角的比较2-
- 格式:ppt
- 大小:663.50 KB
- 文档页数:14
第四章 直线与角4.5 角的比较与补(余)角第2课时 角的比较一、教学目标1.掌握两个角互为余角和互为补角的概念.2.理解互余与互补的角的性质.3.培养分析问题和解决问题的能力,以及运算能力.二、教学重点及难点重点:余角和补角的概念及其性质.难点:互余、互补角的正确判断.三、教学用具多媒体课件.四、相关资源《余角和补角》微课.五、教学过程【课堂导入】请同学们事先准备好的直角纸板,用剪刀把直角从顶点剪开,思考:这两个角有什么关系?再把平角纸板并用剪刀把平角从顶点剪开,思考:这两个角有什么关系?一边合作学习一边让学生说出自己的方法:可以测量,也可以剪下来拼等等,学生的方法只要合理就应鼓励.教师用多媒体演示∠1+∠2与Rt ∠AOB 重合,再移动一角,问∠1+∠2与Rt ∠AOB 相等吗?同样∠α+∠β与∠AOB 重合,再移动一角,问∠α+∠β与∠AOB 相等吗?通过上面的演示,我们看到有时两个角的和是90°,有时两个角的和是180°. αβA OB1 2 AO B设计意图:从活动实践导入本节课的知识,使新知识更加容易理解.【新知讲解】1.余角和补角的定义:互为余角定义:如果两个锐角的和是一个直角,那么这两个角互为余角.简称互余. 互为补角定义:如果两个角的和是一个平角,那么这两个角互为补角.简称互补. 注意:要特别向学生指出:互余与互补角是研究两个角的关系,单独一个角不能说是余角或补角,就像称呼两兄弟一样,而且不会随位置的改变.2.余角和补角的性质:画一画:如图:已知∠AOC ,作出它的余角和补角(只要满足条件的角都可以).教师提出问题:你从中发现了什么?(学生进行小组讨论)师生共同总结出:同角的余角相等.同理可推出:同角的补角相等如果两个角相等,那么它们的余角和补角有什么关系?想一想:如图,如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?由此得到补角和余角的性质:同角或等角的余角相等.同角或等角的补角相等.注意:学生往往对“同角”,“等角”的认识不太清楚,在“同角”的情况时说“等角”,在“等角”的情况时说“同角”,因此要对学生强调指出:“等角是相等的角”,而“同角是同一个角”.另外,这个性质在目前的应用还不太多,但今后的应用是非常广泛的.设计意图:讲解过程强调提问思考的过程,让学生掌握余角和补角的性质.O C AO CA本图片是微课的首页截图,本微课资源讲解了余角与补角的概念及其它们的性质,并通过讲解实例与练习,巩固所学的知识点,有利于启发教师教学或学生预习或复习使用.若需使用,请插入微课【知识点解析】余角和补角.【典型例题】例1.已知一个角的补角是这个角的余角的4倍,求这个角的度解:设这个角为x度,则这个角的余角是(90–x)度,补角是(180–x)度由题意,得180–x=4(90–x)解方程,得x=60(度)所以这个角的度数为60°例2.如图,已知:点O为直线AB上一点,OC是∠AOB的平分线,OD在∠COB内,看图填空(填“<”“>”“﹦”)(1)∠AOD______∠AOB∠AOD______∠DOB∠AOC______∠BOC(2)∠AOD的补角是______ ∠COD的余角是______∠BOD的补角是______ ∠AOC的补角是______答案:(1)<,>,=(2)∠BOD,∠BOD,∠AOD,∠BOC设计意图:通过练习,巩固学生对补角与余角的含义的理解.【随堂练习】1.已一个角的补角比它的余角的2倍多12°,求这个角解:设这个角为∠α,它的补角为(180°-∠α),根据题意,得(180°-∠α)=2(90°-∠α)+12°解这个方程∠α=12°,即这个角为12°2.已知∠1=20°,∠2=30°,∠3=60°,∠4=150°,则∠2是____的余角,_____是∠4的补角.答案:∠3,∠23.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°,依据是_______.答案:40°,同角的余角相等4.如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM,ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得∠AON=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.设计意图:通过学生的练习,使教师及时了解学生对补角与余角的认识以及在对角的求解过程中的应用情况,以便教师及时对学生进行矫正.六、课堂小结教师引导学生进行总结,谈谈本节课你学到了什么?(由学生来完成)本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。
