第五章 有限元动力学基本原理
- 格式:ppt
- 大小:721.00 KB
- 文档页数:64
有限元方法的基本原理
有限元方法是一种数值分析方法,用于求解复杂结构的力学问题。
其基本原理如下:
1. 将结构离散化:首先将结构分割成许多小的单元(有限元),每个单元可视作一个简单的结构部件。
这样可以将原始连续结构的复杂问题简化为每个小单元的简单问题。
2. 定义弯曲关系:对每个单元建立力学模型,包括定义材料的弹性模量、泊松比、截面积等力学性质参数。
3. 建立单元的位移方程:利用有限元方法,采用适当的形函数,建立每个单元的位移方程,一般为不定位移分析。
4. 组装全局方程:将所有单元的位移方程组装成整个结构的全局方程。
5. 求解方程组:通过数值方法(如高斯消元法、迭代法等),求解结构的位移和应力等力学量。
6. 分析结果:根据结构的位移和应力等力学量,可对结构的强度、刚度、振动等进行分析和评价。
有限元方法的基本原理是将复杂结构的力学问题通过离散化处理,化为易于计算的小单元问题,再通过数值方法求解整个结构的力学行为。
6.2结构动力有限元法理论与模型一、基本原理在实际问题的求解中,应用最广的是基于位移的有限元素法。
此法的基本思想是把本来为连续的工程结构分割成在结点上相联的单元组合体。
取这些结点的位移为基本未知量,并假定每个单元中的位移用单元位移函数来描述,这实质上是假定了单元的模态。
在此基础上,利用能量变分原理进行单元分析的全结构分析,得到全结构的振动平衡方程,从而把连续体的动力学问题化为多自由度系统的振动问题。
有限元动力分析的基本过程是首先将工程结构离散化,通过选择合理的单元确定出分析模型,在此基础上选择位移函数,进行单元分析,确定单元的刚度、质量、阻尼、载荷矩阵,再经过坐标变换,通过能量变分原理,进行全结构分析,建立系统的振动平衡方程。
最后运用有限元数值方法进行方程的求解。
结构动力有限元法采用的单元位移函数与静力分析相同,基本原理和求解过程也与静力分析相同,不同之处仅在分析模型的确定与运动方程的建立方面。
二、动态分析模型的确定由于结构动态分析中除考虑弹性力外,还要考虑惯性力和阻尼力,其运动方程是常微分方程组,所以动态分析的复杂程度高,计算工作量大,有限元分析模型要尽量精炼、简单。
1.模型确定的基本原则•分析模型应与分析的目的相适应。
动力分析的目的各不相同,有的是为了提供固有特性计算动态响应或供控制系统用;有的是为了舱内提供振动环境。
不同的目的,通常要求不同的模态数与计算精度。
显然,用于估算基本固有频率的模型应当比计算冲击响应的模型简单。
用于设计计算的模型应当比用于校核计算的模型简单。
•分析模型要与选用的计算工具与计算条件相适应。
计算机软件种类日益丰富,选择分析模型要与所用程序、所用计算机容量相适应。
如对于容量大的计算机,可选用较为复杂的有限元模型,而对于容量小的计算机则在能反映结构动态性能的前提下尽量简化模型,使求解规模尽量小。
对于大模型,可选用子结构模型,采用模态综合方法求解。
应注意, 不一定模型愈精细精度就愈高。
有限元的原理
有限元分析是一种数值计算方法,用于求解复杂结构的应力、变形和振动等问题。
它将结构分割成有限个小单元,然后通过对这些小单元的力学行为进行数值计算,最终得到整个结构的应力和变形等信息。
有限元分析在工程领域得到了广泛的应用,可以有效地解决各种复杂结构的工程问题。
有限元分析的原理主要包括以下几个方面:
首先,有限元分析需要将结构离散化为有限个小单元。
这些小单元可以是线性的、四边形的、三角形的或者其他形状的,具体选择取决于结构的几何形状和材料性质。
通过将结构离散化,可以更加准确地描述结构的力学行为。
其次,有限元分析需要建立每个小单元的本构关系。
本构关系描述了材料在受
力情况下的应力-应变关系,是有限元分析的基础。
根据结构的材料性质和几何形状,可以选择合适的本构关系来描述小单元的力学行为。
然后,有限元分析需要建立整个结构的总体刚度矩阵。
刚度矩阵描述了结构在
受力情况下的整体力学行为,是有限元分析的核心。
