有限元静力学及动力学分析(第六章)
- 格式:ppt
- 大小:6.49 MB
- 文档页数:111
如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力学问题四川 曹文强“力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。
从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。
力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。
而今天主要是简单介绍一个静力学与动力学。
首先,静力学与动力学区别是什么?答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。
故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。
当然“静”动力学静力学实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。
对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
此外,静力学的有五大公理公理一力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。
公理二二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。
公理三加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。
公理四牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。
此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。
第6章 结构动力分析有限元法此前述及的问题属于静力分析问题,即作用在结构上的荷载是与时间无关的静力。
由此求得的位移、应力等均与时间无关。
实际工程中的大部分都可简化成静力问题。
但当动载与静载相比不容忽略时,一般应进行动力分析。
如地震作用下的房屋建筑,风荷载作用下的高层建筑等,都应计算动荷载作用下的动力反应。
研究课题中以动力问题为主。
解决动力问题有两大工作要做:一是动荷载的模拟和计算,二是结构反应分析。
本章将讨论如何用有限元来解决动力计算问题。
6.1 结构动力方程一.单元的位移、速度和加速度函数设单元的位移函数为;}{[]}{ef N d = 6—1—1式中:单元位移函数列阵}{f 、结点位移函数列阵}{ed 均是时间t 的函数。
由6-1-1可求得单元的速度、加速度函数:}{[]}{e f N d = 6—1—2 }{[]}{ef N d = 6—1—3二.单元的受力分析设图示三角形单元,当它处于运动状态时,其上的荷载一般应包括:单元上的荷载;单元对结点的作用力,}{[]}{(,eeix iy F F F K d ⋅⋅⋅=结点力)单元内部单位体积的:惯性力:}{}{[]}{em F f N dρρ=-=- 6—1—4阻尼力(设正比于运动速度):}{}{[]}{ecF f N d αραρ=-=- 6—1—5干扰力(已知的条件):}{p F根据达朗贝尔原理,上述四力将构成一瞬时平衡力系,使单元处于动平衡状态。
为此寻求四者之间的关系;三.结点力与结点位移、速度和加速度之间的关系用虚功原理推导:令单元结点发生任意可能的虚位移}{*d,它满足单元所定义的位移场,即虚位移场}{[]}{**f N d =成立。
作用在单元上的外力所作的外力虚功:}{}{}{}{}{}{}{}{****TTTTPcmvvvT dF f F dv f F dv f F dv =+++⎰⎰⎰单元内部应力在由于虚位移所引起的虚应变上所做的内力虚功:}{}{[]}{[][]}{**TTvW dv B d D B d dv εσ==⎰()根据虚功原理(T=W ),若将惯性力}{m F ,阻尼力}{c F 用上面的6—1—4,6—1—5代替,得:}{}{[]}{}{[]}{[]}{[]}{[]}{[]}{[][]}{*****TPvvTvVd F N d F dv N d N d dv N d N d dv B d D B d dvαρρ+--=⎰⎰⎰⎰TTT ()()()()由于虚位移的任意性,可从等式两边各项中消去}{*d T,得:}{[][][]}{[][]}{[][]}{[]}{TTpvvvvF B D B dv d N N dv d N N dv d N F dv αρρ=++-⎰⎰⎰⎰TT简写为:}{[]}{[]}{[]}{}{eF k d c d m d R =++- 6—1—6式中:[][][][]Tv k B D B dv =⎰ 单刚(第一项为弹性恢复力) [][][]v c N N dv αρ=⎰T单元阻尼矩阵(第二项为阻尼力) [][][]v m N N dv ρ=⎰T 质量矩阵(第三项为惯性力)[][][]R e P v N F dv =⎰T 包括由作用在单元上的干扰力转化成的等效结点荷载6—1—6即为单元结点力之间的关系式。
