2021年中考数学专题复习:几何图形面积问题
- 格式:doc
- 大小:260.73 KB
- 文档页数:14
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2021年中考数学一轮专题训练:三角形的面积(一)1.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC =4cm2,则S△DEF等于()A.2cm2B.1cm2C.2D.22.如图,AD是△ABC中BC边上的中线,E、F分别是AD、BE的中点,若△BFD的面积为1,则△ABC的面积为()A.3 B.8 C.4 D.63.如图,在△ABC中,AD、AE分别是边BC上的中线与高,AE=4,△ABC的面积为12,则CD的长为()A.2 B.3 C.4 D.54.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以5.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若每一小正方形的边长均为1,则灰色三角形的面积为()A.7 B.7.5 C.8 D.8.56.如图,将三角形ABC沿直线AB向右平移后得到三角形BDE,连接CD,CE,若三角形ACD的面积为10,则三角形BCE的面积为()A.4 B.5 C.6 D.107.如图,在△ABC中,点D、E分别为BC、AD的中点,EF=2FC,若△ABC的面积为12cm2,则△BEF的面积为()A.2cm2B.3cm2C.4cm2D.5cm28.如图,△ABC中,AD是BC边上的中线,CE是△ACD中AD边上的中线,如果△ABC的面积是20,那么△ACE的面积是()A.10 B.6 C.5 D.49.如图,△ABC中,点D,E分别是边BC,BA的中点,△ABC的面积为32,则△DEB 的面积为()A.条件不足,无法确定B.4C.8 D.1610.已知AD是△ABC的中线,BE是△ABD的中线,若△ACD的面积为20,则△ABE 的面积为()A.5 B.10 C.15 D.1811.如图,D、E分别是△ABC的边AB、BC上的点,AD═2BD,BE=CE,设△ADF 的面积为S1,△CEF的面积为S2,若S△ABC=12,则S1﹣S2=()A.1.5 B.2 C.3 D.0.512.如图,△ABC的中线AD、BE相交于点P,四边形与△ABP的面积分别记为S1、S2,则S1与S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.以上都有可能13.如图,△ABC的面积为10,点D为线段BC的中点,将△ABD沿着射线BC的方向平移使得点B与点D重合,得到△EDC,则△EDC的面积为()A.2.5 B.4 C.5 D.1014.如图在8×5的正方形网格中,AB、AC是经过格点的线段,如果能找到这样的格点M,使得S=S△ABM,这样的点M的个数是()△ACMA.1 B.2 C.3 D.415.如图,在四边形ABCD中,AD∥BC,AB=AD,BC=6,△BCD的面积为9,则点D到AB的距离为()A.3 B.4.5 C.6 D.916.如图所示,在△ABC中,点D、E分别在AB、AC边上,且AD:BD=3:4,AE:CE=2:1.连接DE,那么S:S四边形BCED=()△ADEA.B.C.D.17.如图,△ABC的面积是1,AD是△ABC的中线,AF=FD,CE=EF,则△DEF 的面积为()A.B.C.D.18.如图,在△ABC中,E是BC上一点,BC=3BE,点F是AC的中点,若S△ABC=a,则S△ADF﹣S△BDE=()A.a B.a C.a D.a19.如图,A、B、C的坐标分别为:A(﹣4,0)、B(2,0),C(0,6),在线段AB 或线段BC上找一点P,使△ACP面积为整数且S△ACP≤S△ABC,则满足条件的点P 的个数是()A.4 B.6 C.8 D.1020.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(3,5)C.(3,﹣5)D.(﹣4,0)或(6,0)参考答案1.解:∵点D是BC的中点,∴S△ADC=S△ABC,∵点E是AD的中点,∴S△DCE=S△ADC=S△ABC,∵点F是CE的中点,∴S△DEF=S△DCE=S△ABC=×4=(cm2),故选:C.2.解:∵F是BE的中点,∴BF=EF,∴S△EFD=S△BFD,又∵S△BDE=S△EFD+S△BFD,∴S△BDE=2S△BFD=2×1=2.同理,S△ABC=2S△ABD=2×2S△BDE=4×2=8.故选:B.3.解:∵△ABC的面积为12,∴×AE×BC=12,∴BC==6,∵AD是边BC上的中线,∴CD=BC=3.故选:B.4.解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:B.5.解:灰色三角形的面积为:4×4﹣﹣﹣=7,故选:A.6.解:∵△ABC沿直线AB向右平移后到达△BDE的位置,∴AB=BD,BC∥DE,∴S△ABC=S△BCD=S△ACD=×10=5,∵DE∥BC,∴S△BCE=S△BCD=5.故选:B.7.解:∵D是BC的中点,∴S△ABD=S△ADC(等底等高的三角形面积相等),∵E是AD的中点,∴S△ABE=S△BDE,S△ACE=S△CDE(等底等高的三角形面积相等),∴S△ABE=S△DBE=S△DCE=S△AEC,∴S△BEC=S△ABC=6cm2.∵EF=2FC,∴S△BEF=S△BCE,∴S△BEF=S△BEC=4cm2.故选:C.8.解:∵AD是BC上的中线,△ABC的面积是20,∴S△ACD=S△ABD=S△ABC=10,∵CE是△ACD中AD边上的中线,∴S△ACE=S△CED=S△ACD=5.故选:C.9.解:∵D、E分别是BC,AB的中点,∴S△DEB=S△ABD,S△ABD=S△ABC,∴S△DEB=S△ABC=×32=8.故选:C.10.解:∵AD是△ABC的中线,△ACD的面积为20,∴S△ABD=S△ACD,=20,∵BE是△ABD的中线,∴S△ABE=S△DBE,而S△ABE=20÷2=10.故选:B.11.解:∵BE=CE,∴BE=BC,∵S△ABC=12,∴S△ABE=S△ABC=×12=6.∵AD=2BD,S△ABC=12,∴S△BCD=S△ABC=4,∵S△ABE﹣S△BCD=(S△ADF+S四边形BEFD)﹣(S△CEF+S四边形BEFD)=S△ADF﹣S△CEF,即S△ADF﹣S△CEF=S△ABE﹣S△BCD=6﹣4=2.故选:B.12.解:连接DE,∵△ABC的中线AD、BE相交于点P,∴DE∥AB,∴S△ABD=S△ABE,∴S△PBD=S△PAE,∵S△ABE=S2+S△PAE=S△BCE=S△PBD+S1,∴S1=S2,∴S1与S2的大小关系为相等,故选:B.13.解:∵△ABC的面积为10,点D为线段BC的中点,∴△ABD的面积=△ABC的面积=5,∵将△ABD沿着射线BC的方向平移使得点B与点D重合,得到△EDC,∴△EDC的面积=△ABD的面积=5,故选:C.14.解:如图所示:故使得S△ACM=S△ABM的格点M的个数是3个.故选:C.15.解:作DH⊥BC于H,DE⊥BA交BA的延长线于E.∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵DE⊥BE,DH⊥BC,∴DE=DH,∵S△DBC=•BC•DH=6,∴×6×DH=9,∴DH=3,∴DE=3,故选:A.16.解:连接BE,设△ABC的面积为S,∵AE:CE=2:1.∴S△ABE=S,∵AD:BD=3:4,∴S△ADE=S△ABE=×S=S,∴S△ADE:S四边形BCED=2:5,故选:B.17.解:∵△ABC的面积是1,AD是△ABC的中线,∴S△ACD=S△ABC=,∵AF=FD,∴DF=AD,∴S△CDF=S△ACD=×=,∵CE=EF,∴S△DEF=S△CDF=×=,故选:D.18.解:∵BC=3BE,∴S△AEC=S△ABC=a,∵点F是AC的中点,∴S△BCF=S△ABC=,∴S△AEC﹣S△BCF=a,即S△ADF+S四边形CEDF﹣(S△BDE+S四边形CEDF)=a,∴S△ADF﹣S△BDE=a,故选:C.19.解:∵A(﹣4,0)、B(2,0),C(0,6),∴AB=6,OC=6,∴,∵S△ACP≤S△ABC,∴S△ACP≤,当P点在AB边上时,设P(x,0),则AP=x+4,∴,∴x≤﹣,∵△ACP面积为整数,∴为整数,又∵x+4≤∴x+4=或或1或,即x=﹣或﹣或﹣3或﹣,故在AB上存在4个点,使得△ACP面积为整数且S△ACP≤S△ABC,过点4个点作AC的平行线与BC有四个交点,所得四个交点为P点,也满足△ACP面积为整数且S△ACP≤S△ABC,∴满足条件的点P的个数有8个,故选:C.20.解:如图,设P(m,0).由题意:•|1﹣m|•2=5,解得m=﹣4或6,∴P(﹣4,0)或(6,0).故选:D.一天,毕达哥拉斯应邀到朋友家做客。
专题04 面积问题求解平面直角坐标系中由动点生成的图形的面积问题,是初中数学一种重要的题型,它主要结合函数图形的相关知识点,在平面直角坐标中的框架中构建图形求面积,求图形面积常常转化为三角形、特殊的四边形,求面积常用的方法有以下几种:方法1:直接法,求出三角形底边和底边上的高,进而求出其面积;方法2:补形法,将三角形面积转化为若干个特殊的四边形和三角形的和或差;方法3:分割法,选择一种恰当的直线,将三角形分割成两个便于计算的面积的三角形。
一、填空题1.在平面直角坐标系中,,,若的面积为,且点在坐标轴上,则符合条件的点的坐标为__________.【答案】或或或【解析】解:①如图所示,若点C在x轴上,且在点A的左侧时,∵∴OB=3∴S△ABC=AC·OB=6 解得:AC=4∵,∴此时点C的坐标为:;②如图所示,若点C在x轴上,且在点A的右侧时,同理可得:AC=4 ∴此时点C的坐标为:;图①图②③如图所示,若点C在y轴上,且在点B的下方时,∵∴AO=2 ∴S△ABC=BC·AO=6 解得:BC=6∵∴此时点C的坐标为:;④如图所示,若点C在y轴上,且在点B的上方时,同理可得:BC=6 ∴此时点C的坐标为:. 故答案为:或或或.图③图④【点拨】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C点的位置分类讨论是解决此题的关键.2.在平面直角坐标系中,的位置如图所示,则的面积是________.【答案】9.【解析】如图,.【点拨】利用网格特点,将所求的的面积转化为规则图形面积的差即可.本题考查了坐标系中三角形面积的计算,属于常考题型,掌握求解的方法是关键.二、解答题3.如图,在平面直角坐标系中,、.求的面积.【答案】【解析】如图,过点A、B分别作x轴的垂线交x轴于点C、D.根据面积公式求得S△BOD、S梯形ACDB、S△AOC的值,然后由图形可以求得S△AOB= S△AOC +S梯形ACDB- S△BOD.解:过点A、B分别作x轴的垂线交x轴于点C、D.∵A(3,4),B(5,1),∴OC=3,AC=4,OD=5,BD=1.∴S△AOC=×OC•AC=×3×4=6,S△BOD=OD•BD=×5×1=,S梯形ACDB=( BD+AC)•CD=×(1+4)×2=5,∴S△AOB= S△AOC +S梯形ACDB- S△BOD =6+5-=.【点拨】本题考查了三角形的面积、坐标与图形性质.通常采用“割补法”解答此类题目.4.在平面直角坐标系中描出点A(﹣2,0)、B(3,1)、C(2,3),将各点用线段依次连接起来,并解答如下问题:(1)在平面直角坐标系中画出△ A′B′C′,使它与△ ABC 关于x 轴对称,并直接写出△ A′B′C′三个顶点的坐标;(2)求△ABC的面积.【答案】(1)作图见解析;A'(-2,0)、B'(3,-1)C'(2,-3);(2)5.5【解析】(1)在坐标系内画出△ABC,再作出各点关于x轴的对称点,顺次连接各点即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可.【详解】(1)如图所示,由图可知A'(-2,0)、B'(3,-1)C'(2,-3);2)由图可知,S△ABC=5×3-×5×1-×3×4-×2×1,=15--6-1=5.5.【点拨】本题考查的是作图-轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.5.如图所示,在平面直角坐标系中,已知A(0,1)B(2,0)C(4,3),(1)在平面直角坐标系中画出△ABC,并求△ABC的面积(2)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标。
