图;(2)描述解释变量x与预报变量y之间的关系;(3)计算相关指数.解(1)作散点图如图所示.(2)由散点图看出样本点分布在一条指数函数y=c1e c2x的周围,于是令z=ln y,则有变换后的样本点应分布在直线z=bx+a(a=ln c1,b=c2)的周围,这样就可以利用线性回归模型来建立y 与x 之间的非线性回归方程了,数据可以转化为由计算器得:z ^=0.69x +1.115,则有y ^=e 0.69x +1.115. (3)y -=3776,∑n i =1 e ^21=∑n i =1 (y i -y ^)2=4.816 1, ∑n i =1(y i -y -)2=24 642.8,R 2=1-4.816 124 642.8≈0.999 8, 即解释变量天数对预报变量繁殖细菌个数解释了99.98%.1.下列各组变量之间具有线性相关关系的是( ) A .出租车费与行驶的里程 B .学习成绩与学生身高 C .身高与体重 D .铁的体积与质量 答案 C2.若劳动生产率x (千元)与月工资y (元)之间的线性回归方程为y ^=50+80x ,则下列判断正确的是( )A .劳动生产率为1 000元时,月工资为130元B .劳动生产率提高1 000元时,月工资平均提高80元C .劳动生产率提高1 000元时,月工资平均提高130元D .月工资为210元时,劳动生产率为2 000元 答案 B3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y^=-10x+200B.y^=10x+200C.y^=-10x-200D.y^=10x-200答案 A解析由于销售量y与销售价格x成负相关,故排除B、D.又当x=10时,A中y=100,而C中y=-300,C不符合题意,故选A.4.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:(1)求年推销金额y关于工作年限x的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.解(1)设所求的线性回归方程为y^=b^x+a^,则b^=∑5i=1(x i-x-)(y i-y-)∑5i=1(x i-x-)2=1020=0.5,a^=y--b^x-=0.4.所以年推销金额y关于工作年限x的线性回归方程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.回归分析的基本思路(1)确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;(2)画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);(3)由经验确定回归方程的类型(如果呈线性关系,则选用线性回归方程y ^=b ^x +a ^); (4)按一定规则估计回归方程中的参数;(5)提出结果后分析残差图是否有异常(个别数据对应的残差过大,或残差呈现不随机的规律性等),若存在异常,则检查数据是否有误或模型是否合适等.一、基础达标1.在下列各量之间,存在相关关系的是( )①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的支出与收入之间的关系;⑤某户家庭用电量与电价之间的关系.A .②③B .③④C .④⑤D .②③④ 答案 D2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,下列结论中不正确的是( ) A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 由回归方程为y ^=0.85x -85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系;由最小二乘法建立回归方程的过程知y ^=b ^x +a ^=b ^x +y --b ^x - (a ^=y --b ^x -),所以回归直线过样本点的中心(x -,y -);利用回归方程可以估计总体,所以D 不正确.3.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 答案 B解析 ∵x -=4+2+3+54=72,y -=49+26+39+544=42,又y ^=b ^x +a ^必过(x -,y -),∴42=72×9.4+a^,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6(万元)时,y ^=9.4×6+9.1=65.5(万元).4.甲、乙、丙、丁四位同学各自对A ,B 两变量做回归分析,分别得到散点图与残差平方和∑ni =1(y i -y ^i )2如下表散点图哪位同学的实验结果体现拟合A ,B 两变量关系的模型拟合精度高?( ) A .甲 B .乙 C .丙 D .丁 答案 D5.如果散点图的所有点都在一条直线上,则残差均为________,残差平方和为________,相关指数为________. 答案 0 0 16.对具有线性相关关系的变量x 和y ,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.答案y^=-10+6.5x解析由题意知x-=2,y-=3,b^=6.5,所以a^=y--b^x-=3-6.5×2=-10,即回归直线的方程为y^=-10+6.5x.7.某个服装店经营某种服装,在某周内纯获利y(元)与该周每天销售这种服装件数x之间的一组数据如下表:(1)求样本中心点;(2)画出散点图;(3)求纯获利y与每天销售件数x之间的回归方程.解(1)x-=6,y-=79.86,中心点(6,79.86).(2)散点图如下:(3)因为b^=∑7i=1(x i-x-)(y i-y-)∑7i=1(x i-x-)2≈4.75,a^=y--b^x-≈51.36,所以y^=4.75x+51.36.二、能力提升8.(2013·福建)已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y^=b^x+a^.