第五章 有限元动力学基本原理
- 格式:ppt
- 大小:721.00 KB
- 文档页数:64
有限元方法的基本原理
有限元方法是一种数值分析方法,用于求解复杂结构的力学问题。
其基本原理如下:
1. 将结构离散化:首先将结构分割成许多小的单元(有限元),每个单元可视作一个简单的结构部件。
这样可以将原始连续结构的复杂问题简化为每个小单元的简单问题。
2. 定义弯曲关系:对每个单元建立力学模型,包括定义材料的弹性模量、泊松比、截面积等力学性质参数。
3. 建立单元的位移方程:利用有限元方法,采用适当的形函数,建立每个单元的位移方程,一般为不定位移分析。
4. 组装全局方程:将所有单元的位移方程组装成整个结构的全局方程。
5. 求解方程组:通过数值方法(如高斯消元法、迭代法等),求解结构的位移和应力等力学量。
6. 分析结果:根据结构的位移和应力等力学量,可对结构的强度、刚度、振动等进行分析和评价。
有限元方法的基本原理是将复杂结构的力学问题通过离散化处理,化为易于计算的小单元问题,再通过数值方法求解整个结构的力学行为。
6.2结构动力有限元法理论与模型一、基本原理在实际问题的求解中,应用最广的是基于位移的有限元素法。
此法的基本思想是把本来为连续的工程结构分割成在结点上相联的单元组合体。
取这些结点的位移为基本未知量,并假定每个单元中的位移用单元位移函数来描述,这实质上是假定了单元的模态。
在此基础上,利用能量变分原理进行单元分析的全结构分析,得到全结构的振动平衡方程,从而把连续体的动力学问题化为多自由度系统的振动问题。
有限元动力分析的基本过程是首先将工程结构离散化,通过选择合理的单元确定出分析模型,在此基础上选择位移函数,进行单元分析,确定单元的刚度、质量、阻尼、载荷矩阵,再经过坐标变换,通过能量变分原理,进行全结构分析,建立系统的振动平衡方程。
最后运用有限元数值方法进行方程的求解。
结构动力有限元法采用的单元位移函数与静力分析相同,基本原理和求解过程也与静力分析相同,不同之处仅在分析模型的确定与运动方程的建立方面。
二、动态分析模型的确定由于结构动态分析中除考虑弹性力外,还要考虑惯性力和阻尼力,其运动方程是常微分方程组,所以动态分析的复杂程度高,计算工作量大,有限元分析模型要尽量精炼、简单。
1.模型确定的基本原则•分析模型应与分析的目的相适应。
动力分析的目的各不相同,有的是为了提供固有特性计算动态响应或供控制系统用;有的是为了舱内提供振动环境。
不同的目的,通常要求不同的模态数与计算精度。
显然,用于估算基本固有频率的模型应当比计算冲击响应的模型简单。
用于设计计算的模型应当比用于校核计算的模型简单。
•分析模型要与选用的计算工具与计算条件相适应。
计算机软件种类日益丰富,选择分析模型要与所用程序、所用计算机容量相适应。
如对于容量大的计算机,可选用较为复杂的有限元模型,而对于容量小的计算机则在能反映结构动态性能的前提下尽量简化模型,使求解规模尽量小。
对于大模型,可选用子结构模型,采用模态综合方法求解。
应注意, 不一定模型愈精细精度就愈高。
有限元的原理
有限元分析是一种数值计算方法,用于求解复杂结构的应力、变形和振动等问题。
它将结构分割成有限个小单元,然后通过对这些小单元的力学行为进行数值计算,最终得到整个结构的应力和变形等信息。
有限元分析在工程领域得到了广泛的应用,可以有效地解决各种复杂结构的工程问题。
有限元分析的原理主要包括以下几个方面:
首先,有限元分析需要将结构离散化为有限个小单元。
这些小单元可以是线性的、四边形的、三角形的或者其他形状的,具体选择取决于结构的几何形状和材料性质。
通过将结构离散化,可以更加准确地描述结构的力学行为。
其次,有限元分析需要建立每个小单元的本构关系。
本构关系描述了材料在受
力情况下的应力-应变关系,是有限元分析的基础。
根据结构的材料性质和几何形状,可以选择合适的本构关系来描述小单元的力学行为。
然后,有限元分析需要建立整个结构的总体刚度矩阵。
刚度矩阵描述了结构在
受力情况下的整体力学行为,是有限元分析的核心。
通过将每个小单元的本构关系组装成整个结构的刚度矩阵,可以得到结构的总体力学行为。
最后,有限元分析需要对结构施加外部载荷,并求解结构的位移和应力等信息。
