结构力学动力学5
- 格式:ppt
- 大小:515.50 KB
- 文档页数:5
结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。
它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。
结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。
结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。
这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。
因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。
结构动力学的理论基础是力学、振动学和数学分析等。
力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。
在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。
在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。
质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。
通过对这些参数的建模,可以得到结构的动力学方程。
结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。
通过对这两方面的研究,可以得到结构的振动特性和响应情况。
总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。
同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。
结构动力学
结构动力学是一门应用物理和数学原理研究动态可塑结构行为的
工程学科。
它不仅涉及到结构力学中的结构响应,而且还涉及到动力
学中的系统性研究。
目标是了解和计算结构受外力作用时的运动行为,预测出结构所受冲击能量,强度和变形情况。
例如,对于一艘平衡船,结构动力学可以帮助我们发现哪些部件会受到激烈的冲击力,以及船
体什么时候会趋向平衡。
为了理解结构动力学,我们需要了解力学。
力学是一种使用物理
学原理的工程学科,主要关注作用在物体上的各种力和它们之间的作用。
例如,重力和导热力是两个典型的力,它们混斗在一起影响物体
的运动。
结构动力学是将力学概念应用于特定可塑结构上,用来分析结构
随时间改变的行为特性。
其中,最常见的类型包括结构稳定性和可塑性,它们可以被应用于从最小的桥梁到最大的建筑结构。
在更深层次上,结构动力学考察不同刚度结构之间的行为,并且考察这些行为如
何通过各种力学和外力来影响复杂系统。
此外,结构动力学还可以用来检查建筑结构的设计是否正确。
它
可以检查系统中机械强度,稳定性和结构完整性,以免因结构设计不
当而出现过分的变形和破坏。
总之,结构动力学是一门复杂的工程学科,研究的内容涉及到力学,动力学,计算机技术和材料科学等多个领域。
它被广泛用于建筑,船舶,飞机,汽车,桥梁,机器人和其他复杂结构的设计与研究中。
结构动力学结构力学分支
结构力学是应用力学原理研究多体建筑物结构动态变形、稳定性、破
坏机制等重要问题的学科。
从理论上讲,结构力学可被分为以下几个
分支:
(1)绝热动力学:研究在影响力产生热量的变形过程中,能量平衡方程,热导率温度关系等问题。
(2)动力力学:研究分析结构振动反应与模态特性,以及结构在突发
类和碰撞运动时的变形过程。
(3)刚体力学:研究力学分析旋转体的动力响应及弹性结构的变形、
局部应力分布与项势。
(4)材料力学:研究结构力学对各种材料的影响。
包括材料弹性模量、材料弹塑性行为、材料持续性及结构体之间动力相互作用。
(5)疲劳力学:研究建筑物结构产生疲劳损坏的机理,主要包括循环
加载、应力控制、结构模式和材料疲劳行为等。
(6)结构动力学:研究结构在力学和刚体作用下的运动方程和动力行为。
(7)安全可靠性工程:涉及建筑结构的可靠性,包括结构变形过程中的可靠性设计、抗震设计和生命安全设计等理论。
(8)结构优化:采用计算机技术,利用数学模型求解结构变形特性和参数最优化,实现结构设计的优化,从而得到更为有效的结构。
第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
结构力学第五版教学大纲一、课程简介《结构力学》是土木工程专业本科生必修的一门核心课程,主要介绍结构力学的基本理论和方法,包括静力学原理、梁的基本理论、桁架的理论与分析,以及三力平衡、虚功原理、原初定理和接触问题等。
《结构力学》的学习是土木工程专业学生学习相关课程的基础,因此,本课程的教学内容和方法的选择,对于培养学生良好的学习习惯和能力,以及提高其综合运用知识和解决实际问题的能力具有重要的意义。
二、教学目标1.掌握结构力学中梁的运动学和基本理论。
2.了解桁架的理论和分析方法。
3.掌握三力平衡、虚功原理、原初定理和接触问题的基本概念、原理和方法。
4.培养学生科学分析问题和解决问题的能力。
5.培养学生研究思考、独立学习的能力。
三、教学内容第一章静力学原理1.静力学的基本概念。
2.力的平衡条件。
3.几何性质的基本定理。
4.重心和质心的概念和计算。
5.弯矩图和剪力图的作图方法。
6.预应力混凝土中的静力学问题。
第二章梁的基本理论1.梁的偏转与挠度。
2.梁的应力状态。
3.线弹性力学的基本定理与方法。
4.梁的自由振动和强迫振动。
5.梁的稳定性分析。
第三章桁架的理论1.应力和刚度。
