《结构力学》动力学1
- 格式:ppt
- 大小:937.00 KB
- 文档页数:22
结构动力学结构力学分支
结构力学是应用力学原理研究多体建筑物结构动态变形、稳定性、破
坏机制等重要问题的学科。
从理论上讲,结构力学可被分为以下几个
分支:
(1)绝热动力学:研究在影响力产生热量的变形过程中,能量平衡方程,热导率温度关系等问题。
(2)动力力学:研究分析结构振动反应与模态特性,以及结构在突发
类和碰撞运动时的变形过程。
(3)刚体力学:研究力学分析旋转体的动力响应及弹性结构的变形、
局部应力分布与项势。
(4)材料力学:研究结构力学对各种材料的影响。
包括材料弹性模量、材料弹塑性行为、材料持续性及结构体之间动力相互作用。
(5)疲劳力学:研究建筑物结构产生疲劳损坏的机理,主要包括循环
加载、应力控制、结构模式和材料疲劳行为等。
(6)结构动力学:研究结构在力学和刚体作用下的运动方程和动力行为。
(7)安全可靠性工程:涉及建筑结构的可靠性,包括结构变形过程中的可靠性设计、抗震设计和生命安全设计等理论。
(8)结构优化:采用计算机技术,利用数学模型求解结构变形特性和参数最优化,实现结构设计的优化,从而得到更为有效的结构。
结构动力学第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
结构力学中的动力学分析研究动力学是结构力学中的重要研究领域之一,主要研究结构在外部力的作用下的运动和振动规律。
动力学分析对于预测结构的响应和安全性评估具有重要意义。
本文将从动力学分析的基本理论、数值模拟方法以及应用领域等方面进行探讨。
1.基本理论动力学分析的基本理论是基于牛顿第二定律,根据结构物体上各个部分的质量、惯性、位移和力的关系进行研究。
基于质点的动力学理论可以方便地应用于刚体和弹性结构的动力学分析。
而对于柔性结构来说,需要引入振动理论来描述结构的运动性质。
2.数值模拟方法动力学分析通常是通过数值模拟方法来实现的。
常用的数值模拟方法包括有限元方法、边界元方法、模态超级位置法等。
其中,有限元方法是最为常用的方法之一,它可以将结构分割成有限数量的单元,通过离散化的力学方程求解结构的动力学响应。
边界元方法则针对无限域的问题,通过模拟结构表面的运动来计算结构的响应。
模态超级位置法则是利用小振动的结构模态进行求解。
3.应用领域动力学分析在结构工程中有广泛的应用。
它可以用于评估结构在自然灾害(如地震、风灾)等外部力作用下的安全性能。
动力学分析还可以用于分析机械系统、飞行器和航天器的动力学行为。
此外,动力学分析还可用于优化结构设计、评估材料的动态性能以及模拟结构的振动响应等方面。
4.动力学分析的挑战与发展尽管动力学分析在结构力学中具有重要意义,但其研究也面临许多挑战。
首先是复杂结构的动力学分析问题,如非线性振动和混合动力学问题,并需要开发相应的数值模拟方法。
其次,对于大规模结构的动力学分析,需要考虑计算效率和计算精度的平衡。
此外,结构的材料非线性和边界条件非线性等因素也是动力学分析中需要考虑的问题。
未来,随着计算能力的提升和数值方法的发展,动力学分析将更好地满足工程实践的需求。
总之,动力学分析在结构力学中起着重要的作用,它通过数值模拟方法研究结构在外部力作用下的运动和振动规律,并应用于结构的安全性评估、设计优化和动态响应预测等方面。
结构力学的动力响应分析结构力学是研究物体在受力下产生变形和破坏的学科,而动力响应分析是结构力学的一个分支,专注于分析结构在动力载荷下的响应行为。
动力响应分析是工程领域中非常重要的研究内容之一,在设计和评估建筑物、桥梁、飞机等结构时起着关键作用。
本文将介绍结构力学的动力响应分析的基本原理和常用方法。
1. 动力响应分析的基本原理动力响应分析是基于动力学原理,通过建立结构的动力学方程,求解结构在动力载荷下的响应。
根据牛顿第二定律,结构的动力学方程可以描述为:m*a + c*v + k*u = F其中,m是结构的质量矩阵,a是结构的加速度,c是结构的阻尼矩阵,v是结构的速度,k是结构的刚度矩阵,u是结构的位移,F是结构的外力。
通过求解动力学方程,可以得到结构的加速度、速度和位移响应。
2. 动力响应分析的常用方法在实际应用中,有多种方法可以进行动力响应分析,下面介绍两种常用的方法:模态分析和时程分析。
2.1 模态分析模态分析是一种线性分析方法,通过求解结构的固有值和固有向量来描述结构的振动特性。
首先,通过求解结构的本征值问题,得到结构的固有值和固有向量。
然后,根据输入的外载荷,通过模态叠加的方法计算结构的动力响应。
模态分析适用于求解结构的频率响应和模态形态,对于周期性动力载荷较为有效。
2.2 时程分析时程分析是一种非线性分析方法,基于结构的动力学方程和具体的外载荷时程,通过数值积分的方法求解结构的动力响应。
时程分析可以模拟结构在任意形式的非线性动力载荷下的响应,适用于研究地震荷载、爆炸荷载等非周期性动力载荷。
3. 动力响应分析的应用动力响应分析在工程实践中有广泛的应用,下面列举几个常见的应用领域。
3.1 地震工程地震是一种非常具有破坏性的动力载荷,对结构的安全性和可靠性提出了极高的要求。
动力响应分析可以用于评估结构在地震荷载下的响应,进而指导地震设计和加固措施。
3.2 桥梁工程桥梁是承受交通载荷和风载等多种动力载荷的结构,其动力响应分析可以用于评估桥梁的振动稳定性、疲劳寿命等性能,指导桥梁的设计和检测。
结构专业经典教材
以下是一些结构专业的经典教材:
1. 《结构力学》(静力学卷和动力学卷)- 邱敏,黄文璋
该教材是结构专业的基础课教材,详细介绍了结构力学的基本原理和方法,包括静力学和动力学的内容,适合初学者。
2. 《钢结构设计》- 胡锡民
这本教材较全面地介绍了钢结构设计的基本知识和设计方法,包括荷载计算、构件设计、连接设计等内容,是学习钢结构设计的重要参考书。
3. 《混凝土结构设计》- 叶春忠
这本教材详细介绍了混凝土结构设计的原理和方法,包括构件设计、抗震设计、预应力混凝土结构设计等方面的内容,是学习混凝土结构设计的重要教材。
4. 《土力学与基础工程》- 朱玉民
这本教材详细介绍了土力学的基本理论和方法,包括土力学试验、土的力学性质、土的应力、变形和稳定性等方面的内容,适合学习土工程和基础工程的学生。
以上是一些结构专业的经典教材,但不同学校和教师教学内容可能会有不同,建议根据自己所学课程和教师要求选择合适的教材。
同时,还可以参考相关的学术论文、国家标准和规范等,以扩展和深化对结构专业知识的理解。