2021年中考数学专题复习:根据三视图判断几何体1.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm32.如图是一个几何体的俯视图,则这个几何体的形状可能是()A.B.C.D.3.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π4.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木累积的个数.若保证正视图和左视图成立,则a+b+c+d的最大值为()A.12B.13C.14D.155.如图是某几何体的三视图,该几何体是()A.长方体B.三棱锥C.三棱柱D.正方体6.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则以下说法正确的是()A.x=1或2,y=3B.x=1或2,y=1或3C.x=1,y=1或3D.x=2,y=1或37.一个立体图形的三视图如图所示,则这个立体图形是()A.B.C.D.8.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.9.如图是一个几何体的三视图,根据图中给出的数据,可得该几何体的表面积为()参考公式:三角形面积S=a•h,其中a为三角形的底边长,h为三角形的高;长方形面积S=a•b,其中a为长方形的长,b为长方形的宽;圆面积S=πr2,其中r为圆的半径;球表面积S=4πr2,其中r为球的半径.A.9πB.10πC.11πD.12π10.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7B.8C.9D.1011.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的这个几何体的形状图是()A.B.C.D.12.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为()A.12πB.15πC.12π+6D.15π+1213.一个立体图形的三视图如图所示,这个立体图形的名称是.14.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是.15.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需个这样的正方体.16.如图放置的一个圆锥,它的正视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的面积为.(结果保留π)17.一个几何体的三视图如图所示,则该几何体的表面积为.18.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的最大值和最小值之和为.19.如图,是某圆锥工件的三视图,则此工件的表面积为.20.如图是一个几何体的三视图,则这个几何体的侧面积是cm2.21.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是.22.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.23.已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.24.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π).25.(1)计算:(﹣1)0+(﹣1)2015+()﹣1﹣2sin30°;(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积.26.一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.27.某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.参考值:≈1.41,≈1.73,≈2.24.≈3.16.28.双十一购物狂欢节,天猫“某玩具旗舰店”对乐高积木系列玩具将推出买一送一活动.根据积木数量的不同,厂家会订制不同型号的外包装盒.所有外包装盒均为双层上盖的长方体纸箱(上盖纸板面积刚好等于底面面积的2倍,如图1).长方体纸箱的长为a厘米,宽为b厘米,高为c厘米.(1)请用含有a,b,c的代数式表示制作长方体纸箱需要平方厘米纸板;(2)如图2为若干包装好的同一型号玩具堆成几何体的三视图,则组成这个几何体的玩具个数最少为个;(3)由于旗舰店在双十一期间推出买一送一的活动,现要将两个同一型号的乐高积木包装在同一个大长方体的外包装盒内(如图1),已知单个乐高积木的长方体纸盒长和高相等,且宽小于长.如图3所示,现有甲,乙两种摆放方式,请分别计算甲,乙两种摆放方式所需外包装盒的纸板面积(包装盒上盖朝上),并比较哪一种方式所需纸板面积更少,说明理由.参考答案1.解:易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,这个几何体的体积为3cm3故选:A.2.解:图示是一个圆环及这个圆的圆心.A、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;B、圆台的俯视图是一个圆环没有圆心,故选项不符合题意;C、该图的俯视图是一个圆,有圆心,故选项不符合题意;D、该图的俯视图是一个圆环及这个圆的圆心,故选项符合题意;故选:D.3.解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.4.解:由正视图第1列和左视图第1列可知a最大为3,由正视图第2列和左视图第2列可知b最大为3,由正视图第3列和左视图第1列和第2列可知c最大为4,d最大为3,则a+b+c+d的最大值为3+3+4+3=13.故选:B.5.解:由几何体的正视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱.故选:C.6.解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3,故选:A.7.解:从俯视图是圆环,推出几何体的上下是圆,由此利用推出几何体的选项D.故选:D.8.解:由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.9.解:由题意该几何体是由球体和圆柱组成.表面积=4π•12+3•2π•1+2×π×12=12π,故选:D.10.解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.11.解:根据所给出的图形和数字可得:主视图有4列,每列小正方形数目分别为1,2,3,2,则符合题意的是故选:C.12.解:由几何体的三视图可得:该几何体的表面是由3个长方形与两个扇形围成,其侧面积为3×(×2π×2+2+2)=9π+12,上下底面面积为2וπ•22=6π,∴这个几何体表面积为9π+12+6π=15π+12,故选:D.13.解:观察三视图可知,原来的几何体是长方体.故答案为长方体.14.解:这个几何体的侧面积是=185πcm2 ;故答案为:185πcm2.15.解:由三视图可知,这个展台前面第一排一个正方体,后面三个,左面竖直两个,右面一个,故答案为:416.解:∵直角边长为2,∴斜边长为2,则底面圆的周长为2π,则这个圆锥的侧面积为:×2×2π=2π.故答案为:2π.17.解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为2,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.18.解:根据主视图、俯视图,可以得出最少时、最多时,在俯视图的相应位置上所摆放的个数如下:最少时需要9个,最多时需要13个,因此n=9+13=22,故答案为:22.19.解:由三视图,得:OB=3cm,OA=4cm,由勾股定理,得AB==5cm,圆锥的侧面积×6π×5=15π(cm2),圆锥的底面积π×()2=9π(cm2),圆锥的表面积15π+9π=24π(cm2),故答案为:24πcm220.解:观察三视图知:该几何体为三棱柱,高为3cm,长为4cm,侧面积为:3×4×3=36cm2.则这个几何体的侧面积是36cm2.故答案为:3621.解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.22.解:搭这样的几何体最少需要4+1=5个小正方体,最多需要4+2=6个小正方体,故答案为:523.解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.24.解:(1)这个几何体是圆柱;(2)∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).25.解:(1)原式=1+(﹣1)+3﹣1=2;(2)该几何体是圆锥,母线长为=13,圆锥的底面积为:π×52=25π,圆锥的侧面积为:×π×10×13=65π,圆锥的表面积为:25π+65π=90π.26.解:如图所示:AB=3,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.27.解:根据主视图、左视图可知,屋顶的两个完全相同的长方形的长为6.5米,宽为如图所示AB的长,在Rt△ABD中,AD=1,BD=1.5+1+0.5=3,∴AB==≈3.16,∴屋顶的面积为:6.5×3.16×2=41.08平方米,28.解:(1)制作长方体纸箱需要(2ac+2bc+3ab)平方厘米纸板;故答案为:(2ac+2bc+3ab);(2)根据三视图知,则组成这个几何体的玩具个数最少的分布情况如下图所示:所以组成这个几何体的玩具个数最少为9个,故答案为:9;(3)如图3,由题意得:a=c,a>b,甲:2(ac+2bc+2ab)+2ab,乙:2(2ab+2ac+bc)+2ab,∵a>b,∴ac>bc,∴ac﹣bc>0,∵甲所需纸板面积﹣乙所需纸板面积=2(ac+2bc﹣2ac﹣bc)=2(bc﹣ac)<0,∴甲种摆放方式所需外包装盒的纸板面积更少。
专题09 面积的存在性问题在求面积时,除了最基本的面积公式外,还需要注意三角形的面积比与底边之比、高之比的关系.在压轴题中,往往是以函数为背景,此时则还需掌握好在坐标系中常用的割补法.模块一:固定面积的存在性问题1、 知识内容:固定面积的存在性问题最为简单,在待求图形中,往往只有一个是变量,此时只需通过方程将其解出即可.2、 解题思路:(1) 根据题目条件,求出相应的固定面积;(2) 找到待求图形合适的底和高;(3) 列出方程,解出相应变量;根据题目实际情况,验证所有可能点是否满足要求并作答.例1.(2020黄浦区一模)已知在平面直角坐标系xOy 中,抛物线()2240y mx mx m =-+≠与x 轴交于点A 、B (点A 在点B 的左侧),且AB =6.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点E (0,2),点F 为第一象限内抛物线上一点,联结BF 、EF ,如果10OEFB S =四边形,求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于∠EBF ,求点P 的坐标.例2.如图,在平面直角坐标系中,点A 的坐标为(8,0),点B 在y 轴的正半轴上,且4cot 3OAB ∠=,抛物线214y x bx c =-++经过A 、B 两点. (1)求b 、c 的值;(2)过点B 作CB ⊥OB ,交这个抛物线于点C ,以点C 为圆心,CB 为半径的圆记作⊙C , 以点A 为圆心,r 为半径的圆记作⊙A .若⊙C 与⊙A 外切,求r 的值;(3)若点D 在这个抛物线上,AOB ∆的面积是OBD ∆面积的8倍,求点D 的坐标.例3.如图,二次函数的图像过点A(6x=-,顶点为C,点-,0)、B(0,6),对称轴为直线2B关于直线2x=-的对称点为D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求AE的长;(3)在二次函数的图像上是否存在点P,能够使PCA BAC∠=∠?如果存在,请求出点P的坐标;如果不存在,请说明理由.模块二:有关面积比的存在性问题1、知识内容:有些问题是关于两个未知面积比的,此类问题的难度稍大.一般都需要先通过公共边或公共高,将面积比转化为线段之比,从而进一步列出方程解决问题.2、解题思路:(1)根据题目条件,用函数表示出相关面积;(2) 利用面积比的条件列出方程并求解;(3) 根据题目实际情况,验证所有可能点是否满足要求并作答.