通过在刚度矩阵中施加外部载荷,可以求解出结构的位移和应力等信息,从而得到结构在受力情况下的力学行为。
总的来说,有限元分析的原理是将结构离散化、建立本构关系、组装刚度矩阵、施加外部载荷并求解结构的力学行为。
通过这一系列步骤,可以有效地分析复杂结构的应力、变形和振动等问题,为工程实践提供重要的理论支持和计算手段。
有限元的基本原理
有限元方法是一种数值计算方法,常用于求解工程问题中的连续介质力学问题。
其基本原理是将复杂的连续介质分割成有限数量的简单几何形状的子域,称为有限元,然后利用数学方法和计算机技术对每个有限元进行离散化处理。
基于有限元原理,我们可以得到以下步骤:
1. 离散化:将连续的物理问题离散化为有限个由节点和单元组成的网格,在每个单元上选择适当的方程形式。
2. 建立本构方程:根据材料的力学性质,建立适当的本构关系表达式,将其转化为数学方程。
3. 单元形函数:在每个有限元上选择适当的单元形函数,将物理问题转换为离散问题。
4. 求解:对离散化后的方程进行求解,得到节点的未知位移。
5. 后处理:根据得到的位移信息,计算相应的应力和应变,以及其他感兴趣的物理量。
有限元方法的精度和收敛性与网格的划分有关,更精细的网格可以得到更准确的结果,但也会增加计算量。
因此,有限元方法是一个权衡计算效率和精度的方法。
有限元方法广泛应用于结构力学、流体力学、电磁场等领域的
建模和仿真中,可以有效地分析和解决各种工程问题。
其应用范围涉及机械、航空航天、汽车、建筑、电子等多个工程领域,为工程设计和优化提供了有力的工具。
有限元基本原理
有限元基本原理是一种数值分析方法,用于解决连续介质力学问题。
它将连续物体离散化为有限数量的小单元,通过对这些小单元的力学行为进行建模和分析,来推导出整体结构的力学特性。
有限元分析的步骤如下:
1. 离散化:将结构或物体分割成有限数量的小单元,例如三角形或四边形。
这些小单元被称为有限元素。
2. 建立数学模型:在每个有限元素内,选择适当的数学表达式来描述变形和应力分布。
这些表达式通常基于线性弹性理论或非线性材料模型。
3. 形成刚度矩阵:通过将每个有限元素的刚度矩阵组合起来,形成整体系统的刚度矩阵。
刚度矩阵描述了结构在受力作用下的刚度和变形响应。
4. 施加边界条件:给定结构的边界条件,例如约束和载荷。
这些条件可用于限制结构的自由度和模拟外部加载。
5. 求解方程:将边界条件应用到刚度矩阵上,并求解得到结构的位移和应力分布。
6. 分析结果:利用位移和应力分布,评估结构的强度、刚度、变形等力学特性。
这些结果可以帮助设计师优化结构并预测其
行为。
有限元基本原理的核心思想是将复杂的力学问题转化为小单元内的简单数学表达式,并通过组合这些单元的行为来推导整体结构的力学性能。
这种方法具有广泛的应用领域,包括结构分析、流体力学、热传导等。
有限元的基本原理
有限元法是一种数值分析方法。
它的基本原理是将一个连续的问题离散化为一个由有限个节点构成的离散的问题,每个节点上都有一个或多个未知量,通过求解这些未知量来确定整个问题的解。
在有限元法中,使用数值分析方法来求解偏微分方程或者求解某些物理问题的模拟。
有限元法的基本步骤如下:
1. 离散化:将连续的物理区域分割成一个个小单元;
2. 建立形函数:表示每个小单元内的物理量,在有限元中往往是位移场,可以用形函数来近似表示;
3. 建立刚度矩阵和负载向量:每个小单元对应一个刚度矩阵和一个负载向量,将所有小单元的贡献汇总到整个问题中的刚度矩阵和负载向量中;
4. 边界条件处理:将边界条件对应的未知量赋为已知量;
5. 求解方程:通过求解线性方程组来确定所有未知量的值;
6. 后处理:根据求解得到的数值解,计算所需的物理量,比如应力、变形、位移等等。
有限元法因其准确性、适用性、可靠性等特点被广泛应用于多个领域,包括结构力学、电磁学、流体力学等。
有限元的基本原理有限元分析(Finite Element Analysis)是一种数值计算方法,用于求解连续体力学问题。
其基本原理是将复杂的物理问题离散化为简单的有限节点和单元,通过求解节点上的未知位移,进而得到整个结构体的应力、应变和位移等结果。
有限元分析广泛应用于航空航天、汽车制造、土木工程、机械设计等领域。
有限元分析的基本原理可以概括为如下几个步骤:1.建立几何模型:首先根据实际情况建立物体的几何形状,并转化为一系列离散的节点和单元。