6.3 角6.3.2 角的比较与运算主要师生活动一、复习导入师生活动:教师引导学生回忆与梳理线段的知识点,然后告诉学生这节课我们学习角可以类比线段学习,比如上节课学习的定义,到表示方法,这节课也会学习大小比较和运算,同学们可以思考能否也通过叠合法和度量法比较大小,运算是否也是计算角的和差倍分的关系.二、探究新知知识点一:角的比较类比线段长短的比较,你认为该如何比较两个角的大小?师生活动:学生先自主思考并小组交流,再由小组代表发言,预测会有两种方法,度量法和叠合法.教师引导和规范学生操作步骤,得出结果如下:度量法:因为55°>40°,所以∠1>∠2.叠合法:想一想:你能用图形和几何语言说明两个角的大小关系吗(两个角分别记作∠AOB,∠A'O'B' )?师生活动:学生画出图形,并用符号表示,指出两个角的大小关系有且仅有三种情况.知识点二:角的运算探究1:如图,图中共有几个角?它们之间有什么关系?师生活动:预测学生能确定角的个数,明确角之间的和差关系如下:3个:∠AOB、∠AOC、∠BOC∠AOC =∠AOB +∠BOC∠AOB =∠AOC-∠BOC∠BOC =∠AOC -∠AOB教师关注学生是否能发现角的和差关系,教师可引导学生类比线段的和与差,发现角的和差关系.然后教师引导学生总结:共顶点的几个角,可进行加减.探究2 :如图,借助三角尺画出15°,75°的角.用一副三角尺,你还能画出哪些度数的角?试一试.师生活动:学生动手操作,小组合作探究,师生归纳,如下:用三角尺画特殊角,关键在于把它写成30°,45°,60°,90°角的和或差.凡是15的整数倍的角,都能用三角尺画出,而能用三角尺画出的,也只限于这样的角.例题精析:例1 如图,O是直线AB上一点,∠AOC = 53°17′,求∠BOC的度数.师生活动:学生独立思考,请学生代表发言,教师予以适当的评价并整理板书.解:由题意可知,∠AOB是平角,∠AOB =∠AOC +∠BOC所以∠BOC =∠AOB-∠AOC= 180° - 53°17′= 126°43′总结:∠同单位加减(度与度、分与分、秒与秒分别相加、减);∠度分秒是60进制(相加时逢60要进位,相减时要借1作60).师生活动:教师引导学生思考与总结解题思路与过程.知识点3:角平分线探究3:你能在∠AOC内找一条射线OB,使∠AOB =∠BOC吗?师生活动:教师提问,学生自主思考,教师巡堂指导,预测会有不同方法,教师可让这些学生代表分别展示,预测两种方法(如下):对折法:生巩固角的和与差概念外,也使学生对这些特殊角的大小有直观的认识,培养对角的大小的估计能力和动手操作能力,加深学生对角的认识.设计意图:通过题目锻炼学生运算能力,初步学习几何语言在解题中的运用,体会几何与代数之间的联系与不同,加深学生的数形结合思想.设计意图:从角的和差问题中,将射线OB的位置特殊化,并类比线段的中点,引出角的平分线的概念,不仅知识的产生、发展自然连续,也体现了由一般到特殊,由特殊到一般的研究方法,同时,也能建立知识间的联系,完善认知结构.度量法:教师追问:同学们知道图中三个角的数量关系吗?学生思考,学生代表回答,师生共同总结与填空.教师再以此引出角平分线的定义.定义总结:师生活动:教师讲解,再让学生朗读定义,加深印象.类比:仿照角平分线的结论,你能写出角的三等分线的结论吗?师生活动:学生独立思考,由学生代表发言,教师予以适当评价,帮助学生正确规范完成几何书写.例2 把一个周角7等分,每一份是多少度的角(精确到分)?师生活动:学生独立思考,由学生代表发言,教师与学生共同完成板书:解:360°÷7 = 51°+ 3°÷7= 51°+ 180′÷7≈51°26′答:每份是51°26′的角.教师引导学生总结:注意度、分、秒是60进制的,要把剩余的度数化成分.设计意图:进一步明晰角平分线的概念,为后续学习轴对称和研究有关图形的翻折问题打下基础.设计意图:通过类比让学生学会举一反三,体会几何知识的关联性,巩固几何语言的书写.设计意图:通过题目帮助学生巩固角平分线的知识与角的运算,提高学生的识图能力和运算能力.又通过思考题启发学生思考其他可能性,建立分类讨论思想,养成严谨思考的习惯.三、当堂练习例3 如图OC是∠AOB的平分线,OB是∠COD的三等平分线,∠BOD = 15°.则∠AOB等于( )A. 75B. 70C. 65D. 60师生活动:学生独立思考,学生代表发言,教师适时评价与引导.思考:除此题所给图片的情况,你还能想出其他情况与答案吗?师生活动:学生独立思考,学生代表上台展示,教师予以评价与指导,得出另一种结果,∠AOB = 15°.三、当堂练习1. 比较大小:60°25′60.25°(填“>”,“<”或“=”).2. 计算:(1) 180° - 98°24′30″(2) 62°24′17″×43. 如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOB = 50°,∠DOE = 30°,那么∠BOD是多少度?设计意图:通过练习巩固角的大小比较.设计意图:通过练习巩固角度的运算.设计意图:通过练习强化试图能力和运算能力.板书设计角的比较与运算一、角的概念二、角的表示三、角的度量和单位教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.数形结合,培养识图能力。