例1.(2019上海中考真题)如图1,AD 、BD 分别是△A BC 的内角∠BAC 、∠ABC 的平分线,过点A 作AE 上AD ,交BD 的延长线于点E(1)求证:∠E =12∠C ; (2)如图2,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出ADE ABC SS 的值.例2.如图,在平面直角坐标系中,抛物线22y ax ax c =-+与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,它的对称轴与x 轴交于点C ,且OBC OAB ∠=∠,AC = 3.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF ⊥OA ,垂足为F ,DF 与线段AB 相交于点G ,且32ADG AFG S S =△△,求点D 的坐标.例3.如图,在平面直角坐标系中,已知点A 的坐标为(a ,3)(其中a > 4),射线OA 与反比例函数12y x=的图像交于点P ,点B 、C 分别在函数12y x =的图像上,且AB // x 轴,AC // y 轴.(1)当点P 的横坐标为6时,求直线AO 的表达式;(2)联结BO ,当AB = BO 时,求点A 的坐标;(3)联结BP 、CP ,试猜想ABP ACP S S △△的值是否随a 的变化而变化?如果不变,求出ABP ACP S S △△的值; 如果变化,请说明理由.模块三:隐藏的梯形的存在性问题1、 知识内容:若ABC ADC S S ∆∆=,且B 和D 在AC 的同侧,易证A 、B 、C 、D 构成梯形(或平行四边形),其中AC //BD .2、 解题思路:(1) 根据题目条件,找出相应的平行关系;(2)利用已知直线的解析式求出未知直线;(3)解出相应的点;(4)根据题目实际情况,验证所有可能点是否满足要求并作答.【例1】在平面直角坐标系中(如图),已知抛物线与x轴交于点A(1-,0)和点B,与y轴交于点C(0,2-).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t> 3,如果BDP∆和CDP∆的面积相等,求t 的值.1.抛物线()2=++与x轴交于A、B两点,顶点M的坐标为(1,4-).y x m k(1)求A、B两点的坐标;(2)设直线AM与y轴交于点C,求BCM∆的面积;(3)在抛物线上是否还存在点P,使得S△PMB = S△BCM,如存在,求出点P的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,O为坐标原点,开口向上的抛物线与x轴交于点A(1-,0)和点B(3,0),D为抛物线的顶点,直线AC与抛物线交于点C(5,6).(1)求抛物线的解析式;(2)点E在x轴上,且AEC∆相似,求点E的坐标;∆和AED(3)若直角坐标平面中的点F和点A、C、D构成直角梯形,且面积为16,试求点F的坐标.3.如图,抛物线2=+-经过直线3y x bx c=-与坐标轴的两个交点A、B,此抛物线与xy x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC : S△ACD = 5 : 4的点P的坐标;(3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标.4.如图,已知抛物线22=-+-的顶点A在第四象限,过点A作AB⊥y轴于点B,Cy x tx t22是线段AB上一点(不与A、B重合),过点C作CD⊥x轴于点D,并交抛物线于点P.(1)若点C的横坐标为1,且是线段AB的中点,求点P的坐标;(2)若直线AP交y轴负半轴于点E,且AC = CP,求四边形OEPD的面积S关于t的函数解析式,并写出定义域;(3)在(2)的条件下,当ADE∆的面积等于2S时,求t的值.。
2021年春中考数学一轮复习小专题突破:三角形的面积问题(附答案)1.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A.5B.4C.3D.22.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线3.如图,△ABC的两条中线AM、BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为()A.4B.3C.4.5D.3.54.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B1C1的面积是14,那么△ABC的面积是()A.2B.C.3D.5.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5B.4:5C.9:10D.15:166.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.B.C.D.7.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C.cm2D.cm28.如图,小方格都是边长为1的正方形,则四边形ABCD的面积是()A.25B.12.5C.9D.8.59.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=()A.B.1C.D.210.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2B.3C.4D.511.如图,△ABC中,D、E分别是BC、AD的中点,若△ABC的面积是18,则△ABE的面积是()A.9B.6C.4.5D.412.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S的值为()△ABCA.1cm2B.2cm2C.8cm2D.16cm213.如图,D,E,F分别是边BC,AD,AC上的中点,若S阴影的面积为3,则△ABC的面积是()A.5B.6C.7D.814.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则△ABC的面积等于△BEF的面积的()A.2倍B.3倍C.4倍D.5倍15.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.316.在△ABC中,AD、CE分别是△ABC的高,且AD=2,CE=4,则AB:BC=()A.3:4B.4:3C.1:2D.2:117.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中△BFG与△CEG的面积和是.18.如图,A、B、C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积.19.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是.20.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S△BEF=cm2.21.如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是.22.如图,△ABC中,AD⊥BC,垂足为D,AD=BD=5,CD=3,点P从点B出发沿线段BC的方向移动到点C停止,过点P作PQ⊥BC,交折线BA﹣AC于点Q,连接DQ、CQ,若△ADQ与△CDQ的面积相等,则线段BP的长度是.23.如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为.24.如图,在△ABC中,D、E分别为边BC,AC的中点,若S△ABC=48,则图中三角形ADE 部分的面积是.25.如图所示,在△ABC中,已知点D,E,F分别为BC,AD,BE的中点.且S△ABC=8cm2,则图中△CEF的面积=.26.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE中点,且S△ABC=4平方厘米,则S△BEF的值为.27.如图所示,D是BC的中点,E是AC的中点,若S△ADE=1,则S△ABC=.28.若a、b、c是△ABC的三边,且a=3cm,b=4cm,c=5cm,则△ABC最大边上的高是cm.29.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△OCD=2,S△OBE=3,S△OBC=4,则S△ABC=.30.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是BC的三倍,则图中四边形ACED的面积为.31.如图,△ABC中,点E是BC上的一点,EC=2BE,BD是AC边上的中线,若△ABC 的面积S△ABC=24,则S△ADF﹣S△BEF=.32.如图,AD是△ABC的中线,DE是△ADC的中线,已知△ABC的面积为10,则△ADE 的面积为.33.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则三角形BEF部分面积等于cm2.34.已知:如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,BD=2DC,AD,BE,CF交于一点G,S△BGD=16,S△AGE=6,则△ABC的面积是.35.如图,已知:D,E分别是△ABC的边BC和边AC的中点,连接DE,AD,若S△ABC =24cm2,求△DEC的面积.36.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.37.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.当△APE的面积等于20cm2时,求点P运动的时间.38.(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.39.如图,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.(1)试判断∠DEF与∠B的大小关系,并说明理由;(2)若D、E、F分别是AB、AC、CD边上的中点,S△DEF=4,求S△ABC.40.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;(2)若点M在x轴上,且S三角形ACM=S三角形ABC,试求点M的坐标.41.如图,在平面直角坐标系中,△ABC的顶点分别为A(﹣8,0)、B(6,0)、C(0,6),点D是OC中点,连接BD并延长交AC于点E,求四边形AODE的面积.参考答案1.解:满足条件的C点有5个,如图平行于AB的直线上,与网格的所有交点就是.故选:A.2.解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选:A.3.解:解法一:∵AM和BN是中线,∴S△BNC=S△ABC=S△ABM,即S△ABO+S△BOM=S△BOM+S四边形MCNO,S△ABO=S四边形MCNO,∵△ABO的面积为4,∴四边形MCNO的面积为6﹣2=4;解法二:如图连接MN,∵AM、BN是△ABC的两条中线,∴MN∥AB,∴△NAB的面积=△MBA的面积,∴△AON的面积=△BOM的面积=2,∵△ABO的面积为4,∴△ABN的面积=4+2=6,∵N为中点,∴△BCN的面积=△ABN的面积=6,∴四边形MCNO的面积=△BCN的面积﹣△BOM的面积=6﹣2=4,故选:A.4.解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴=S△ABC,==S△ABC,∴=+=2S△ABC,同理:=2S△ABC,=2S△ABC,∴△A1B1C1的面积=+++S△ABC=7S△ABC=14.∴S△ABC=2,故选:A.5.解:∵AD:DB=CE:EB=2:3,∴S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC=3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.6.解:连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=x.又∵4x+x=,x=.则四边形PDCE的面积为x+y=.故选:B.7.解:S阴影=S△BCE=S△ABC=1cm2.故选:B.8.