动力学问题的有限元法
- 格式:ppt
- 大小:1.05 MB
- 文档页数:37
有限元第9讲动力学问题有限单元法动力学问题是指研究物体在运动中的受力和受力作用下的运动状态,常见的应用是结构工程学中的振动分析。
有限单元法是解决结构工程学中动力学问题的常用方法之一。
本文将介绍动力学问题和有限单元法的基本概念,并介绍其应用。
动力学问题的定义动力学是研究质点或刚体运动情况的分支学科,在结构工程学中是指结构在做振动时所受的力和运动状态。
动力学问题可以分为两种类型:稳态动力学问题和非稳态动力学问题。
稳态动力学问题是指结构在振动状态下所受的恒定力,而非稳态动力学问题则是指结构所受的变化的力,例如冲击力或地震力。
动力学问题的求解包括两个方面:一是确定受力情况;二是求解结构的运动状态。
确定受力情况通常需要通过实验或计算确定,求解结构运动状态则可以通过有限单元法来解决。
在结构工程学中,动力学问题的应用非常广泛。
例如,建筑物抗震设计需要对建筑物在地震作用下的反应进行分析,桥梁工程需要对桥梁在行车作用或风力作用下的振动响应进行分析。
有限单元法的基本概念有限单元法是一种将结构离散成若干小单元的数值分析方法,将结构分割成细小的单元,每个单元内部假设为均匀且连续的,通过对单元本身的运动状态进行求解,进而推知整个结构的运动状态。
有限元法用于解决的问题包括静力学问题、动力学问题、热力学问题和流体问题等。
有限单元法求解动力学问题的步骤主要包括如下几个步骤:1.离散化:将连续结构离散化成有限的小单元,每个单元内部运动状态通过定义一定数量的节点来确定。
2.建立单元的动力学方程:根据单元的形状和材料性质,建立单元的动力学方程,并计算单元的振动特性,例如频率和模态。
3.组装单元的方程:将单个单元的方程组装成整个结构的方程。
4.边界条件的处理:利用结构的边界条件(例如支撑、铰支等),将结构自由度减少到实际问题所需要的自由度。
5.求解结构的运动状态:通过求解整个结构的方程,得到结构的运动状态。
6.后处理:根据求解结果,进行结果的可视化和分析。
6.2结构动力有限元法理论与模型一、基本原理在实际问题的求解中,应用最广的是基于位移的有限元素法。
此法的基本思想是把本来为连续的工程结构分割成在结点上相联的单元组合体。
取这些结点的位移为基本未知量,并假定每个单元中的位移用单元位移函数来描述,这实质上是假定了单元的模态。
在此基础上,利用能量变分原理进行单元分析的全结构分析,得到全结构的振动平衡方程,从而把连续体的动力学问题化为多自由度系统的振动问题。
有限元动力分析的基本过程是首先将工程结构离散化,通过选择合理的单元确定出分析模型,在此基础上选择位移函数,进行单元分析,确定单元的刚度、质量、阻尼、载荷矩阵,再经过坐标变换,通过能量变分原理,进行全结构分析,建立系统的振动平衡方程。
最后运用有限元数值方法进行方程的求解。
结构动力有限元法采用的单元位移函数与静力分析相同,基本原理和求解过程也与静力分析相同,不同之处仅在分析模型的确定与运动方程的建立方面。
二、动态分析模型的确定由于结构动态分析中除考虑弹性力外,还要考虑惯性力和阻尼力,其运动方程是常微分方程组,所以动态分析的复杂程度高,计算工作量大,有限元分析模型要尽量精炼、简单。
1.模型确定的基本原则•分析模型应与分析的目的相适应。
动力分析的目的各不相同,有的是为了提供固有特性计算动态响应或供控制系统用;有的是为了舱内提供振动环境。
不同的目的,通常要求不同的模态数与计算精度。
显然,用于估算基本固有频率的模型应当比计算冲击响应的模型简单。
用于设计计算的模型应当比用于校核计算的模型简单。
•分析模型要与选用的计算工具与计算条件相适应。
计算机软件种类日益丰富,选择分析模型要与所用程序、所用计算机容量相适应。
如对于容量大的计算机,可选用较为复杂的有限元模型,而对于容量小的计算机则在能反映结构动态性能的前提下尽量简化模型,使求解规模尽量小。
对于大模型,可选用子结构模型,采用模态综合方法求解。
应注意, 不一定模型愈精细精度就愈高。
有限元各种时域计算方法有限元方法(FEM)是数值分析中一种常用的工程计算方法,用于求解连续介质的力学问题。
在时域情况下,FEM可以用于求解动力学问题,其中物体的响应随时间变化。
下面介绍几种常用的有限元时域计算方法:1. 爆炸分析方法(Explosion Analysis Method):用于模拟爆炸、冲击等快速载荷作用下的结构动力响应。
该方法将爆炸过程分解为多个离散时间步骤,并使用显式时间积分方法求解结构动力方程。
通过该方法可以得到结构的位移、速度、加速度等动态响应结果。
2. 频率域响应谱(Frequency Domain Response Spectrum):将时域问题转化为频域问题进行求解。
根据结构的固有频率和阻尼比,可以建立系统的频率响应函数,进而得到结构在特定载荷下的响应。
这种方法适用于大规模结构问题,可以有效地简化计算的复杂性。