节点是模型中的离散点,单元是相邻节点之间的连接关系。
2.确定边界条件:为了得到唯一的解,需要对模型的边界施加边界条件。
边界条件包括位移边界条件、力边界条件和约束边界条件等。
位移边界条件指定一些节点的位移固定,力边界条件指定一些节点的外力值,约束边界条件指定一些节点或单元之间的约束关系。
3.划分单元:将模型离散化为多个单元。
常见的单元类型包括线单元、平面单元和体单元等。
划分的单元越多,模型的精度就越高,但计算量也会增加。
4.建立单元刚度矩阵:对于每个单元,根据其几何特性和材料性质,通过数学推导建立相应的刚度矩阵。
刚度矩阵描述了单元内部的应力与应变之间的关系。
5.装配全局刚度矩阵:将所有单元的刚度矩阵通过节点关系进行装配,得到整个结构体的全局刚度矩阵。
全局刚度矩阵描述了整个结构体的力学行为。
6.施加边界条件:根据第二步中确定的边界条件,将全局刚度矩阵进行修正,得到修正后的全局刚度矩阵。
7.求解方程:通过求解修正后的全局刚度矩阵与节点位移之间的平衡方程,得到节点的未知位移。
8.计算结果:通过节点位移可以计算出各个节点处的应力、应变和位移等结果。
这些结果可以评估结构体的稳定性和安全性。
需要注意的是,有限元分析是一种近似计算方法,其结果受到多种因素的影响,如网格划分的精度、单元类型的选择、边界条件的设定等。
因此,合理的模型建立和边界条件确定对于有限元分析的准确性和可靠性至关重要。
有限元动力学分析知识点复习目录一、模型输入、建模A 输入几何模型1、两种方法:No defeaturing 和 defeaturing(Merge合并选项、Solid实体选项、Small选项)2、产品接口。
输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题.3、输入有限元模型。
除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。
B 实体建模1、定义实体建模:建立实体模型的过程。
(两种途径)1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.✓开始建立的体或面称为图元.✓工作平面用来定位并帮助生成图元.✓对原始体组合形成最终形状的过程称为布尔运算✓总体直角坐标系 [csys,0] 总体柱坐标系[csys,1]总体球坐标系[csys,2] 工作平面 [csys,4]2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。
B 网格划分1、网格划分三步骤:定义单元属性、指定网格的控制参数、生成网格2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性(MAT))3、单元类型单元类型是一个重要选项,它决定如下单元特性:自由度(DOF)设置、单元形状、维数、假设的位移形函数。
1)线单元(梁单元、杆单元、弹簧单元)2)壳用来模拟平面或曲面。
3)二维实体用于模拟实体截面4)三维实体✓用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。
✓也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间和精力4、单元阶次与形函数•单元阶次是指单元形函数的多项式阶次。
•什么是形函数?–形函数是指给出单元内结果形态的数值函数。
有限元的基本原理
有限元法的基本原理是建立在表示实际连续体的离散模型的基础上。
该方法的基本思想是将实际连续体分割为有限个较小的、称为有
限元的部分,每个有限元都被认为是相互独立的,而受到软件模型所
描述的一组约束。
有限元法模型求解是通过将所有有限元在一定环境
下的相互作用来描述整个物体。
这些有限元之间相对于解析方法更接
近实际情况,所以解法能够更加精确地检验计算结果。
有限元法的步骤如下:
1. 选定有限元的类型和形状,不同的有限元类型适用于不同的计
算问题。
2. 将整个实际物体离散成为多个有限元,每个元内部的参数、如
位移分布、应变场等等,是用一定的方程求解的。
3. 去掉有限元间间隔,并构造出一个总体联立方程。