解:如图:小方格都是边长为1的正方形,∴四边形EFGH是正方形,S▱EFGH=EF•FG=5×5=25S△AED=DE•AE=×1×2=1,S△DCH=•CH•DH=×2×4=4,S△BCG=BG•GC=×2×3=3,S△AFB=FB•AF=×3×3=4.5.S四边形ABCD=S▱EFGH﹣S△AED﹣S△DCH﹣S△BCG﹣S△AFB=25﹣1﹣4﹣3﹣4.5=12.5.故选:B.9.解:∵BE=CE,∴BE=BC,∵S△ABC=9,∴S△ABE=S△ABC=×9=4.5.∵AD=2BD,S△ABC=9,∴S△BCD=S△ABC=×9=3,∵S△ABE﹣S△BCD=(S△ADF+S四边形BEFD)﹣(S△CEF+SS四边形BEFD)=S△ADF﹣S△CEF,即S△ADF﹣S△CEF=S△ABE﹣S△BCD=4.5﹣3=1.5.故选:C.10.解:C点所有的情况如图所示:故选:C.11.解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的,△ABE是△ABD面积的,∴△ABE的面积=18××=18×=4.5.故选:C.12.解:∵由于E、F分别为AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).故选:D.13.解:∵D为BC的中点,∴S△ABD=S△ACD=S△ABC,∵E,F分别是边AD,AC上的中点,∴S△BDE=S△ABD,S△ADF=S△ADC,S△DEF=S△ADF,∴S△BDE=S△ABC,S△DEF=S△ADC=S△ABC,S△BDE+S△DEF=S△ADC+S△ABC=S△ABC,∴S△ABC=S阴影部分=×3=8.故选:D.14.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE.∴△ABC的面积等于△BEF的面积的4倍.故选:C.15.解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.16.解:∵AD、CE分别是△ABC的高,∴S△ABC=AB•CE=BC•AD,∵AD=2,CE=4,∴AB:BC=AD:CE=2:4=.故选:C.17.方法1解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为4.方法2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1+S2+S3=S4+S5+S6①,S2+S3+S4=S1+S5+S6②由①﹣②可得S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.故答案为:4.18.解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.19.解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD,∵E是AC的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为:30.20.解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.21.解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是24,∴S△ABE=×24=6.故答案为:6.22.解:①点Q在AB边上时,∵AD⊥BC,垂足为D,AD=BD=5,CD=3,∴S△ABD=BD•AD=×5×5=,∠B=45°∵PQ⊥BC,∴BP=PQ,设BP=x,则PQ=x,∵CD=3,∴S△DCQ=×3x=x,S△AQD=S△ABD﹣S△BQD=﹣×5×x=﹣x,∵△ADQ与△CDQ的面积相等,∴x=﹣x,解得:x=,②如图,当Q在AC上时,记为Q',过点Q'作Q'P'⊥BC,∵AD⊥BC,垂足为D,∴Q'P'∥AD∵△ADQ与△CDQ的面积相等,∴AQ'=CQ'∴DP'=CP'=CD=1.5∵AD=BD=5,∴BP'=BD+DP'=6.5,综上所述,线段BP的长度是或6.5.故答案为或6.5.23.解:连接AE和CD,∵BD=AB,∴S△ABC=S△BCD=1,S△ACD=1+1=2,∵AF=3AC,∴FC=4AC,∴S△FCD=4S△ACD=4×2=8,同理可以求得:S△ACE=2S△ABC=2,则S△FCE=4S△ACE=4×2=8;S△DCE=2S△BCD=2×1=2;∴S△DEF=S△FCD+S△FCE+S△DCE=8+8+2=18.24.解:∵点D为BC中点,∴DC=BC,∵△ADC与△ABC的DC,BC边上的高相同,∴S△ADC=S△ABC=24,∵点E为AC中点,∴AE=AC,∵△ADC与△ADE的AC,AE边上的高相同,∴S△ADE=S△ADC=12,故答案为:12.25.解:如图,∵E为AD的中点,∴S△ABC:S△BCE=2:1,同理可得,S△BCE:S△EFC=2:1,∵S△ABC=8cm2,∴S△EFC=S△ABC=×8=2(cm2).故答案为:2cm2.26.解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.27.解:∵D是BC的中点,E是AC的中点,∴△ADC的面积等于△ABC的面积的一半,△ADE的面积等于△ACD的面积的一半,∴△ADE的面积等于△ABC的面积的四分之一,又∵S△ADE=1,∴S△ABC=4.故答案为:4.28.解:∵a=3cm,b=4cm,c=5cm,∴△ABC是直角三角形,∵S△ABC=3×4÷2=6cm2,∴S△ABC=5×最大边上的高=12,∴△ABC最大边上的高是2.4cm.29.解:连接DE,如图则有,,将已知数据代入可得S△DOE=1.5,设S△ADE=x,则由,,所以得方程:,解得:x=6.3,所以四边形ADOE的面积=x+1.5=7.8.所以S△ABC=2+3+4+7.8=16.8.故填:16.8.30.解:设点A到BC的距离为h,则S△ABC=BC•h=12cm2,∵平移的距离是BC的长的3倍,∴AD=3BC,CE=2BC,∴四边形ACED的面积=(AD+CE)•h=(3BC+2BC)•h=5×BC•h=5×12=60(cm2).故答案为:60cm2.31.解:如图,作DH∥AE交BC于H.∵DH∥AE,AD=DC,∴EH=CH,∵EC=2BE,∴BE=EH=HC,∴S△ABE=S△ABC=8,S△ABD=S△ABC=12,∵EF=DH,DH=AE,∴EF=AE,∴S△BEF=×8=2,S△ABF=8﹣2=6,∴S△ADF=12﹣6=6,∴S△ADF﹣S△BEF=6﹣2=4,故答案为4.32.解:∵AD是△ABC的中线,△ABC的面积为10,∴S△ADC=S△ABC=×10=5,∵DE是△ADC的中线,∴S△ADE=S△ADC=×5=2.5.故答案为:2.5.33.解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,∴S△BEF=S△BEC,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=4cm2,∴S△BEF=1cm2,即阴影部分的面积为1cm2.故答案为1.34.解:∵BD=2DC,∴S△CGD=S△BGD=×16=8;∵E是AC的中点,∴S△CGE=S△BGE=6,∴S△BCE=S△BGD+S△CGD+S△CGE=16+8+6=30∴△ABC的面积是:30×2=60.故答案为:60.35.解:作高线AM.∵S△ABC=BC•AM,S△ADC=CD•AM又∵D是△ABC的边BC的中点,S△ABC=24cm2,∴S△ACD=S△ABC=12cm2.同理,S△CDE=S△ACD=6cm2.36.解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).37.解:设点P运动的时间为ts.(1)如图1,当0<t≤4时,S△APE=×2t×6=20,解得t=(s);(2)如图2,当4<t≤7时,S△APE=48﹣S△ADE﹣S△ABP﹣S△PCE,20=48﹣×6×2﹣×8×(2t﹣8)﹣×6×(14﹣2t)解之得:t=6(s);(3)如图3,当7<t≤10时,S△APE=×6×(20﹣2t)=20,解得t=(s).∵<7,∴t=应舍去综上,当t=s或6s时,△APE的面积等于20cm2.38.解:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD;(3)∵AE=3cm,CD=2cm,∴S△AEC=AE•CD=3cm2,∵S△AEC=AB•CE=3cm2,∴CE=3cm.故S△AEC=3cm2,CE=3cm.故答案为:(1)AB;(2)CD39.解:(1)延长EF交BC于G,∵∠BDC=∠EFD,∴EF∥BD,∵∠AED=∠ACB,∴DE∥BC,∴四边形DEGB是平行四边形,∴∠DEF=∠B;(2)∵F是CD边上的中点,S△DEF=4,∴S△DEC=2S△DEF=8,∵E是AC边上的中点,∴S△ADC=2S△DEC=16,∵D是AB边上的中点,∴S△ABC=2S△ACD=32.40.解:(1)∵|a+2|+=0,∴a+2=0,b﹣4=0,∴a=﹣2,b=4,∴点A(﹣2,0),点B(4,0).又∵点C(0,3),∴AB=|﹣2﹣4|=6,CO=3,∴S△ABC=AB•CO=×6×3=9.(2)设点M的坐标为(x,0),则AM=|x﹣(﹣2)|=|x+2|,又∵S△ACM=S△ABC,∴AM•OC=×9,∴|x+2|×3=3,∴|x+2|=2,即x+2=±2,解得:x=0或﹣4,故点M的坐标为(0,0)或(﹣4,0).41.解:∵D是OC中点,C(0,6),∴D(0,3),设直线AC的解析式为:y=kx+b,∵A(﹣8,0)、C(0,6),∴,∴,∴直线AC的解析式为:y=x+6,直线BD的解析式为:y=mx+n,∵B(6,0)、D(0,2),∴,∴,∴直线BD的解析式为:y=﹣x+3;解得,,∴E(﹣,),∴S四边形AODE=S△ABE﹣S△OBD=×14×﹣×6×3=。
2021年中考数学九年级复习小专题专项课时练:三角形的面积(二)1.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线2.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5 B.4:5 C.9:10 D.15:163.如图,△ABC的面积为16,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是()A.3 B.4 C.5 D.64.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n 等于()A.2 B.3 C.4 D.无法确定5.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD 的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.36.在平面直角坐标系xOy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO 的面积为()A.15 B.7.5 C.6 D.37.如图中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC 外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△CGM、△BND的面积分别为S、S2、S3,则下列结论正确的是()1A.S1=S2=S3B.S1=S2<S3C.S1=S3<S2D.S2=S3<S18.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.3 C.4 D.59.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△=()BEFA.1 B.2 C.3 D.410.能把一个三角形分成面积相等的两部分的是该三角形的一条()A.中线B.角平分线C.高线D.边的垂直平分线11.如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是()A.只有①和②相等B.只有③和④相等C.只有①和④相等D.①和②,③和④分别相等12.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A.5 B.4 C.3 D.213.如图,要判断△ABC的面积是△DBC的面积的几倍,只有一把仅有刻度的直尺,需要度量的次数最少是()A.3次以上B.3次C.2次D.1次14.