三角形“五心”的优美向量表示
- 格式:doc
- 大小:400.50 KB
- 文档页数:3
向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。
重心:ABC 中、每条边上所对应的中线的交点;垂心:ABC 中、每条边上所对应的垂线上的交点;内心:ABC 中、每个角的角平分线的交点(内切圆的圆心);外心:ABC 中、每条边上所对应的中垂线的交点(外接圆的圆心)。
一、重心1、 O 是 ABC 的重心OA OB OC 0若 O 是 ABC 的重心,则BOC AOC AOB 1 ABC 故 OA OB OC 0 ,1 (PA 3PG PB PC) G 为 ABC 的重心 .3、 P 是△ ABC所在平面内任一点. G是△ ABC的重心 1 (PA) .2 PG PB PC3证明:PG PA AG PB BG PC CG 3PG ( AG BG CG) (PA PB PC) ∵ G是△ ABC的重心∴ GA GB GC 0 AG BG CG 0,即 3PG PA PB PC由此可得 PG 1 (PA PB PC ) . (反之亦然(证略))33、已知 O 是平面上一定点, A, B, C 是平面上不共线的三个点,动点P 满足OP OA ( AB AC) ,(0,) ,则 P 的轨迹一定通过△ ABC 的重心 .例 1 若 O 为ABC 内一点, OA OB OC 0 ,则 O 是ABC 的()A.内心 B .外心 C .垂心 D .重心第 1 页共 10 页二、垂心1、 O 是 ABC 的垂心OA OB OB OC OA OC若 O 是 ABC ( 非直角三角形 ) 的垂心,则故 tan AOA tan BOB tanCOC 02、H是面内任一点,HA HB HB HC HC HA 点 H 是△ ABC的垂心 .由 HA HB HB HC HB ( HC HA) 0 HB AC 0 HB AC ,同理 HC AB , HA BC . 故 H 是 ABC 的垂心 . (反之亦然(证略))3、 P 是△ ABC 所在平面上一点,若 PA PB PB PC PC PA ,则 P 是△ ABC 的垂心.由 PA PB PB PC ,得 PB (PA PC ) 0 ,即 PB CA 0 ,所以 PB⊥ CA .同理可证 PC ⊥ AB , PA ⊥ BC .∴ P 是△ ABC 的垂心.如图 1.A CCB PEMHPA FB图 1 O 图⑷4、已知 O 是平面上一定点,A, B, C 是平面上不共线的三个点,动点P 满足AB AC,(0,) ,则动点 P 的轨迹一定通过OP OAAC cos CAB cos B△ ABC 的垂心.例 2 P 是△ ABC所在平面上一点,若PA PB PB PC PC PA ,则 P 是△ ABC 的()A.外心B.内心C.重心D.垂心第 2 页共 10 页三、内心1、 O 是ABC 的内心的充要条件是OA AB ACOBBA BC CA CBOCAB AC BA BC CA CB Ae1e2B引进单位向量,使条件变得更简洁。
向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。
重心:ABC ∆中、每条边上所对应的中线的交点; 垂心:ABC ∆中、每条边上所对应的垂线上的交点;内心:ABC ∆中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ∆中、每条边上所对应的中垂线的交点(外接圆的圆心)。
一、重心1、O 是ABC ∆的重心⇔0=++OC OB OA若O 是ABC ∆的重心,则ABC AOB AOC BOC ∆=∆=∆=∆31故0=++OC OB OA ,)(31PC PB PA PG ++=⇔G 为ABC ∆的重心.2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB PA PG ++=.证明:CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心∴0=++GC GB GA ⇒0=++CG BG AG ,即PC PB PA PG ++=3由此可得)(31PC PB PA PG ++=.(反之亦然(证略))3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.例1 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心1、O 是ABC ∆的垂心⇔OC OA OC OB OB OA •=•=•若O 是ABC ∆(非直角三角形)的垂心,则 故0tan tan tan =++OC C OB B OA A2、H 是面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理AB HC ⊥,BC HA ⊥.故H 是ABC ∆的垂心. (反之亦然(证略))3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.由PA PB PB PC ⋅=⋅,得()0PB PA PC ⋅-=,即0PB CA ⋅=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1.4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.例2 P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的() A .外心B .内心C .重心D .垂心图1A1、O是ABC∆的内心的充要条件是=⎫⎛•=⎫⎛•=⎫⎛•CBCAOCBCBAOBACABOA引进单位向量,使条件变得更简洁。
三角形的五心向量结论证明work Information Technology Company.2020YEAR三角形的五心向量结论证明1. O 是123PP P ∆的重心⇔1230OP OP OP ++=(其中,,a b c 是123PP P ∆三边)证明:充分性: 1230OP OP OP ++=⇒O 是123PP P ∆的重心若1230OP OP OP ++=,则123OP OP OP +=-,以1OP,2OP 为邻边作平行四边形132'OPP P ,设3OP 与12PP 交于点3P ',则3P '为12PP 的中点,有'123OPOP OP +=,得'33OP OP =-,即'33,,,O P P P 四点共线,故3P P 为123PP P ∆的中线,同理,12,PO P O 亦为123PP P ∆的中线,所以,O 为的重心。
* △ABC 中+一定过BC 的中点,通过△ABC 的重心1(),31()3AP AB AC P ABC BP BA BC ⎧=+⎪⎪⇒⎨⎪=+⎪⎩为的重心, *1()3PG PA PB PC =++⇔G 为△ABC 的重心(P 是平面上任意点).证明 PG PA AG PB BG PC CG =+=+=+⇒3()()PG AG BG CG PA PB PC =+++++∵G 是△ABC 的重心∴GA GB GC ++=0⇒AG BG CG ++=0,即3PG PA PB PC =++ 由此可得1()3PG PA PB PC =++.(反之亦然(证略))*若O 是ABC ∆的重心,则ABC AOB AOC BOC S 31S S S ∆∆∆∆===P 12PP 3O PABC ∆()1,2AD AB AC =+ABC ∆2.在中,等于已知AD 是中 BC 边的中线;2. 0AP BC P ABC BP AC ⎧=⎪⇒⎨=⎪⎩为的垂心 * 点O 是123PP P ∆的垂心⇔122331OPOP OP OP OP OP ⋅=⋅=⋅ 证明:O 是123PP P ∆的垂心⇔312OPPP ⊥, 31232132310()0OP PP OP OP OP OP OP OP OP ⋅=⇔⋅-=⇔⋅=⋅ 同理123OP P P ⊥⇔3112OP OP OP OP ⋅=⋅ 故当且仅当122331OP OP OP OP OP OP ⋅=⋅=⋅.* O 是△ABC 所在平面内一点222222→→→→→→+=+=+AC OB BA OC BC OA则O 是△ABC 的垂心 证明:由,得,所以。
高考数学专题突破:三角形的五心与向量一、 外心1.定义:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心).三角形的外心到三角形的三个顶点距离相等,都等于三角形的外接圆半径.AB CO2.性质:① 锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外. ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。
