(自动控制原理)系统校正
- 格式:ppt
- 大小:863.00 KB
- 文档页数:35
第六章自动控制原理自动控制系统的校正自动控制原理是指通过一系列的传感器、执行器和控制器等装置,对待控制对象进行检测、判断和调节,以实现对系统的自动调控和校正。
在自动控制系统中,校正是一个重要的环节,对于确保系统的稳定性、准确性和可靠性具有至关重要的作用。
接下来,本文将简要介绍自动控制系统的校正方法和重要性。
首先,自动控制系统的校正主要包括以下几个方面:1.传感器校正:传感器作为自动控制系统中的重要组成部分,负责将物理量转化为电信号进而进行处理。
传感器的准确性直接影响着系统的测量和控制效果,因此需要对传感器的灵敏度、精度和线性度等进行校正,以提高系统的测量准确性。
2.执行器校正:执行器主要负责将控制信号转化为物理动作,控制系统的输出效果依赖于执行器的准确性和稳定性。
因此,需要对执行器的响应速度、灵敏度和动态补偿等进行校正,以确保系统的控制精度和稳定性。
3.控制器校正:控制器是自动控制系统的核心部分,负责对传感器数据进行处理和判断,并生成相应的控制信号。
对于不同类型的控制器,需要根据系统的需求和特点进行各种参数的校正和调整,以保证系统的控制效果。
4.系统校正:系统校正是指对整个自动控制系统进行整体的校准和调整。
由于控制系统中存在着多种参数和输入信号,这些参数和信号之间的相互作用会对系统的控制效果产生影响。
因此,需要对系统的整体参数进行校正,以确保系统的稳定性和性能达到预期的要求。
其次,自动控制系统的校正具有以下几个重要性:1.提高系统的准确性:通过对传感器、执行器和控制器进行校正,可以消除误差、降低噪声的影响,提高系统的测量和控制准确性。
这对于一些对测量和控制精度要求较高的系统而言尤为重要,如飞行器、自动化生产线等。
2.提高系统的稳定性:通过对控制器和系统参数的校正和调整,可以改善系统的阻尼特性和相应速度,增强系统的稳定性和快速响应能力。
这对于一些需要频繁变动的系统而言尤为重要,如电力系统、机械运动系统等。
自动控制原理第六章控制系统的校正控制系统的校正是为了保证系统的输出能够准确地跟随参考信号变化而进行的。
它是控制系统运行稳定、可靠的基础,也是实现系统优化性能的重要步骤。
本章主要讨论控制系统的校正方法和常见的校正技术。
一、校正方法1.引导校正:引导校正是通过给系统输入一系列特定的信号,观察系统的输出响应,从而确定系统的参数。
最常用的引导校正方法是阶跃响应法和频率扫描法。
阶跃响应法:即给系统输入一个阶跃信号,观察系统输出的响应曲线。
通过观察输出曲线的形状和响应时间,可以确定系统的参数,如增益、时间常数等。
频率扫描法:即给系统输入一个频率不断变化的信号,观察系统的频率响应曲线。
通过观察响应曲线的峰值、带宽等参数,可以确定系统的参数,如增益、阻尼比等。
2.通用校正:通用校正是利用已知的校准装置,通过对系统进行全面的测试和调整,使系统能够输出符合要求的信号。
通用校正的步骤通常包括系统的全面测试、参数的调整和校准装置的校准。
二、校正技术1.PID控制器的校正PID控制器是最常用的控制器之一,它由比例、积分和微分三个部分组成。
PID控制器的校正主要包括参数的选择和调整。
参数选择:比例参数决定控制系统的响应速度和稳定性,积分参数决定系统对稳态误差的响应能力,微分参数决定系统对突变干扰的响应能力。
选择合适的参数可以使系统具有较好的稳定性和性能。
参数调整:通过参数调整,可以进一步改善系统的性能。
常见的参数调整方法有经验法、试错法和优化算法等。
2.校正装置的使用校正装置是进行控制系统校正的重要工具,常见的校正装置有标准电压源、标准电阻箱、标准电流源等。
标准电压源:用于产生已知精度的参考电压,可以用来校正控制系统的电压测量装置。
标准电阻箱:用于产生已知精度的电阻,可以用来校正控制系统的电流测量装置。
标准电流源:用于产生已知精度的电流,可以用来校正控制系统的电流测量装置。
校正装置的使用可以提高系统的测量精度和控制精度,保证系统的稳定性和可靠性。
自动控制原理课程设计---单位负反馈系统设计校正
单位负反馈系统是自动控制原理课程设计中的重要内容,它是将输入信号与反馈信号进行比较、控制,从而达到调节系统性能的一种手段。
其目的是提高系统的稳定性和可靠性,缩小输入量的波动对输出量的影响,保持系统性能的稳定性和提高系统的控制性能,增强系统的鲁棒性。
系统的校正是保证其良好性能的前提,系统校正理论是所有反馈控制系统的基础之一,是实现系统自动控制的根本。
一、系统校正要点
1、调节器模式:调节器的类型是校正的核心,调节器的模式决定着反馈控制系统的性能。
常用的调节器有PI、PD、PID参数调节器,应根据实际情况灵活选择。
2、参数校正:选择调节器模式后,需要进行具体参数的校正,校正的过程一般有两种:经验法和数学模型法可以采用。
3、现场校正:现场校正过程主要是现场对参数进行实践调整,包括检查输入信号校正等,此类校正只能通过仪器进行,由于仪器的精度不同,校正效果也会有所不一样。
二、系统校正实施
1、系统检查:在校正实施前需要进行系统检查,检查项包括仪表精度以及反馈控制系统的结构与结构,检查后才能确定最佳的参数;
2、参数设置:在校正过程中,参数设置是提高反馈控制系统可用性的关键,特别是PID参数的调节,这要求改变参数时,要结合理论,灵活调整,以保证系统满足要求;
3、系统性能:在系统校正完成后,对系统性能进行检查,要求系统要满足设定的所有参数,结果必须与预期的结果保持一致,否则可以继续微调参数设置,以更好的满足需要。
总之,系统校正是自动控制原理中重要的一环,它既涉及到调整调节器参数,也涉及到系统调试等过程,必须根据实际情况,灵活选择,层层检查,从而实现反馈控制系统的良好性能。