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′ 答案 C解析 x -=1+2+3+4+5+66=72,y -=0+2+1+3+3+46=136,b ^=∑ni =1x i y i -nx - y -∑n i =1x 2i -nx -2=57,a ^=y --b ^x -=-13,b ′=2-02-1=2>b^,a ′=-2<a ^. 9.下表是x 和y 之间的一组数据,则y 关于x 的回归方程必过( )A.点(2,3) B .点(1.5,4) C .点(2.5,4) D .点(2.5,5) 答案 C解析 回归方程必过样本点的中心(x -,y -),即(2.5,4).10.如图是x 和y 的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.答案 D (3,10)解析 去掉D (3,10)这一组数据后,其他4组数据对应的点都集中在某一条直线附近,即两变量的线性相关性最强,此时相关指数最大. 11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y ^=b ^x +a ^;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据处理如下:对处理的数据,容易算得x -=0,y -=3.2,b^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b ^x -=3.2.由上述计算结果,知所求回归直线方程为y ^-257=6.5(x -2 006)+3.2.即y ^=6.5(x -2 006)+260.2.(2)利用所求得的直线方程,可预测2012年的粮食需求量为6.5×(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).12.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y ^=b ^x +a ^,其中b ^=-20,a ^=y --b ^x -;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入—成本)解 (1)x -=8+8.2+8.4+8.6+8.8+96=8.5,y -=16(90+84+83+80+75+68)=80∵b ^=-20,a ^=y ^-b ^x -,∴a^=80+20×8.5=250 ∴回归直线方程y ^=-20x +250;(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20(x -334)2+361.25∴该产品的单位应定为334元,工厂获得的利润最大. 三、探究与创新13.(2013·重庆卷)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i=184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x -+a^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=∑ni =1x i y i -nx - y -∑n i =1x 2i-nx -2,a ^=y --bx -, 其中x -,y -为样本平均值. 解 (1)由题意知n =10,x -=1n ∑n i =1x i =8010=8,y -=1n ∑n i =1y i =2010=2,又l xx =∑ni =1x 2i -nx -2=720-10×82=80, l xy =∑ni =1x i y i -nx - y -=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y--b^x-=2-0.3×8=-0.4,故所求回归方程为y^=0.3x-0.4.(2)由于变量y的值随x的值增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).。
回归分析的基本思想及其初步应用学习任务:进一步了解与线性回归模型有关的一些统计思想(引入残差变量的必要性;残差分析和相关指数的作用;对模型预报结果的正确认识等)。
主要知识点:回归模型与函数模型的区别;线性回归模型的数学表达式;建立回归模型的基本步骤;随机误差产生的原因;回归方程的预报结果(相关系数、相关指数、残差分析等角度);非线性相关关系转化为线性回归模型。
重点:回归模型与函数模型的区别;回归模型拟合效果的刻画——相关指数与残差分析。
难点:残差变量的解释;偏差平方和分解的思想。
一、函数关系与相关关系函数关系是两个变量之间的一种确定性的关系,而相关关系是一种非确定性的关系。
相关关系有线性相关关系与非线性相关关系。
用统计方法解决问题的基本步骤为:提出问题、收集数据、分析整理数据、预测或决策。
例1 为了预报一名身高为172cm的女大学生的体重,从某大学中随机选取8名女大学生作为样本,收集她们的身高和体重的数据如下表所示.。
从散点图中可以看出,图像同时经过这8个样本点的函数是不存在的,因此,这里的体重变量y与身高变量x不具有确定的函数关系;事实上,注意到当x=165时,y有48,57,61三个不同的取值,根据函数概念可知,这里的变量y与变量x根本就不可能具有函数关系;但由于这8个样本点分布在从左下方到右上方的一个带形区域内,使我们初步感觉到身高变量x与体重变量y并非没有关系,因此,应存在某一直线l,使这8个点都落在该直线附近,从而说明这里的变量y与变量x具有非确定性的线性相关关系。
那么,这条直线l的方程是什么?如何根据直线l的方程预报一名身高为172cm的女大学生的体重?预报值的含义是什么?预报的精确度又如何呢?回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其最基本的过程为:画散点图→求回归方程→用回归方程进行预报。
二、最小二乘估计公式(求回归直线方程的一种方法)例1中的8名女大学生是一个随机抽样样本,所获得的8组身高和体重的数据对称为观测数据(或样本数据).一般地,设对变量x 与y 有一组观测数据),...,3,2,1)(,(n i y x i i =,这些样本点都分布在直线l 的附近,直线l 的方程为:αβ+=x y (称变量x 为解释变量,变量y 为预报变量或观测变量).方程中αβ,是客观存在的真实值,但由于变量x 与y 并不具有线性函数关系,我们无法确切地知道αβ,具体是何值。