2.单层和多层桁架的计算方法。
3.布尔定理和懒惰勾股定理。
4.摆杆和折杆的分析和计算。
第四章三力平衡、虚功原理、原初定理和接触问题1.三力平衡的原理和应用。
2.虚功原理的基本概念和应用。
3.原初定理的基本概念和应用。
4.接触问题的分析和计算。
四、教学方法1.讲授教学法。
2.实例教学法。
3.讨论教学法。
4.自学教学法。
五、教学进度教学内容学时安排第一章4第二章13第三章8第四章5复习与考试4六、教材及辅导书主教材:《结构力学第五版》,刘罡、冯洁主编。
参考书:1.《结构力学课件讲义》。
2.《结构力学》,赵文超,沈君骅著,科学出版社。
3.《结构力学》,李承增等著,高等教育出版社。
七、考核方式期末考试:60% 平时成绩:40%。
结构力学中的动力学分析研究动力学是结构力学中的重要研究领域之一,主要研究结构在外部力的作用下的运动和振动规律。
动力学分析对于预测结构的响应和安全性评估具有重要意义。
本文将从动力学分析的基本理论、数值模拟方法以及应用领域等方面进行探讨。
1.基本理论动力学分析的基本理论是基于牛顿第二定律,根据结构物体上各个部分的质量、惯性、位移和力的关系进行研究。
基于质点的动力学理论可以方便地应用于刚体和弹性结构的动力学分析。
而对于柔性结构来说,需要引入振动理论来描述结构的运动性质。
2.数值模拟方法动力学分析通常是通过数值模拟方法来实现的。
常用的数值模拟方法包括有限元方法、边界元方法、模态超级位置法等。
其中,有限元方法是最为常用的方法之一,它可以将结构分割成有限数量的单元,通过离散化的力学方程求解结构的动力学响应。
边界元方法则针对无限域的问题,通过模拟结构表面的运动来计算结构的响应。
模态超级位置法则是利用小振动的结构模态进行求解。
3.应用领域动力学分析在结构工程中有广泛的应用。
它可以用于评估结构在自然灾害(如地震、风灾)等外部力作用下的安全性能。
动力学分析还可以用于分析机械系统、飞行器和航天器的动力学行为。
此外,动力学分析还可用于优化结构设计、评估材料的动态性能以及模拟结构的振动响应等方面。
4.动力学分析的挑战与发展尽管动力学分析在结构力学中具有重要意义,但其研究也面临许多挑战。
首先是复杂结构的动力学分析问题,如非线性振动和混合动力学问题,并需要开发相应的数值模拟方法。
其次,对于大规模结构的动力学分析,需要考虑计算效率和计算精度的平衡。
此外,结构的材料非线性和边界条件非线性等因素也是动力学分析中需要考虑的问题。
未来,随着计算能力的提升和数值方法的发展,动力学分析将更好地满足工程实践的需求。
总之,动力学分析在结构力学中起着重要的作用,它通过数值模拟方法研究结构在外部力作用下的运动和振动规律,并应用于结构的安全性评估、设计优化和动态响应预测等方面。
第12章 结构动力学复习思考题1.怎样区别动力荷载与静力荷载?动力计算与静力计算的主要差别是什么?答:(1)静力荷载:指施力过程缓慢,不致使结构产生显著的加速度,因而可以略去惯性力影响的荷载;动力荷载:指将使结构产生不容忽视的加速度,因而必须考虑惯性力的影响的荷载。
主要差别在于是否考虑惯性力的影响。
(2)计算上的差别:①计算式中是否加入惯性力的数值;②静力计算时,结构处于平衡状态,荷载的大小、方向、作用点及由它引起的结构的内力、位移等各种量值都不随时间而变化;而动力计算时,结构将发生振动,各种量值均随时间而变化;③动力分析方法常与荷载类型有关,而静力分析方法与荷载类型无关。
2.何谓结构的振动自由度?它与机动分析中的自由度有何异同?如何确定结构的振动自由度?答:(1)结构振动的自由度是指结构在弹性变形过程中确定全部质点位置所需的独立参数的数目。
(2)机动分析中的自由度简称静力自由度(又称动力自由度)。
①两者相同点:在数学意义上是一致的,都是强调体系空间质量所需的几何参量的个数。
②不同点:静力自由度是机构移动即刚体位移,排除了各个组成部件的变形运动;而动力自由度是变形位移导致机构位置改变,即体系变形过程质量的运动自由度。
(3)确定结构振动自由度的两种方法:①直接由确定质点位置所需的独立参数数目来判定;②加入最少数量的链杆以限制刚架上所有质点的位置,则该刚架的振动自由度数目即等于所加入链杆的数目。
3.建立振动微分方程有哪两种基本方法?每种方法所建立的方程代表什么条件?答:(1)建立振动微分方程的两种基本方法:刚度法和柔度法。
(2)刚度法代表力的平衡条件,柔度法代表变形协调条件。
4.为什么说结构的自振频率和周期是结构的固有性质?怎样改变它们?答:(1)自振频率和周期是结构的固有性质的原因:结构的自振频率和周期只取决于结构自身的质量和刚度,反映着结构固有的动力特性,而外部干扰力只能影响振幅和初相角的大小并不能改变结构的自振频率。
土木工程八大力学
土木工程的八大力学包括:力学、振动学、结构力学、材料力学、动
力学、土力学、流体力学和应力分析。
1、力学:是研究弹力学和力学原理的科学,研究物体在外力作用下
如何变形、分布及其变形机理。
2、振动学:是研究机械系统运动的科学,包括振动系统的运动特性、振动与振动的不稳定性行为以及振动的解析解法。
3、结构力学:是以力学原理和有关的数学方法研究结构的设计,分
析和建造的一门科学。
4、材料力学:是研究材料的力学特性的科学,包括材料的强度、变
形和疲劳等性质。
5、动力学:是研究构件及其组合体在有力作用下的运动规律的科学,主要是运动学和动力学的分支学科。
6、土力学:是研究土体的力学特性的学科,包括土体的物理特性、
流变性及其对荷载变化的响应等。
7、流体力学:是研究流体的运动规律和流体中变形现象的科学,包
括气体和液体在重力、表面张力、粘性及其他力作用下的运动规律。
8、应力分析:是研究不同材料的力学参数和强度表现以及建筑物结
构在受力作用时的应力分布及其特性的科学。