3. 时间有限差分法(Time Finite Difference Method):该方法将时域问题转化为差分格式,用一系列离散时间步骤来近似连续时间。
通过在空间和时间上进行网格划分,可以利用差分格式求解结构动力方程。
这种方法对于线性和非线性问题都适用,并且可以实现高精度的模拟结果。
4. 显式时间积分法(Explicit Time Integration Method):该方法使用显式格式对结构动力方程进行时间积分,通过预测和修正的过程求解结构的动态响应。
显式时间积分法具有计算效率高的优点,适用于稳定性良好的问题,但在处理非线性和不稳定问题时可能出现数值耗散和不稳定现象。
5. 隐式时间积分法(Implicit Time Integration Method):与显式时间积分法相反,隐式时间积分法使用隐式格式进行时间积分,从而提高数值稳定性。
通过迭代求解非线性方程组,可以得到结构的准确动态响应。
隐式时间积分法对于非线性和不稳定问题的求解较为稳定,但计算效率较低。
以上是几种常用的有限元时域计算方法,每种方法都有各自的特点和适用范围。
刚体动力学是研究刚体运动的力学学科。
刚体是指形状和大小在运动过程中保持不变的物体,刚体动力学研究刚体在受力作用下的运动规律和动力学特性。
刚体动力学主要包括以下几个方面:
运动学:研究刚体的位移、速度和加速度等与时间的关系,描述刚体的运动状态。
动力学方程:根据牛顿第二定律,建立刚体的动力学方程,描述刚体受到的力和加速度之间的关系。
转动运动:研究刚体绕固定轴进行转动的规律,包括转动惯量、角速度、角加速度等的计算和分析。
能量与动量守恒:研究刚体运动过程中的能量守恒和动量守恒定律,用于分析刚体的碰撞、旋转和平移等情况。
有限元方法(Finite Element Method,简称FEM)是一种数值计算方法,广泛应用于工程和科学领域,包括力学、结构分析、流体力学等。
有限元方法将连续的物体或结构分割成有限数量的小单元,通过求解这些小单元的力学方程,得到整个物体或结构的力学行为。
在刚体动力学中,有限元方法可以用于建立刚体的数学模型,通过将刚体分割成有限数量的单元,利用数值计算方法求解刚体的运动和力学响应。
这种方法可以有效地模拟复杂的刚体运动和受力情况,帮助分析和优化刚体系统的设计和性能。
有限元方法在刚体动力学中的应用包括刚体结构的动力学分析、碰撞和撞击的模拟、机械系统的优化等。
它提供了一种灵活、高效的数值计算工具,用于解决刚体动力学问题和工程实践中的设计和分析任务。
第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。
本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。
动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。
由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。
结构振动是工程中一个很普遍很重要的问题。
有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。
因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。
振动问题主要解决两方面的问题。
1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。
2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。
6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。
在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。
上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。
在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。
基于有限元方法的结构动力学分析随着现代科技的发展,结构动力学分析成为工程领域中不可或缺的重要环节。
结构动力学分析旨在研究结构在外界荷载作用下的动态响应,以评估其安全性和可靠性。
有限元方法作为一种常用的数值分析方法,在结构动力学分析中具有广泛的应用。
本文将深入探讨基于有限元方法的结构动力学分析的原理和应用。
一、有限元方法简介有限元方法是一种通过将复杂连续体分割成若干有限个简单元素,然后在每个单元上建立适当的数学模型,进而建立总体的数学模型和求解方法的数值分析方法。
有限元方法在数学模型中引入适当的近似,以求解真实问题的近似解。
其基本思想是将连续体离散化成若干个有限个形状简单、性质相同的基本单元,再根据相邻两个基本单元之间的相容条件,将基本单元联系在一起,组成复杂的结构体系。
二、结构动力学分析方法1. 模态分析方法模态分析是结构动力学中常用的分析方法之一。