已知:如图△ABC中,点D、E、F分别在三边上,E是AC的中点,AD,BE,CF 交于一点G,BD=2DC,S△BGD=8,S△AGE=3,则△ABC的面积是()A.25 B.30 C.35 D.4015.一定能把三角形分成面积相等的两个三角形的线段是这个三角形的()A.角平分线B.中线C.高线D.中位线16.如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16 B.24 C.36 D.5417.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个18.已知四边形ABCD的对角线AC与BD相交于点O,若S△AOB=4,S△COD=9,则四边形ABCD的面积S四边形ABCD的最小值为()A.21 B.25 C.26 D.3619.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.20.如图,D,E分别是△ABC的边AB,AC的中点,H,G是边BC上的点,且HG=BC,S=24,则图中阴影部分的面积为()△ABCA.4 B.6 C.8 D.12参考答案1.解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选:A.2.解:∵AD:DB=CE:EB=2:3,∴S△BDC:S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC=3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.3.解:设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH底边GH 上的高为h2,则有h=h1+h2.S=BC•h=16,△ABCS=S△AGH+S△CGH=GH•h1+GH•h2=GH•(h1+h2)=GH•h.阴影∵四边形BDHG是平行四边形,且BD=BC,∴GH=BD=BC,∴S阴影=×(BC•h)=S△ABC=4.故选:B.4.解:设空白出图形的面积为x,根据题意得:m+x=9,n+x=6,则m﹣n=9﹣6=3.故选:B.5.解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE+S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选:C.6.解:如图,根据题意得,△ABO的底长OB为2,高为3,∴S△ABO=×2×3=3.故选:D.7.解:作ER⊥FA交FA的延长线于R,作DH⊥NB交NB的延长线于H,作NT⊥DB 交DB的延长线于T,设△ABC的三边长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∵AE=AB,∠ARE=∠ACB,∠EAR=∠CAB,∴△AER≌△ABC,∴ER=BC=a,FA=b,∴S1=ab,S=ab,2同理可得HD=AR=AC,∴S1=S2=S3=.故选:A.8.解:C点所有的情况如图所示:故选:C.9.解:∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE==4,S==6,△ABD∴S△ABD﹣S△ABE,=S△ADF﹣S△BEF,=6﹣4,=2.故选:B.10.解:把三角形的面积分成相等的两部分的是三角形的中线.此时两个三角形等底同高.故选:A.11.解:小矩形的长为a,宽为b,则①中的阴影部分为两个底边长为a,高为b的三角形,∴S=×a•b×2=ab;②中的阴影部分为一个底边长为a,高为2b的三角形,∴S=×a•2b=ab;③中的阴影部分为一个底边长为a,高为b的三角形,∴S=×a•b=ab;④中的阴影部分为一个底边长为a,高为b的三角形,∴S=×a•b=ab.∴①和②,③和④分别相等.故选:D.12.解:满足条件的C点有5个,如图平行于AB的直线上,与网格的所有交点就是.故选:A.13.解:连接AD并延长交BC于M,作DF∥BC交AP于点F.测量AM以及AD即可,由=,即可求出△ABC的面积是△DBC的面积的几倍.所以只量2次.故选:C.14.解:三角形BDG和CDG中,BD=2DC.根据这两个三角形在BC边上的高相等,那么S△BDG=2S△GDC,因此S△GDC=4,同理S△AGE=S△GEC=3,S△BEC=S△BGC+S△GEC=8+4+3=15,∴三角形ABC的面积=2S△BEC=30.故选:B.15.解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选:B.16.解:S△ADC=S△AGC﹣S△ADG=×AG×BC﹣×AG×BF=×8×(6+9)﹣×8×9=60﹣36=24.故选:B.17.解:C点所有的情况如图所示:故选:D.18.解:设点A到边BD的距离为h.如图,任意四边形ABCD中,S△AOB=4,S△COD=9;∵S△AOD=OD•h,S△AOB=OB•h=4,∴S△AOD=OD•=4×,S△BOC=OB•=9×;设=x,则S△AOD=4x,S△BOC=;∴S 四边形ABCD=4x++13≥2•+13=12+13=25;故四边形ABCD的最小面积为25.故选:B.19.解:设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解得x=,∴XQ=1﹣=,∴==,故选:B.20.解:连接DE,作AF⊥BC于F,设DE和AF相交于点I,DG和EH相交于点O,如图所示,∵D,E分别是AB,AC的中点,∴DE=BC,DE∥BC,AI=FI,∴△ADE∽△ABC,AI⊥DE,∴△ADE的面积=24×=6,∴四边形DBCE的面积=24﹣6=18,∵HG=BC,∴DE=HG,∴△DOE的面积+△HOG的面积=2×DE×FI=△ADE的面积=6,∴图中阴影部分的面积=18﹣6=12,故选:D.。
2021年中考数学真题分类汇编:专题15几何图形初步与视图一、单选题1.(2021·北京中考真题)如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B .【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.2.(2021·四川眉山市·中考真题)如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°【答案】A【分析】先通过作辅助线,将∠1转化到∠BAC ,再利用直角三角形两锐角互余即可求出∠2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得∠1=∠BAC ,∠∠BAC +∠2=90°,∠∠1+∠2=90°,因为∠1=48°,∠∠2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.3.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】 根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠CB平分∠DCE,∠∠BCE=∠BCD,∠∠BCE=∠ABC,∠∠AEC=∠BCE+∠ABC=40°,∠∠ABC=20°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.4.(2021·浙江台州市·中考真题)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【答案】A【分析】根据线段的性质即可求解.【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.5.(2021·江苏南京市·中考真题)下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2【答案】D【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.【点睛】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.6.(2021·浙江中考真题)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【答案】A【分析】依据长方体的展开图的特征进行判断即可.【详解】解:A、符合长方体的展开图的特点,是长方体的展开图,故此选项符合题意;B、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;C、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意;D、不符合长方体的展开图的特点,不是长方体的展开图,故此选项不符合题意.故选:A.【点睛】本题考查了长方体的展开图,熟练掌握长方体的展开图的特点是解题的关键.7.(2021·四川自贡市·中考真题)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【分析】正方体的表面展开图“一四一”型,相对的面之间一定相隔一个正方形,根据这一特点解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方体,“迎”与“党”是相对面,“建”与“百”是相对面,“喜”与“年”是相对面.故答案为:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.(2021·江苏扬州市·中考真题)把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.9.(2021·浙江金华市·中考真题)将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.【答案】D【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.10.(2021·江苏苏州市·中考真题)如图所示的圆锥的主视图是()A.B.C.D.【答案】A【详解】试题分析:主视图是从正面看所得到的图形,圆锥的主视图是等腰三角形,如图所示:,故选A.考点:三视图.11.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.12.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A.80︒B.70︒C.60︒D.50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,m n∠=︒,∠//,140∠∠4=∠1=40°,∠=︒,∠230∠=∠+∠=︒;∠34270故选B.【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.13.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.14.(2021·山东聊城市·中考真题)如图,AB ∥CD ∥EF ,若∥ABC =130°,∥BCE =55°,则∥CEF 的度数为( )A .95°B .105°C .110°D .115°【答案】B【分析】 由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.15.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 16.(2021·浙江金华市·中考真题)某同学的作业如下框,其中∥处填的依据是( ) 如图,已知直线1234,,,l l l l .若12∠=∠,则34∠=∠.请完成下面的说理过程.解:已知12∠=∠,根据(内错角相等,两直线平行),得12//l l .再根据( ∥ ),得34∠=∠.A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补【答案】C【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知∠3和∠4是同位角关系,即可选出答案.【详解】解:∠12//l l ,∠34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.17.