4.3.2角的比较与运算
- 格式:ppt
- 大小:397.50 KB
- 文档页数:14
4.3.2 角的比较与运算(课后作业)-2021年七年级上册人教新版数学一.选择题(共11小题)1.如图,∠AOB是平角,∠AOC=40°,∠BOD=26°,OM、ON分别是∠AOC,∠BOD 的平分线,则∠MON等于()A.66°B.114°C.147°D.170°2.在所给的:①15°、②65°、③75°、④115°、⑤135°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④3.已知,平面内∠AOB=20°,∠AOC=50°,射线OM、ON分别平分∠AOB,∠AOC,求∠MON的大小是()A.10°B.10°或35°C.35°D.15°或35°4.如图,∠AOB=120°,∠COD在∠AOB的内部,且∠COD=60°,则下列结论中一定正确的是()A.∠AOC=∠BOD B.∠AOD=∠BOCC.∠COD=2∠BOD D.∠AOD+∠BOC=180°5.如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠COE=2α,∠AOB=40°,则∠BOD的度数为()A.α+20°B.α+40°C.α﹣20°D.α+80°6.已知射线OC在∠AOB的内部,下列4个表述中:①∠AOC=∠AOB,②∠AOC=∠BOC,③∠AOB=2∠BOC,④∠AOC+∠BOC=∠AOB,能表示射线OC是∠AOB的角平分线的有()A.1个B.2个C.3个D.4个7.若∠A=25°18′,∠B=25°19′1″,∠C=25.31°,则()A.∠B>∠C>∠A B.∠C>∠B>∠A C.∠A>∠B>∠C D.∠B>∠A>∠C 8.将一副三角板按如图所示的方式放置,则∠AOB的大小为()A.75°B.45°C.30°D.15°9.如图,点O在直线AB上,OC为射线,且∠AOC=∠BOC,则∠BOC的度数是()A.150°B.135°C.120°D.30°10.如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点D'落在∠BAC内部.若∠CAE=2∠BAD',且∠CAD'=15°,则∠DAE的度数为()A.12°B.24°C.39°D.45°11.如图,长方形ABCD沿直线EF、EG折叠后,点A和点D分别落在直线l上的点A′和点D′处,若∠1=30°,则∠2的度数为()A.30°B.60°C.50°D.55°二.填空题(共5小题)12.如图所示的网格是正方形网格,则∠AOB∠MPN.(填“>”,“=”或“<”)13.如图,点O为直线AB上一点,∠COD=30°,∠DOE=90°,若∠AOC:∠BOE=19:7,则∠BOD的度数为.14.如图,OP、OQ分别是∠AOB、∠BOC的平分线,如果∠POQ=28°,那么∠AOC =°.15.一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,若∠B′AD′=20°,则∠EAF=.16.将常用30°、60°、90°的三角板如图所示放置,其中∠BAO=30°,C点为边OB所在直线上一定点(点C在点O的左边),点D为直线OB上一动点(不与C、B重合),AE平分∠BAD,DF平分∠ADC.若∠BAE=α,则∠FDC=.(用含α的式子表示)三.解答题(共4小题)17.如图,点O是直线AB上的一点,∠COD=80°,OE平分∠BOC.(1)如图1,若∠AOC=40°,求∠DOE的度数.(2)在图1中若∠AOC=α(其中20°<α<100°),请直接用含α的代数式表示∠DOE 的度数,不用说明理由.(3)如图2,①请直接写出∠AOC和∠DOE的度数之间的关系,不用说明理由.②在∠AOC的内部有一条射线OF,满足∠AOC﹣4∠AOF=2∠BOE+∠AOF.试确定∠AOF与∠DOE的度数之间的关系,直接写出关系式即可,不用说明理由.18.如图1,将笔记本活页一角折过去,使角的顶点A落在点A'处,BC为折痕.(1)如图1,若∠1=25°,求∠A'BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA'重合,折痕为BE,如图2所示,求∠CBE的度数.19.请在括号内填上推理依据已知:如图,OM为过∠AOB顶点的一条射线,OE,OF分别是∠AOM和∠MOB的平分线.求证:∠EOF=∠AOB.证明:∵OE平分∠AOM(),∴∠EOM=∠AOM().∵OF平分∠MOB(),∴∠MOF=∠MOB().∴∠EOM+∠MOF=(∠AOM+∠MOB)(),即∠EOF=∠AOB.20.已知:∠AOB=∠COD=80°.(1)如图1,∠AOC=∠BOD吗?请说明理由.(2)如图2,直线MN平分∠AOD,直线MN平分∠BOC吗?请说明理由.(3)若∠BOD=150°,∠BOE=20°,求∠COE的大小.。
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》题型分类练习题(附答案)一.角平分线的定义1.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有()A.1个B.2个C.3个D.4个2.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.3.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.4.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?5.已知:如图,OC是∠AOB的角平分线,∠AOD=2∠BOD,∠COD=18°.请你求出∠BOD的度数.6.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.二.角的计算7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.10.如图,射线OB和OD分别为∠AOC和∠COE的角平分线,∠AOB=45°,∠DOE=20°,则∠AOE=()A.110°B.120°C.130°D.140°11.如图所示,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都不正确12.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数()A.29°B.32°C.58°D.64°13.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°14.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为.15.如图,将一张纸折叠,若∠1=65°,则∠2的度数为.16.如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON =80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).17.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?18.如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=48°,求∠DOE的度数.(2)若∠AOC=α,则∠DOE=(用含α的代数式表示).19.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.20.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.三.角的大小比较21.比较:28°15′28.15°(填“>”、“<”或“=”).22.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个参考答案一.角平分线的定义1.解:①∵∠AOB=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选:C.2.解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.3.