它通过求解结构的特征值和特征向量,得到结构在固有频率下的振型和振动模态,从而揭示结构动力特性。
模态分析在设计中起到了重要的作用,能够帮助工程师判断结构的固有频率和振型是否满足要求。
2. 静力分析方法静力分析是结构动力学分析的基础,它用于求解结构在静力荷载作用下的应力和位移。
通过静力分析,可以评估结构的强度和稳定性,进而进行设计和优化。
3. 动力响应分析方法动力响应分析是结构动力学分析的核心内容,主要研究结构在外界动力荷载作用下的响应情况。
这种分析方法可以帮助工程师评估结构的动力性能,如位移、加速度和应力等。
三、有限元方法在结构动力学中的应用有限元方法在结构动力学分析中的应用广泛,可以模拟各种结构的动态响应。
例如,有限元方法可以用于分析建筑物在地震作用下的响应,以评估结构的抗震性能。
此外,有限元方法还可以用于模拟机械设备、桥梁和航天器等工程结构在振动荷载下的响应。
在使用有限元方法进行结构动力学分析时,需要注意选择适当的数学模型和边界条件,并合理选择有限元单元的类型和尺寸。
动力学有限元问题的龙格库塔法知乎动力学有限元问题的龙格库塔法1. 介绍动力学有限元问题是一类涉及结构物或系统在时间变化下的运动和响应的问题。
为了解决这类问题,我们可以使用数值方法,其中最常用的之一是龙格库塔法(Runge-Kutta method)。
本文将探讨龙格库塔法在解决动力学有限元问题中的应用,并对其进行深入思考和全面分析。
2. 龙格库塔法的基本原理和应用龙格库塔法是一种数值求解常微分方程的方法,通过迭代逼近来计算方程的数值解。
它的优点在于能够准确地模拟系统的动态行为,并且对于非线性问题也有较好的适用性。
在动力学有限元问题中,我们通常需要求解结构物或系统在时间上的响应,而龙格库塔法可以提供相对精确的数值计算结果。
3. 动力学有限元问题在动力学有限元问题中,我们需要考虑结构物或系统在外部作用下的运动和响应。
这通常涉及到求解质点、刚体或弹性体的运动方程。
通过建立合适的模型和边界条件,我们可以得到动力学方程。
通过数值方法求解这些方程,我们可以得到系统在一段时间内的响应。
4. 龙格库塔法的步骤和计算过程龙格库塔法的基本步骤包括选择适当的时间步长和计算时间步数,以及计算中间步骤的函数值。
具体来说,龙格库塔法将时间区间划分为若干个小时间步,并通过迭代逼近的方式计算每个时间步的系统响应。
这个过程可以通过多种不同的方法进行,其中最常用的是四阶龙格库塔法。
5. 龙格库塔法的优点和缺点龙格库塔法作为数值求解常微分方程的方法,具有一定的优点和缺点。
其优点在于能够准确地模拟系统的动态行为,对于非线性问题也有较好的适用性。
而缺点在于需要选择合适的时间步长和计算步数,以及计算量较大。
在处理某些特殊问题时,龙格库塔法可能会出现数值不稳定或数值误差较大的情况。
6. 对龙格库塔法的个人观点和理解在我个人看来,龙格库塔法是一种非常有效的数值求解方法。
它可以帮助我们更好地理解和分析动力学有限元问题,提供精确的数值计算结果。
通过选择适当的参数和方法,我们可以获得准确的结果,并在实际工程和科学研究中得到有效的应用。
有限元法在结构力学分析中的应用有限元法是一种经典的结构力学分析方法。
在结构力学领域中,有限元法可以用来解决许多静力学和动力学问题。
本文将探讨有限元法在结构力学分析中的应用。
一、有限元法的基本原理有限元法是一种数值分析方法,可以用来解决大型结构的力学问题。
它的基本原理是将结构分割成一个个的单元,每个单元内的力学问题可以用简单的数学公式来描述。
然后将所有单元的力学问题集成到一起,形成一个大的数学模型。
通过数学计算,可以获得结构的应力、应变、变形等力学参数。
有限元法的优点在于它可以解决复杂结构的力学问题。
例如,有限元法可以用来分析汽车、航空器、建筑物等结构中的应力、应变、变形和振动等问题。
此外,有限元法具有高精度、高效率和高灵活性等特点,可以快速、准确地分析各种结构的力学性能。
二、有限元法在结构力学中的应用有限元法在结构力学中的应用非常广泛。
下面我们来具体看一下有限元法在结构力学分析中的应用案例。
1、建筑物结构的力学分析建筑物是大型结构中的一个重要领域。
有限元法可以用来分析各种建筑物的力学性能,例如建筑物的强度、振动、承载能力等。
通过有限元法可以模拟建筑物在地震、风力等环境下的响应,确定建筑物的结构安全性。
2、航空器的强度分析航空器飞行过程中面临各种力学环境,例如重力、空气阻力等。
有限元法可以用来分析航空器结构在高速、高空环境下的应力和变形情况。
从而确定航空器的强度和安全性。
3、机器设备的振动分析机器设备在运行过程中会产生振动,有可能对设备的安全和稳定性带来影响。
有限元法可以用来分析机器设备的振动情况,在设计过程中优化设备结构,避免发生振动破坏的危险。
总之,有限元法在结构力学分析中的应用非常广泛。
有限元法的基本原理简单,但是要想将其用于具体的问题需要进行复杂的计算。
因此,有限元法在结构力学分析中的应用需要具有一定的专业知识和技能。