(2021·湖北随州市·中考真题)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( )A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同【答案】A【分析】画出组合体的三视图,即可得到结论.【详解】解:所给几何体的三视图如下,所以,主视图和左视图完全相同,故选:A.【点睛】本题考查了简单组合体的三视图,利用三视图的定义是解题关键.18.(2021·四川资阳市·中考真题)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【分析】根据俯视图可确定主视图的列数和小正方形的个数,即可解答.【详解】解:由俯视图可得主视图有2列组成,左边一列由3个小正方形组成,右边一列由1个小正方形组成.故选:C.【点睛】本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.19.(2021·湖北黄冈市·中考真题)如图是由四个相同的正方体组成的几何体,其俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的定义即可得.【详解】解:俯视图是指从上往下看几何体得到的视图.这个几何体的俯视图是由排在一行的三个小正方形组成,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了俯视图,熟记定义是解题关键.20.(2021·四川广安市·中考真题)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解.【详解】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选B.【点睛】本题考查了几何体的三视图,中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.21.(2021·湖南衡阳市·中考真题)如图是由6个相同的正方体堆成的物体,它的左视图是().A.B.C.D.【答案】A【分析】结合题意,根据视图的性质分析,即可得到答案.【详解】由6个相同的正方体堆成的物体,它的左视图如下:故选:A【点睛】本题考查了视图的知识;解题的关键是熟练掌握左视图的性质,从而完成求解.22.(2021·浙江嘉兴市·中考真题)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【答案】C【分析】根据俯视图是从上边看得到的图形,可得答案.【详解】解:从上边看第一行是两个小正方形,第二行是一个小正方形并且在第二列,【点睛】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.23.(2021·安徽中考真题)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【分析】根据三视图,该几何体的主视图可确定该几何体的形状,据此求解即可.【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,故选:C.【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键.24.(2021·四川乐山市·中考真题)如图是由4个相同的小正方体成的物体,将它在水平面内顺时针旋转90 后,其主视图是()A.B.C.D.【分析】根据该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图与该几何体旋转前从右面看到的图形一样,由此即可解答.【详解】把该几何体它在水平面内顺时针旋转90︒后,旋转后的主视图与该几何体旋转前从右面看到的图形一样,∠该几何体的从右面看到的图形为,∠该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图为.故选C.【点睛】本题考查了简单几何体的三视图,熟知把该几何体它在水平面内顺时针旋转90︒后,旋转后几何体的主视图与该几何体旋转前从右面看到的图形一样是解决问题的关键.25.(2021·四川成都市·中考真题)如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【答案】C【分析】根据简单几何体的三视图中俯视图从上面看得到的图形即可求解.【详解】解:从上面看简单组合体可得两行小正方形,第二行四个小正方形,第一行一个小正方形右侧对齐.故选C.【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.26.(2021·四川遂宁市·中考真题)如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是()A.B.C.D.【答案】D【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.27.(2021·四川泸州市·中考真题)下列立体图形中,主视图是圆的是()A.B.C.D.【答案】D【分析】分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.【详解】解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;圆柱的主视图是矩形,不符合题意;圆锥的主视图是等腰三角形,不符合题意;球体的主视图是圆,符合题意;故选:D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.28.(2021·浙江宁波市·中考真题)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.【答案】C【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C.【点睛】本题考查了简单组合体的三视图,属于常考题型,熟知主视图是从物体的正面看到的图形是解题关键.29.(2021·山东泰安市·中考真题)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【分析】直接从左边观察几何体,确定每列最高的小正方体个数,即对应左视图的每列小正方形的个数,即可确定左视图.【详解】解:如图所示:从左边看几何体,第一列是2个正方体,第二列是4个正方体,第三列是3个正方体;因此得到的左视图的小正方形个数依次应为2,4,3;故选:B.【点睛】本题考查了几何体的三视图,要求学生理解几何体的三种视图并能明白左视图的含义,能确定几何体左视图的形状等,解决本题的关键是牢记三视图定义及其特点,能读懂题意和从题干图形中获取必要信息等,本题蕴含了数形结合的思想方法,对学生的空间想象能力有一定的要求.30.(2021·浙江温州市·中考真题)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【分析】直接从上往下看,得到的是一个六边形,即可选出正确选项.【详解】解:从上往下看直六棱柱,看到的是个六边形;故选:C.【点睛】本题考查了三视图的相关内容,要求学生明白俯视图是对几何体进行从上往下看得到的视图,实际上也是从上往下得到的正投影,本题较为基础,考查了学生对三视图概念的理解与应用等.31.(2021·浙江绍兴市·中考真题)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点睛】本题考查了简答组合体的三视图,从正面看得到的图形是主视图.32.(2021·浙江衢州市·中考真题)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】根据主视图是从几何体正面看得到的图形即可得到答案.【详解】从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1,所以主视图为:,故选B.【点睛】本题考查了简单几何体的三视图,关键是掌握主视图所看的位置.33.(2021·浙江丽水市·中考真题)如图是由5个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看下面一层是三个正方形,上面一层中间是一个正方形.即:故选:B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.34.(2021·四川乐山市·中考真题)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为4的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为()A.3B.72C.2D.52【答案】A【分析】根据由边长为4的正方形分割制作的七巧板,可得共5种图形,然后根据阴影部分的构成图形,计算阴影部分面积即可.【详解】解:如下图所示,由边长为4的正方形分割制作的七巧板,共有以下几种图形:∠腰长是22的等腰直角三角形,∠腰长是2的等腰直角三角形,∠腰长是2的等腰直角三角形,∠边长是2的正方形,∠边长分别是2245和135的平行四边形,根据图2可知,图中抬起的“腿”(即阴影部分)是由一个腰长是2的等腰直角三角形,和一个边长分别是2和2,顶角分别是45和135的平行四边形组成,如下图示,根据平行四边形的性质可知,顶角分别是45和135的平行四边形的高是DB,且2DB=,∠21221 2=,顶角分别是45和135222=,∠阴影部分的面积为:123+=,故选:A.【点睛】本题考查了七巧板中的图形的构成和面积计算,熟悉七巧板中图形的分类是解题的关键.二、填空题35.(2021·上海中考真题)70︒的余角是__________.【答案】20︒【分析】根据余角的定义即可求解.【详解】70︒的余角是90°-70︒=20︒故答案为:20︒.此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.36.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A,一艘轮船由西向东航行,在B点测得小岛A 在北偏东60︒方向上;航行12n mile到达C点,这时测得小岛A在北偏东30方向上.小岛A到航线BC的距离是__________n mile(3 1.73≈,结果用四舍五入法精确到0.1).【答案】10.4【分析】过点A作AD∠BC,垂足为D,根据题意,得∠ABC=30°,∠ACD=60°,从而得到AC=BC=12,利用sin60°=AD AC计算AD即可【详解】过点A作AD∠BC,垂足为D,根据题意,得∠ABC=30°,∠ACD=60°,∠∠ABC=∠CAB=30°,∠AC=BC=12,∠sin60°=AD AC,∠AD=AC sin60°=1232⨯3 1.73610.38≈⨯=≈10.4故答案为:10.4.本题考查了方位角,解直角三角形,准确理解方位角的意义,构造高线解直角三角形是解题的关键.37.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).∥射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;∥车轮做成圆形,应用了“圆是中心对称图形”;∥学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;∥地板砖可以做成矩形,应用了“矩形对边相等”.【答案】∠【分析】根据直线的性质,圆的性质,特殊四边形的性质分别判断即可.【详解】解:∠射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故正确;∠车轮做成圆形,应用了“同圆的半径相等”,故错误;∠学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的四边相等”,故错误;∠地板砖可以做成矩形,应用了“矩形的四个角是直角,可以密铺”,故错误;故答案为:∠.【点睛】本题考查了直线的性质,圆的性质,特殊四边形的性质,都属于基本知识,解题的关键是联系实际,掌握相应性质定理.38.(2021·浙江中考真题)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB 的长应是______.【答案】21- 【分析】 根据裁剪和拼接的线段关系可知3CD =,1BD CE ==,在Rt ACD △中应用勾股定理即可求解.【详解】解:∠地毯平均分成了3份,∠每一份的边长为1333=,∠3CD =,在Rt ACD △中,根据勾股定理可得222AD CD AC =-,根据裁剪可知1BD CE ==,∠21AB AD BD =-=,故答案为:21-.