4. 利用边界条件得出相应“挤压”量,完成总体应力分布的过程。
5. 通过这些有限元联立方程组,算出整个物体所有部位的应力、
位移和应变,从而得到整个物体的状态分布。
有限元法能以极大程度上模拟多结构系统间的相互作用和这些作
用对物体性质的影响,如形变,热度和应力。
这个方法可被应用广泛,包括航空航天、汽车制造、能源以及生命科学等等。
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
有限元方法基本原理有限元方法被广泛应用于工程领域中对复杂结构力学问题的求解。
其基本原理是将一个复杂的实体分割成连续的小元素,并在每个小元素内近似描述结构的力学行为。
然后根据各个小元素的相互连接关系,通过求解各个小元素的力学方程,得到整个结构体系的力学响应。
在有限元方法中,划分成小元素的实体被称为有限元。
每个有限元内会选择一个适当的数学函数形式来近似描述该元素内的过程变量(如位移、应力等)。
通常,利用多项式函数或三角函数来近似描述是较为常见的选择。
有限元法的基本思想是利用小元素内的力学方程来建立元素间的联系。
这一联系通过引入节点来实现。
节点是在有限元网格上选取的特殊位置,在节点处的位移和应力是所有相邻元素的位移和应力的加权平均。
在整体结构体系上,所有节点只有两种运动自由度(如平面问题为两个:水平和垂直方向),我们将节点处对应的变量称为自由度。
有限元分析的过程可以分为网格划分、单元插值、力学方程建立和边界条件处理四个主要步骤。
首先,将整个结构体系划分成小的有限元。
然后,在每个有限元内部选择一个插值函数,并利用插值函数得到相应的位移和应力的近似解。
接下来,根据物体在各个小元素上的力学原则,建立每个小元素的力学方程。
最后,在整个结构体系上,应用边界条件将自由度限制在给定的边界条件下。
通过求解各个小元素的力学方程,可以得到整个结构体系的应力、应变和位移分布。
这些分析结果可以用来评估结构的强度、刚度和稳定性等重要参数。
有限元方法的优点在于它能够处理复杂的几何形状和边界条件,并提供了精确的力学响应。
因此,它被广泛用于各个工程领域中的结构设计和分析中。
结构动力学有限元法一、结构动力学方程[]{}{}p u K =静力平衡方程{}[][])}({}{}{t R u C u M p +−−=•••动力平衡方程[][][]{})}({}{}{t R u K u C u M =++•••式中,[M ]—结构的总质量矩阵;[C ]—为阻尼矩阵;[K ]—结构的总刚度矩阵;[u ]—结构的位移向量;{R (t )}—强迫力列阵。
[][][]dVN N M T ∫=ρ一致质量矩阵满阵,考虑质量分布。
集中质量矩阵对角阵,按重心不变原则,不考虑质量分布[][][]dVN N C T ∫=γ单元阻尼矩阵比例阻尼[][][]K M C βα+=五、模态分析目的1、求系统的固有频率和振型2、模态分析是所有动力学分析类型的最基础的内容。
第一阶模态第二阶模态一个节点无节点无节点一个节点两个节点第一阶模态第二阶模态第三阶模态第四阶模态模态形状节点位置yx 0无节点一个节点两个节点三个节点自由梁的模态形状第二阶模态第三阶模态第四阶模态第五阶模态六、ANSYS模态分析注意问题•模态分析中的四个主要步骤:•建模•选择分析类型和分析选项•施加边界条件并求解•评价结果模态分析是线性分析,所有非线性选项忽略。
1、建模1)几何建模和单元选择一般同静力学步骤2)材料设置:必须输入密度;注意单元2、施加边界条件1)模态分析唯一的边界条件是零约束位移2)不输入约束,这将输出刚体模态。
3)自由模态和约束模态的意义。
3、求解设置1)指定分析类型:模态分析2)指定求解方法3)提取模态和扩展模态的数目4、后处理说明1)模态分析的自由度解没有意义,它只表明了振型,即各个节点相对于其它节点是如何运动的;(单元应力也没有实际意义)2)模态分析不要采用对称性(循环对称除外)上机报告3•1、自选(除平面问题、板壳问题外)即:轴对称、空间、杆、梁、模态部分。
2、上机报告要求:同上机报告1和23、附上1)你对有限元的理解2)对有限元教学的建议绪论课程小结•1、有限元的基本思想•2、有限元分析的基本步骤•3、线性弹簧的有限元法的求解过程弹性力学基本知识•1、应力、应变、位移,平面情况和空间情况的向量形式。