自动控制原理校正的原理自动控制原理校正是指对自动控制系统进行精确度和准确性的校正,以确保系统能够按照预期的要求进行稳定和可靠的操作。
校正的目的是消除各种误差,使系统输出的控制量与期望值一致。
在自动控制系统中,校正可以通过多种方法实现,包括传感器的校准、控制器参数的调整、闭环校正等。
首先,传感器校准是自动控制原理校正的重要一步。
各种测量变量的传感器在使用前需要经过校准,以确保其输出的电信号与测量量之间的关系准确无误。
传感器校准的过程中,通常会使用已知准确值的标准信号来进行比较,通过调整传感器的输出信号,使其与标准信号一致。
传感器校准通常需要考虑环境条件、线性度、灵敏度、零点漂移等因素,以确保传感器的测量结果具有较高的准确性和稳定性。
其次,控制器参数的调整也是自动控制原理校正的重要一环。
在自动控制系统中,控制器的参数设置直接影响系统的响应速度、稳定性和抗干扰能力。
通过调整控制器的参数,可以实现系统的校正和性能优化。
常见的控制器参数包括比例增益、积分时间和微分时间等。
根据系统的特点和需求,可以通过试验和仿真等手段来确定最佳的控制器参数,从而实现校正目的。
此外,闭环校正是自动控制原理校正的一种重要方法。
闭环校正是指通过测量和反馈系统的输出信号,对控制信号进行校正。
闭环校正的基本原理是根据系统的误差信号来调整控制信号,使误差逐渐减小并最终收敛到期望值。
闭环校正可以通过调整控制器参数、改变控制策略、优化系统结构等方法来实现。
闭环校正具有良好的稳定性和鲁棒性,可以在系统受到扰动和参数变化时保持较好的控制效果。
最后,自动控制原理校正还需要考虑系统模型的精确性和辨识。
系统模型是指描述自动控制系统结构和性质的数学表达式或黑盒模型。
系统模型的精确性和辨识直接影响校正的准确性和可靠性。
通过实验和数据分析,可以建立和优化系统模型,用于校正的依据和分析工具。
系统模型的辨识也是一项重要工作,它可以通过采集和处理系统的输入和输出数据来确定系统的关键参数和结构,从而实现系统的校正和优化。
试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。
2. 学习校正装置旳设计和实现措施。
二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。
只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。
根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。
在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。
同步还常常采用“最优”旳综合校正措施。
图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。
把 代入 得到, , 这就是进行校正旳条件。
(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。
四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。
图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。
自动控制原理课程设计关于系统校正1自动控制原理课程设计报告专业:自动化班级:12403011学号:1240301112姓名:高松1. 已知一个二阶系统其闭环传递函数如下Φ=ks s ++25.0k 求k=0.2,0.5,1,2,5时,系统的阶跃响应和频率响应。
绘出系统的阶跃响应和频率响应曲线。
程序如下:一.阶跃响应i=0;for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];sys=tf(num,den);i=i+1;step(sys,25)hold onendgridhold offtitle('k 不同时的阶跃响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')二.频率响应for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];bode(num,den)[mag,phase,w]=bode(num,den);mr=max(mag)wr=spline(mag,w,mr)hold onendgridhold offtitle('k不同时的频率响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),gtext('k=5')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),gtext('k=5')2.