【点睛】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.39.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【答案】减少 10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF 与∠D 、∠E 、∠DCE 之间的关系,进行计算即可判断.【详解】解:∠∠A +∠B =50°+60°=110°,∠∠ACB =180°-110°=70°,∠∠DCE =70°,如图,连接CF 并延长,∠∠DFM =∠D +∠DCF =20°+∠DCF ,∠EFM =∠E +∠ECF =30°+∠ECF ,∠∠EFD =∠DFM +∠EFM =20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD =110°,则∠EFD 减少了10°,若只调整∠D 的大小,由∠EFD =∠DFM +∠EFM =∠D +∠DCF +∠E +∠ECF =∠D +∠E +∠ECD =∠D +30°+70°=∠ D +100°,因此应将∠D 减少10度;故答案为:∠减少;∠10.【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.40.(2021·江苏扬州市·中考真题)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____2cm.【答案】100π【分析】根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.【详解】解:∠果罐的主视图是边长为10cm的正方形,为圆柱体,∠圆柱体的底面直径和高为10cm,π⨯=100π,∠侧面积为1010故答案为:100π.【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.。
2021年中考数学复习微专题《利用二次函数性质求最值》经典题型分类专题提升练习类型一:几何图形中的面积最值问题1.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18 3 m2C.24 3 m2D.4532m22.在矩形ABCD的各边AB,BC,CD和DA上分别选取点E,F,G,H,使得AE=AH=CF=CG,如果AB=60,BC=40,四边形EFGH的最大面积是()A.1350B.1300C.1250D.12003.如图所示是某养殖专业户建立的一个矩形场地,一边靠墙(墙长15m),另三边除大门外用篱笆围成.已知篱笆总长为30m,门宽是2m,若设这块场地的宽为xm,养殖场地的面积为ym2,则当x为何值时,y有最大值?最大值为多少?4.如图,有一块三角形空地,底边长BC=100米,高AH=80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在AB、AC边上,E、F在边BC上,当矩形DEFG的面积最大时,这个矩形的长与宽各是多少米?最大面积为多少?5.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?6.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.类型二:销售利润问题1.某商店经营一种玩具,已知所获利润y(元)与销售的单价x(元)之间的关系为y=-x2+24x+2956,则获利最多为()A.3144元B.3100元C.144元D.2956元2.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件40元,如何定价才能使利润最大?3.小明投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系满足一次函数y=-10x+500,在销售过程中,销售单价不低于成本价,且每件的利润不高于成本价的60%.(1)设小明每月获得利润为W(元),求每月获得利润W(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围;(2)当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?4.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162-3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式;(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.5.某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日均销售量的关系如下:(1)若记销售单价比每瓶进价多x元时,日均毛利润(毛利润=售价-进价-固定成本)为y元,求y关于x的函数解析式和自变量的取值范围;(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?6.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?7.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.类型三:动点最值问题1.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________.2.如图所示,甲、乙两船分别从A地和C地同时开出,各沿箭头所指方向航行,已知AC=10海里,甲、乙两船的速度分别是每小时16海里和每小时12海里,同时出发多长时间后,两船相距最近?最近距离是多少?3.如图1,抛物线y=-3[(x-2)2+n]与x轴交于点A(m-2,0)5和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连接BC.(1)求m,n的值.(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN,BN.求△NBC面积的最大值.(3)如图3,点M,P分别为线段BC和线段OB上的动点,连接PM,PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.4.如图,抛物线经过A(-2,0),B,C(0,2)三点.(1)求抛物线的解析式;(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标.5.如图,抛物线y=-23x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A的坐标为(-1,0),与y轴交于点C(0,2),直线CD:y=-x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式.(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C,E,F,M为顶点的四边形是平行四边形时,请写出点F的坐标.。
图形面积问题【典例1】小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?【答案】:宽6米,长10米【解析】:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-= 4289)417(42+--=x ∵104340≤-<x ∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.【典例2】某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?【答案】:(1)四边形EFGH 是正方形x(2)当CE =CF =0.1米时,总费用最省.【解析】:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+ )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.【典例3】某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?【答案】:(1)y=200)10(22+--=x (2)187.5【解析】:)240(x x y -=)20(22x x --= 200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.【典例4】如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论? 【答案】:(1)25(2)25 【解析】:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.【典例5】小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?【答案】:(1) (2)15,225【解析】:(1)根据题意,得x x x x S 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时, 答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.【典例6】如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.【答案】:(1)1(2)40.5(3)最大面积为cm 2 【解析】:(1)设正方形的边长为cm , 则. 即. 解得(不合题意,舍去),. 剪去的正方形的边长为1cm .(2)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2, 则与的函数关系式为:.即. 改写为. 当时,.即当剪去的正方形的边长为2.25cm 时,长方体盒子的侧面积最大为40.5cm 2.(3)有侧面积最大的情况. 设正方形的边长为cm ,盒子的侧面积为cm 2. 若按图1所示的方法剪折, 则与的函数关系式为: x x x x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折,则与的函数关系式为:x x x x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2. 【典例7】某中学为初一新生设计的学生单人桌的抽屉部分是长方体,抽屉底面周长为180cm ,高为20cm.请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计)【答案】解:根据题意,得y =20x(1802-x),整理得 y =-20x 2+1800x =-20(x 2-90x +2025)+40500=-20(x -45)2=40500.∵-20<0,∴当x =45时,函数有最大值,y 最大值=40500,即当底面的宽为45cm 时,抽屉的体积最大,最大为40500cm 3.【典例8】 小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm ,这个三角形的面积S(单位:cm 2)随x(单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)当x 是多少时,这个三角形的面积S 最大?最大面积是多少?(参考公式:当x =-b 2a 时,二次函数y =ax 2+bx +c(a ≠0)有最小(大)值4ac -b 24a) 【答案】解: (1)S =12x ·(40-x)=-12x 2+20x ; (2)S =-12x 2+20x =-12(x 2-40x)=-12[x 2-40x +(-20)2-(-20)2]=-12[(x -20)2-400]=-12(x -20)2+200.∵a =-12<0,∴抛物线的开口向下, ∴当x =20时,S 最大值=200,即当x =20时,这个三角形的面积S 最大,最大面积为200cm 2.【典例9】某农场拟建一间矩形种牛饲养室,饲养室的一面靠墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.【答案】解:(1)∵y =x ·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积最大,即饲养室长x 为25m 时,占地面积y 最大;(2)∵y =x ·50-x -22=-12(x -26)2+338,∴当x =26时,占地面积最大,即饲养室长x 为26m 时,占地面积y 最大;∵26-25=1≠2,∴小敏的说法不正确.。