通过将每个小单元的本构关系组装成整个结构的刚度矩阵,可以得到结构的总体力学行为。
最后,有限元分析需要对结构施加外部载荷,并求解结构的位移和应力等信息。
通过在刚度矩阵中施加外部载荷,可以求解出结构的位移和应力等信息,从而得到结构在受力情况下的力学行为。
总的来说,有限元分析的原理是将结构离散化、建立本构关系、组装刚度矩阵、施加外部载荷并求解结构的力学行为。
通过这一系列步骤,可以有效地分析复杂结构的应力、变形和振动等问题,为工程实践提供重要的理论支持和计算手段。
有限元的基本原理
有限元方法是一种数值计算方法,常用于求解工程问题中的连续介质力学问题。
其基本原理是将复杂的连续介质分割成有限数量的简单几何形状的子域,称为有限元,然后利用数学方法和计算机技术对每个有限元进行离散化处理。
基于有限元原理,我们可以得到以下步骤:
1. 离散化:将连续的物理问题离散化为有限个由节点和单元组成的网格,在每个单元上选择适当的方程形式。
2. 建立本构方程:根据材料的力学性质,建立适当的本构关系表达式,将其转化为数学方程。
3. 单元形函数:在每个有限元上选择适当的单元形函数,将物理问题转换为离散问题。
4. 求解:对离散化后的方程进行求解,得到节点的未知位移。
5. 后处理:根据得到的位移信息,计算相应的应力和应变,以及其他感兴趣的物理量。
有限元方法的精度和收敛性与网格的划分有关,更精细的网格可以得到更准确的结果,但也会增加计算量。
因此,有限元方法是一个权衡计算效率和精度的方法。
有限元方法广泛应用于结构力学、流体力学、电磁场等领域的
建模和仿真中,可以有效地分析和解决各种工程问题。
其应用范围涉及机械、航空航天、汽车、建筑、电子等多个工程领域,为工程设计和优化提供了有力的工具。
有限元基本原理
有限元基本原理是一种数值分析方法,用于解决连续介质力学问题。
它将连续物体离散化为有限数量的小单元,通过对这些小单元的力学行为进行建模和分析,来推导出整体结构的力学特性。
有限元分析的步骤如下:
1. 离散化:将结构或物体分割成有限数量的小单元,例如三角形或四边形。
这些小单元被称为有限元素。
2. 建立数学模型:在每个有限元素内,选择适当的数学表达式来描述变形和应力分布。
这些表达式通常基于线性弹性理论或非线性材料模型。
3. 形成刚度矩阵:通过将每个有限元素的刚度矩阵组合起来,形成整体系统的刚度矩阵。
刚度矩阵描述了结构在受力作用下的刚度和变形响应。
4. 施加边界条件:给定结构的边界条件,例如约束和载荷。
这些条件可用于限制结构的自由度和模拟外部加载。
5. 求解方程:将边界条件应用到刚度矩阵上,并求解得到结构的位移和应力分布。
6. 分析结果:利用位移和应力分布,评估结构的强度、刚度、变形等力学特性。
这些结果可以帮助设计师优化结构并预测其
行为。
有限元基本原理的核心思想是将复杂的力学问题转化为小单元内的简单数学表达式,并通过组合这些单元的行为来推导整体结构的力学性能。
这种方法具有广泛的应用领域,包括结构分析、流体力学、热传导等。
有限元的基本原理
有限元法是一种数值分析方法。
它的基本原理是将一个连续的问题离散化为一个由有限个节点构成的离散的问题,每个节点上都有一个或多个未知量,通过求解这些未知量来确定整个问题的解。
在有限元法中,使用数值分析方法来求解偏微分方程或者求解某些物理问题的模拟。
有限元法的基本步骤如下:
1. 离散化:将连续的物理区域分割成一个个小单元;
2. 建立形函数:表示每个小单元内的物理量,在有限元中往往是位移场,可以用形函数来近似表示;
3. 建立刚度矩阵和负载向量:每个小单元对应一个刚度矩阵和一个负载向量,将所有小单元的贡献汇总到整个问题中的刚度矩阵和负载向量中;
4. 边界条件处理:将边界条件对应的未知量赋为已知量;
5. 求解方程:通过求解线性方程组来确定所有未知量的值;
6. 后处理:根据求解得到的数值解,计算所需的物理量,比如应力、变形、位移等等。
有限元法因其准确性、适用性、可靠性等特点被广泛应用于多个领域,包括结构力学、电磁学、流体力学等。