③OA=OB=OC=R④∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA⑤S△ABC=abc/4R⑥||||||==(或222O O O ==)⑦C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S A OB A OC BOC =∠∠∠=∆∆∆::::故0OC C 2sin OB B 2sin OA A 2sin =++二、内心1.定义:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心).三角形的内心到三边的距离相等,都等于三角形内切圆半径.IK H E F AB C M2.性质: 内切圆半径r 的计算:设三角形面积为S ,r=2S/(a+b+c)特别的,在直角三角形中,有 r =12(a +b -c ). ②∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2③S△ABC=[(a+b+c)r]/2 (r 是内切圆半径)④O 是内心ABC ∆的充要条件是0|CB ||CA ||BC ||BA |AC |AB |=-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e (O )e e (O )e e (O 322131=+⋅=+⋅=+⋅ ⑤O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++⑥若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆ 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;⑦||||||0AB PC BC PA CA PB P ++=⇔ ABC ∆的内心; ⑧向量()(0)||||AC AB AB AC λλ+≠ 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);三、垂心2.性质:①锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外② 垂心O 关于三边的对称点,均在△ABC 的外接圆上 ③△ABC 中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO ·OE=CO ·OF④ H 、A 、B 、C 四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔=++; 若O 是ABC ∆的重心,则A BC A OB A OC BOC S 31S S S ∆∆∆∆===故0OC OB OA =++;1()3PG PA PB PC =++uu u r uu r uu r uu u r⇔G 为ABC ∆的重心. 2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S A OB A OC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔||||||==(或222O C O B O A ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOCsin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA ||BC ||BA |AC|AB |=-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。
如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e (O )e e (O )e e (O 322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是c b a =++。
若O 是ABC ∆的内心,则c b a S S S A O B A O C B O C ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔u u u r u u u r u u u r u u r u u r u u r r是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠uu u r uu u ruu u r uu u r 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的( )(A )外心(B )内心(C )重心(D )垂心解析:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又=-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理⊥,⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅得.即0,0)(=⋅=-⋅即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D. (三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,++=0⇔点G 是△ABC 的重心.证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=. 证明 +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴++=0⇒++=0,即++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心解析:由0OA OB OC ++=uu r uu u r uuu r r 得OB OC OA +=-u u u r u u u r u u r,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=uu u r uu u r uuu r,由平行四边形性质知12OE OD =uu u r uuu r ,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。
向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。
重心:ABC ∆中、每条边上所对应的中线的交点; 垂心:ABC ∆中、每条边上所对应的垂线上的交点;内心:ABC ∆中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ∆中、每条边上所对应的中垂线的交点(外接圆的圆心)。
一、重心1、O 是ABC ∆的重心⇔0=++OC OB OA若O 是ABC ∆的重心,则ABC AOB AOC BOC ∆=∆=∆=∆31故=++,)(31PC PB PA PG ++=⇔G 为ABC ∆的重心.2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=.证明:+=+=+=⇒)()(3+++++= ∵G 是△ABC 的重心∴0=++GC GB GA ⇒0=++CG BG AG ,即PC PB PA PG ++=3由此可得)(31++=.(反之亦然(证略))3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.例1 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心1、O 是ABC ∆的垂心⇔∙=∙=∙若O 是ABC ∆(非直角三角形)的垂心,则 故tan tan tan =++C B A2、H 是面内任一点,⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是ABC ∆的垂心. (反之亦然(证略))3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.由PA PB PB PC ⋅=⋅,得()0P B P A P C ⋅-=,即0P B C A ⋅=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1.4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.例2 P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的() A .外心B .内心C .重心D .垂心图1A1、O是ABC∆的内心的充要条件是=⎫⎛∙=⎫⎛∙=⎫⎛∙OCOBOA引进单位向量,使条件变得更简洁。