ANSYS结构静力学与动力学分析教程第一章:ANSYS结构静力学分析基础ANSYS是一种常用的工程仿真软件,可以进行结构静力学分析,帮助工程师分析和优化设计。
本章将介绍ANSYS的基本概念、步骤和常用命令。
1.1 ANSYS的基本概念ANSYS是一款基于有限元方法的仿真软件,可以用于解决各种工程问题。
其核心思想是将结构分割成有限数量的离散单元,并通过求解线性或非线性方程组来评估结构的行为。
1.2 结构静力学分析的步骤进行结构静力学分析一般包括以下步骤:1)几何建模:创建结构的几何模型,包括构件的位置、大小和形状等信息。
2)网格划分:将结构离散为有限元网格,常见的有线性和非线性单元。
3)边界条件:定义结构的边界条件,如固定支座、力、力矩等。
4)材料属性:定义结构的材料属性,如弹性模量、泊松比等。
5)加载条件:施加外部加载条件,如力、压力、温度等。
6)求解方程:根据模型的边界条件和加载条件,通过求解线性或非线性方程组得到结构的响应。
7)结果分析:分析模拟结果,如应力、应变、变形等。
1.3 ANSYS常用命令ANSYS提供了丰富的命令,用于设置分析模型和求解方程。
以下是一些常用命令的示例:1)/PREP7:进入前处理模块,用于设置模型的几何、边界条件和材料属性等。
2)/SOLU:进入求解模块,用于设置加载条件和求解方程组。
3)/POST1:进入后处理模块,用于分析和可视化模拟结果。
4)ET:定义单元类型,如BEAM、SOLID等。
5)REAL:定义单元材料属性,如弹性模量、泊松比等。
6)D命令:定义位移边界条件。
7)F命令:定义力或压力加载条件。
第二章:ANSYS结构动力学分析基础ANSYS还可以进行结构动力学分析,用于评估结构在动态载荷下的响应和振动特性。
本章将介绍ANSYS的动力学分析理论和实践应用。
2.1 结构动力学分析的理论基础结构动力学分析是研究结构在动态载荷下的响应和振动特性的学科。
它基于质量、刚度和阻尼三个基本量,通过求解动态方程来描述结构的振动行为。
有限元结构静力学分析有限元结构静力学分析的基本原理是将结构分割为离散的小单元,通过对这些小单元的力学行为进行数学建模来研究整个结构的行为。
通常情况下,结构被离散为多个三角形或四边形单元,每个单元内的力学行为可通过有限元模型进行模拟。
有限元方法基于结构的力学行为方程,通过数值计算的方式求解出结构的位移、应力等物理量。
1.生成有限元离散网格:将结构几何分割为小单元,构成有限元离散网格。
通常受到计算资源和准确性的限制,根据具体情况选择单元尺寸和分割密度。
2.建立有限元模型:对每个单元进行力学行为的建模,包括约束、边界条件等。
通常使用线性弹性模型,即假设结构为弹性体,在小变形范围内满足胡克定律。
3.求解结构位移:根据结构的边界条件和受力情况,求解结构的位移。
位移是结构分析的基本结果,可通过求解结构的刚度矩阵和载荷向量来获得。
4.计算应力和变形:根据结构的位移,计算结构中各个单元的应力和变形。
应力和变形是结构分析的重要结果,可用于评估结构的安全性和合理性。
5.分析结果的后处理:对求解得到的位移、应力和变形等结果进行后处理,如绘制位移云图、应力云图等,以便更直观地了解结构的行为。
在实际应用中,有限元结构静力学分析需要注意以下几个方面:1.模型准确性:选择合适的有限元模型和求解方法以保证结果的准确性。
选择适当的单元尺寸和分割密度,根据具体情况对模型进行验证和校正。
2.材料特性:结构的力学性质受到材料特性的影响,如弹性模量、泊松比等。
确保材料特性的准确性和可靠性,以获得可靠的力学分析结果。
3.界面和边界条件:结构的界面和边界条件对分析结果有重要影响。
需要仔细设定和模拟各个界面和边界条件,以反映实际工况和受力情况。
4.结构非线性问题:有限元结构静力学分析通常假设结构在小变形范围内满足胡克定律。
对于存在非线性行为的结构,如大位移、屈曲等,需要采用相应的非线性分析方法。
总而言之,有限元结构静力学分析是一种重要的结构力学分析方法,通过离散化和数值计算的方式求解结构的力学性质。
有限元分析经典课件1. 简介有限元分析(Finite Element Analysis, FEA)是一种以数值模拟方法为基础,通过离散化处理求解结构力学问题的工程方法。
本课件将介绍有限元分析的基本原理和常用的应用领域。
2. 有限元分析的基本原理2.1 有限元方法概述有限元方法(Finite Element Method, FEM)是有限元分析的基础理论和计算方法。
本部分将介绍有限元方法的基本概念、基本步骤、离散化处理等内容。
2.2 有限元网格划分有限元网格划分是有限元分析的关键步骤,它将结构离散化为有限个小单元。
本部分将介绍有限元网格划分的方法、常用网格类型以及网格质量评价的方法。
2.3 有限元方程与加载有限元方程是描述结构力学问题的关键方程。