2021年中考数学专题复习:几何图形面积问题一.选择题1.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为()A.y=﹣x2+20x B.y=x2﹣20x C.y=﹣x2+10x D.y=x2﹣10x2.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.3C.D.3.如图,一边靠墙(墙有足够长),其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2B.12 m2C.18 m2D.以上都不对4.如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A.16 B.32 C.36 D.645.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是()平方米.A.16 B.18 C.20 D.246.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为()A.75m2B.C.48m2D.7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1 B.2 C.3 D.48.如图,在Rt△ABO中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得的阴影部分的面积为S,则S与t之间的函数关系式为()A.S=t(0<t≤3)B.S=t2(0<t≤3)C.S=t2(0<t≤3)D.S=t2﹣1(0<t≤3)9.用长度为8m的铝合金条制成如图所示的矩形窗框,那么这个窗户的最大透光面积为()m2.A.B.C.2 D.410.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.二.填空题11.如图,在一面靠墙(墙长不限)的空地上用长为24米的篱笆围成中间隔有两道篱笆的矩形鸡场,则所围鸡场最大面积为平方米.12.如图,某居民小区要在一块一边靠墙(墙足够长)的高地上修建一个矩形花园ABCD,花园的一边靠墙,另外三边用总长为42m的栅栏围成,CD上留2米的位置做大门.则CD =米时,花园的面积最大,最大面积是平方米.13.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝行,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是cm2,则a的值为cm.14.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式;自变量的取值范围.15.如图,在Rt△ABC中,∠C=90°,AC=10,BC=30,动点P从点B开始沿边BC向点C 以每秒3个单位长度的速度运动,动点Q从点C开始沿边CA向点A以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t=秒时,三角形△PCQ的面积最大.(2)在整个运动过程中,线段PQ的中点所经过的路程长为.三.解答题16.阅读材料:配方法可以用来解一元二次方程,还可以用它来解决一些最值问题,比如:因为3a2≥0,所以3a2+1就有个最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为﹣3a2≤0,所以﹣3a2+1有最大值1,即﹣3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.请解决下列问题:(1)当x=时,代数式3(x﹣2)2﹣1有最(填“大”或“小”)值为;(2)当x=时,代数式﹣2x2﹣4x+3有最(填“大”或“小”)值为;(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度16m,求:当花园与墙相邻(即垂直于墙)的边长为多少时,花园的面积最大?最大面积是多少?17.如图,ABCD是一个矩形菜园,为了节省材料,使AD边靠墙,其它三边用总长为200m 的竹篱笆围成,墙的长度为90m.(1)若菜园的面积为4800m2,求BC边长;(2)BC边长为多少时,围成的菜园面积最大?最大值是多少?18.如图,在矩形ABCD中,AB=6cm,BC=8cm,点P从点A开始沿边AB向终点B以1cm/s 的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动,设运动时间为t秒.(1)填空:BQ=,PB=;(用含t的代数式表示)(2)当t为何值时,PQ的长度等于3cm?(3)当t为何值时,五边形APQCD的面积有最小值?最小值为多少?19.如图,把一张边长为10cm的正方形纸板的四周各剪去一个边长为xcm的小正方形,再折叠成一个无盖的长方体盒子.(1)当长方体盒子的底面积为81cm2时,求所剪去的小正方形的边长.(2)设所折叠的长方体盒子的侧面积为S,求S与x的函数关系式,并写出x的取值范围.(3)长方体盒子的侧面积为S的值能否是60cm2,若能,请求出x的值;若不能,请说明理由.20.手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式;(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?(3)请说明(2)中的函数S随x的变化情况.参考答案一.选择题1.解:∵长方形一边的长度为x米,周长为20米,∴长方形的另外一边的长度为(10﹣x)米,则长方形的面积y=x(10﹣x)=﹣x2+10x,故选:C.2.解:如图,作HM⊥AB于M,∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°,∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH,∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则BD=2﹣x,∴S==BD•AD=x(2﹣x)=﹣(x﹣)2+,△BDH∴△BDH面积的最大值是,故选:C.3.解:设与墙垂直的矩形的边长为xm,则这个花园的面积是:S=x(12﹣2x)=﹣2x2+12x=﹣2(x﹣3)2+18,∴当x=3时,S取得最大值,此时S=18,故选:C.4.解:设AC=x,四边形ABCD面积为S,则BD=16﹣x,则:S=AC•BD=x(16﹣x)=﹣(x﹣8)2+32,当x=8时,S最大=32;所以AC=BD=8时,四边形ABCD的面积最大,故选:B.5.解:设AB=x,则BC=12﹣2x得矩形ABCD的面积:S=x(12﹣2x)=﹣2x2+12=﹣2(x﹣3)2+18即矩形ABCD的最大面积为18平方米故选:B.6.解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故选:A.7.解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC ﹣S△PBQ=×12×6﹣(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选:C.8.解:如图所示,∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0<t≤3),即S=t2(0<t≤3).故选:B.9.解:设宽为xm,则长为m,可得面积S=x•=﹣x2+4x,当x=时,S有最大值,最大值为=故选:B.10.解:设菱形的高为h,∵在边长为1的菱形ABCD中,∠ABC=120°,∴∠A=60°,∴h=,若设AP=x,则PB=1﹣x,∵PQ⊥AB,AQ=2x,PQ=x,∴DQ=1﹣2x,∴S△CPQ =S菱形ABCD﹣S△PBC﹣S△PAQ﹣S△CDQ=1×﹣(1﹣x)•﹣x•x﹣(1﹣2x)•=﹣x2+x=﹣(x﹣)2+,∵﹣<0,∴△CPQ面积有最大值为,故选:D.二.填空题(共5小题)11.解:∵鸡场的宽AB为x米,∴BC=(24﹣4x)米,∴y=x(24﹣4x)=﹣4x2+24x,∴当x=3时,y=36,最大值答;当x取3时所围成的鸡场的面积最大,最大面积是36平方米,故答案为:36.12.解:设AD=BC=x米,则CD=42﹣2x+2=44﹣2x,∴花园的面积S=x(44﹣2x)=﹣2x2+44x=﹣2(x﹣11)2+242∵﹣2<0,∴当x=11时,S取得最大值,最大值为242,即CD=44﹣22=22米时,花园的面积最大,最大面积是242平方米,故答案为:22,242.13.解:如图,∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=a﹣x,∴纸盒侧面积=3x(a﹣2x)=﹣6x2+3ax=﹣6(x﹣)2+,∵该纸盒侧面积的最大值是cm2,∴=,解得:a=3,或a=﹣3(舍去);故答案为:3.14.解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.15.解:(1)∵CP=BC﹣BP=30﹣3t,CQ=t,∵∠C=90°,=PC•CQ=•t=﹣t2+15t,∴S△PCQ当t=﹣=5时,三角形△PCQ的面积最大;(2)线段PQ的中点所经过的路程是线段MN的长,如图所示:当P在B处,Q在C处时,PQ的中点为BC的中点,当点Q运动10秒时,P、Q停止运动,PQ的中点为N,P到达D,Q到达A,过点A作AE∥MN交BC于点E,此时CD=30﹣3×10=0,∴MD=15﹣0=15,∵N是AD的中点,∴M是DE的中点,∴EM=DM=15,MN=AE,∴CE=0+15+15=30,∴AE==10,∴MN=5;即线段PQ的中点所经过的路程长为.故答案为:5,5.三.解答题(共5小题)16.解:(1)当x=2时,代数式3(x﹣2)2﹣1有最小值为﹣1;故答案为2、小、﹣1.(2)代数式﹣2x2﹣4x+3=﹣2(x+1)2+5∴当x=﹣1时,代数式﹣2x2﹣4x+3有最大值为5.故答案为﹣1、大、5.(3)设花园与墙相邻(即垂直于墙)的边长为xm,花园的面积为ym2.根据题意,得y=x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32∵﹣2<0,∴当x=4时,y有最大值为32,答:花园与墙相邻(即垂直于墙)的边长为4m时,花园的面积最大,最大面积是32m2.17.解:(1)设BC的长为xm,根据题意,得(200﹣x )•x =4800整理,得x 2﹣200x +9600=0解得x 1=80,x 2=120(不符合题意,舍去).答:BC 边长为80m .(2)设BC 边长为xm 时,围成的菜园面积为ym 2.根据题意,得y =(200﹣x )•x =﹣x 2+100x =﹣(x ﹣100)2+5000因为0<x ≤90,﹣<0,在对称轴左侧,y 随x 的增大而增大,所以当x =90时,y 有最大值为4950,答:BC 边长为90m 时,围成的菜园面积最大,最大值4950m 2.18.解:(1)由题意:BQ =2t cm ,PB =(6﹣t )cm ,故答案为2t ,(6﹣t ).(2)由题意,得. 解得(不合题意,舍去),t 2=3.所以当t =3秒时,PQ 的长度等于;(3)存在.理由如下:设五边形APQCD 的面积为S .∵S 矩形ABCD =6×8=48(cm 2),∴, ∴当t =3秒时,五边形APQCD 的面积有最小值,最小值为39cm 2.19.解:(1)根据题意,得(10﹣2x )2=81解得x 1=0.5,x 2=9.5(不符合题意,舍去)答:所剪去的小正方形的边长为0.5cm .(2)根据题意,得S =4x (10﹣2x )=﹣8x 2+40x (0<x <5)答:S 与x 的函数关系式为S =﹣8x 2+40x ,x 的取值范围为0<x <5.(3)答:不能.理由如下:﹣8x 2+40x =60,整理得2x 2﹣10x +15=0∵△=100﹣120=﹣20<0,∴此方程无解,答:长方体盒子的侧面积为S 的值不能是60cm 2.20.解:(1)根据题意可得:一条对角线的长为xcm ,则另一对角线长为:(60﹣x ), 则S =x (60﹣x )=﹣x 2+30x ;(2)由①得:S =﹣x 2+30x =﹣(x ﹣30)2+450,故当x 是30cm 时,菱形风筝的面积S 最大,最大的面积是450cm 2.(3)当0<x <30时,S 随着x 的增大而增大;当30<x <60时,S 随着x 的增大而减小.。