被控对象传递函数为)20030()(2++=s s s K s G 设计超前校正环节,使系统性能指标得到满足如下要求:1)速度误差常数=102)γ=45°由速度误差常数=10,k v =10=)20030(lim 20s ++→s s s k s , 得k=2000 程序如下:num=[2000];den=[1,30,200,0];g0=tf(num,den);figure(1);margin(g0);hold on figure(2);sys=feedback(g0,1);step(sys)w=0.1:0.1:2000;[gm,pm,wcg,wcp]=margin(g0);[mag,phase]=bode(g0,w);magdb=20*log10(mag);phim1=45;data=18;phim=phim1-pm+data;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));n=find(magdb+10*log10(alpha)wc=w(n(1));w1=wc/sqrt(alpha);w2= wc*sqrt(alpha); numc=[1/w1,1];denc=[1/w2,1];gc=tf(numc,denc); g=gc*g0;[gmc,pmc,wcgc,wcpc]=margin(g);gmcdb=20*log10(gmc);disp('校正装置传递函数和校正后系统开环传递函数'),gc,g, disp('校正系统的频域性能指标KG,V,WC'),[gmc,pmc,wcpc], disp('校正装置的参数T 和 a 值:'),t=1/w2;[t,alpha], bode(g0,g);hold on ,margin(g)自动控制原理课程设计关于系统校正1第2页校正装置传递函数和校正后系统开环传递函数gc =0.1647 s + 1-------------0.05404 s + 1Continuous-time transfer function.g =329.4 s + 2000-------------------------------------------0.05404 s + 2.621 s + 40.81 s + 200 sContinuous-time transfer function.校正系统的频域性能指标KG ,V ,WCans =3.4126 45.8576 10.5873校正装置的参数T 和a 值:ans =0.0540 3.04723.被控对象传递函数为)5()(+=s s K s G 设计滞后校正环节,使系统性能指标满足如下要求:1)单位斜坡稳态误差小于5%2)闭环阻尼比ζ=0.707,ωn =1.5 rad/s由单位斜坡稳态误差小于5%,ε=vk 1=5%,得v k =20,又由v k =)5(lim 0s +→s s k s ,得k=100.由闭环阻尼比ζ=0.707,ωn =1.5 rad/s ,可算出相角裕度ν=65.5°,穿越频率c w =0.965nc=[1/w1,1];gc=tf(numc,denc) g=go*gcbode(go,g),hold on,margin(g),betaTransfer function:gc =5.988 s + 1-----------68.02 s + 1Continuous-time transfer function.g =598.8 s + 100---------------------------68.02 s + 341.1 s + 5 sContinuous-time transfer function.beta =11.35924.设已知单位负反馈系统其开环传递函数为())1125.0)(15.0(s ++=s s s k G 要求系统具有的性能指标是:1 ) 控制输入为单位速度信号(T RAD/S )时,其稳态误差E2 ) 控制输入为单位阶跃信号时,其超调量σ3) 控制输入为单位阶跃信号时,其超调量σ2) 由题意σ=0.16+0.4(vsin 1-1)12.5(1)- sinv 11.5(2[2-++c w pi 42.68°, 穿越频率w c >0.96,取v=45°rad/s ,得w c =1.22 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);margin(g0);gammao=45;delta=5;gamma=gammao+delta;w=0.01:0.01:1000;[mag,phase]=bod8.197 s + 1-----------45.36 s + 1Continuous-time transfer function.g =65.57 s + 8-------------------------------------2.835 s + 28.41 s + 45.99 s + s Continuous-time transfer function. beta =5.53413 )由题意σ=0.16+0.4(v sin 1-1)12.5(1)- sinv 11.5(2[2-++c w pi 54.7°,穿越频率w c >1.935 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);[kg,gamma,wg,wc]=margin(g0);kgdb=20*log10(kg);w=0.001:0.001:100;[mag,phase]=bode(g0,w);disp('未校正系统参数:20LGKG,WC,');[kgdb,wc,gamma], gamma1=54.7;delta=5;phim=gamma1-gamma+delta;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));wcc=2.5;w3=wcc/sqrt(alpha);w4=sqrt(alpha)*wcc;numc1=[1/w3,1];denc1=[1/w4,1];gc1=tf(numc1,denc1);g01=g0*gc11,disp('滞后校正部分的传递函数'),gc2,disp('串联超前—滞后校正传递函数'),gc,disp('校正后整个系统的传递函数'),gdisp('校正后系统参数:20LGKG,WC,R 及A 值'),[gmcdb,wcpc,pmc,alpha],bode(g0,g),hold on ,margin(g),beta。