本部分将介绍有限元方程的推导过程,以及加载条件的处理方法。
2.4 有限元解与后处理有限元解是通过有限元分析得到的结构响应结果。
本部分将介绍有限元解的计算方法以及后处理方法,包括位移、应力、应变等结果的计算和可视化展示。
3. 有限元分析的应用案例3.1 结构力学分析结构力学分析是有限元分析的主要应用之一。
本部分将通过实例演示有限元分析在结构力学分析中的具体应用,包括静力学分析、动力学分析等。
3.2 热力学分析热力学分析是有限元分析的另一个重要应用领域。
本部分将通过实例演示有限元分析在热力学分析中的具体应用,包括热传导、热稳定性等问题的分析。
3.3 流体力学分析流体力学分析是有限元分析的扩展应用领域之一。
本部分将通过实例演示有限元分析在流体力学分析中的具体应用,包括流体流动、压力分布等问题的分析。
4. 有限元分析软件的介绍有限元分析软件是进行有限元分析的工具,市场上有多种成熟的有限元分析软件可供选择。
本部分将介绍一些常用的有限元分析软件,包括Ansys、Abacus等。
5. 总结有限元分析作为一种重要的数值模拟方法,已广泛应用于不同领域的工程问题。
本课件从理论原理到实际应用都进行了全面的介绍,相信对有限元分析的学习和应用都有很大帮助。
– 63 – 第4章 线性静力学分析静力学分析是结构有限元分析的基础。
静力学分析主要研究静止或者匀速状态下的结构响应,不考虑惯性和阻尼效应,以及与时间有关载荷的影响。
通过静力学分析,可以得到结构的刚度、强度、稳定性、约束反力等技术指标。
但是静力学分析并不是只能用于纯粹静力载荷条件,还可以加载惯性载荷为定值的载荷,同时,也可以计算作用时间较长的准静态问题,包括模拟诸如大变形、大应变、接触、塑性、超弹、蠕变等非线性行为。
本章主要讲述线性行为的静力学分析,基于胡克定律[F ]=[k ][X ],其中[k ]包含了材料属性、模型尺寸和约束条件,可以简单认为,当一个物体受到10N 的载荷,变形为1mm ;如果受到20N 的载荷,变形即为2mm 。
4.1 有限元求解静力学基本原理有限元计算是将连续系统离散成为有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法组合成一个与原有系统近似的系统。
以有限元法求一等截面直杆在自重作用下的应力应变为例,如图4-1-1所示。
已知:一受自重作用的等截面直杆,杆的长度为L ,截面积为A ,弹性模量为E ,单位长度的重量为q ,杆的内力为N 。
试求:杆的位移分布,杆的应变和应力。
(1)将等截面直杆划分成3个等长的单元,每段长度为L /3。
每段之间假定为一个铰接点连接,故称这些铰接点为节点,分别为节点1、2、3、4;称每个线段为单元,分别为单元L 1、L 2、L 3。
(2)用单元节点位移表示单元内部位移,第i 个单元中的位移用所包含的节点位移来表示:1()()i i i i iu u u x u x x L +−=+− 其中,u i 为第i 节点的位移;x i 为第i 节点的坐标。
第i 个单元的应变、应力、内力分别为1d d i i i i u u u xL ε+−==图4-1-1 直杆问题及离散模型。
0 引言车载型产品是我国现代化装备的重要组成部分,随着各种先进设备的迅速发展迭代,对现有车载设备的小型化、集成度、可靠性、安全性以及机动性能有更高的要求。
因此,车载设备除了满足各项电气、电磁兼容等指标外,还需要减少振动、冲击等环境惯性载荷对电气设备的影响,避免共振等严重危害设备安全的现象发生,从而提高设备的稳定性和可靠性[1]。
随着装备的发展迭代,电子机柜的结构形式可以满足系统高度集成化和模块的要求[2]。
因此,校核车载机柜的结构强度和刚度对提高产品的稳定性和可靠性具有重要意义。
随着计算机技术及有限元分析软件的发展,有限元分析在工程计算以及各种科学研究领域发挥越来越重要的作用。
其中,ANSYS 有限元软件具有强大的数值计算能力,可以对机柜的结构进行有限元仿真分析,从而根据仿真结果对机柜的薄弱环节进行改进,提高机柜的可靠性,从而达到节省机柜的研发成本的目的[3]。
1 功放机柜有限元模型该文研究的车载型功放机柜由立柱、横梁、内部托盘、机箱、顶盖和底座等钣金件焊接而成,机箱通过导轨和机柜固定连接,机柜后侧托盘通过螺栓连接固定。
机柜外围尺寸为600mm ×1000mm ×1800mm (宽×深×高),机柜主框架采用厚度为2 mm 的316L 不锈钢材料,其主要材料参数如下:密度为7 980 kg/m 3,弹性模量为210 GPa ,泊松比为0.3,材料屈服强度为177 MPa 。
网格划分质量直接影响了有限元分析结果的有效性,因此,为了提高有限元仿真分析的准确性,采用专业的前处理软件HyperMesh 建立车载机柜的有限元模型,采用结构化网格划分方法划分四边形网格单元。
其中,机柜框架采用shell 181壳体单元,将内部托盘和机箱简化为mass 21质量单元,并通过刚性单元建立质量单元与立柱的刚性连接。
有限元模型如图1所示,该模型的单元数量和节点数量分别为47 247个和141 909个。