解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)4.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∴∠AOC=2∠AOB=100°,∴∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∵OD是∠COE的平分线,∴∠COD=∠COE=30°.5.解:∵OC是∠AOB的角平分线∴∠BOC=∠AOB,∵∠AOD=2∠BOD,∴∠AOB=3∠BOD,即∠BOD=∠AOB;∴∠COD=∠AOB﹣∠AOB=∠AOB,∴∠BOD=2∠COD,∵∠COD=18°,∴∠BOD=36°.6.解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.二.角的计算7.解:∠ABC=30°+90°=120°.故选:D.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.10.解:∵OB是∠AOC的角平分线,∠AOB=45°,∴∠COB=∠AOB=45°∵OD是∠COE的角平分线,∠DOE=20°,∴∠DOC=∠DOE=20°,∴∠AOE=∠AOB+∠COB+∠DOC+∠DOE=45°×2+20°×2=130°.故选:C.11.解:∵∠MON=α,∠BOC=β∴∠MON﹣∠BOC=∠CON+∠BOM=α﹣β又∵OM平分∠AOB,ON平分∠COD∴∠CON=∠DON,∠AOM=∠BOM由题意得∠AOD=∠MON+∠DON+∠AOM=∠MON+∠CON+∠BOM=α+(α﹣β)=2α﹣β.故选:A.12.解:∵根据折叠得出∠ABC=∠A′BC,∠EBD=∠E′BD,又∵∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠ABC+∠E′BD=90°,∵∠ABC=58°,∴∠E′BD=32°.故选:B.13.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.14.解:∵∠BOD=90°﹣∠AOB=90°﹣30°=60°∠EOC=90°﹣∠EOF=90°﹣40°=50°又∵∠1=∠BOD+∠EOC﹣∠BOE∴∠1=60°+50°﹣90°=20°故答案是:20°.15.解:∵将一张纸条折叠,∠1=65°,∴∠1+∠2=180°﹣∠1即65°+∠2=180°﹣65°,得∠2=50°.故答案为:50°.16.解:(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.17.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.18.解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=48°,∴∠BOC=132°,∵OD平分∠BOC,∴∠COD=∠BOC=66°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣66°=24°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α.19.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.20.解:(1)∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC=75°,∠COE=∠AOC=30°,∴∠DOE的度数为:∠COD﹣∠COE=45°;故答案为:45;(3)∵∠AOB=90°,∠AOC=2α,∴∠BOC=90°+2α,∵OD、OE平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α,∠COE=∠AOC=α,∴∠DOE=∠DOC﹣∠COE=45°.三.角的大小比较21.解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.22.解:(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B,正确;故选:A.。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数人教版七年级上第一章有理数1.1正数和负数(一)正数:大于0的数叫正数,为了明确表达意义,正数前面加上符号“+”,这里的“+”通常省略;负数:小于0的数叫负数,在正数的前面加上符号“-”。
(二)0既不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数。
1.2.1有理数(一)有理数:整数和分数统称有理数。
(二)有理数的分类:①②1.2.2数轴(了解)(一)数轴:数轴是规定了原点、正方向、单位长度的一条直线。
(二)画数轴的步骤:(1)画直线;(2)在直线上取一点作为原点;(3)确定正方向,并用箭头表示(4)根据需要选取适当单位长度。
(三)一般的,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
1.2.3相反数(一)相反数:只有符号不同的两个数。
一般地a 和-a 互为相反数,0的相反数还是0。
(二)相反数的和为0⇔a+b=0⇔a、b 互为相反数。
1.2.4绝对值(了解)(一)绝对值:一般地,数轴上表示数a 的点与远点的距离叫做数a 的绝对值,记做。
(二)⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即,那么;那么;那么4.有理数大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
(3)异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值1.3有理数的加减法(一)有理数的加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加和为0;3.一个数同0相加,仍得这个数。
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
4.3 角1. 角的定义及其表示方法(1) 角的定义:有公共端点的两条射线构成的图形叫做角,这个公共端点是角的极点,这两条射线是角的两条边.角也能够看作是由一条射线绕着它的端点旋转而形成的图形. 当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示独自的一个角,在角内用一段弧标明;②用一个大写英文字母表示 独自的一个角,当角的极点处有两个或两个以上的角时,不可以用这种方法表示角;③用一个小写希腊字母表示独自的一个角;④用三个大写英文字母表示随意一个角,这时表示极点的字母必定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短没关,只与构成角的两条射线张开的幅度大小相关,角能够胸怀,能够比较大小,能够进行运算; (2) 假如没有特别说明,所说的角 都是指小于平角的角.【例 1- 1】 以下说法正确的选项是( ) .A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时构成的角是平角D .一个角不是锐角就是钝角分析: 要做对这种题目, 必定要理解观点, 严格依据观点进行判断, 才能得出正确的结论.平角、周角都是特别角,固然它们与一般角形象不符,可是它们仍旧是角,它们都拥有 一个极点和两条边,只可是平角的两边成一条直线,周角的两边重合成一条射线罢了.答案: C【例 1- 2】 如图,以点 B 为极点的角有几个?请分别把它们表示出来.剖析: .射线 BA 与 BD , BA 与 BC ,BD 与 BC 各构成一个角.表示极点的字母一定写在中间. 当一个极点处有多个角时,不可以用一个表示极点的大写字母表示,因此不可以把∠ ABC 错写成 “∠ B ”. 书写力争规范,如用数字或希腊字母表示角时要在凑近极点处加弧线注上 阿拉伯数字或小写的希腊字母.注意:角的符号必定要用 “∠” ,而不可以用 “ <”.解: 以 B 为极点的角有 3 个,分别是 ∠ ABC , ∠ ABD , ∠DBC .2.角的胸怀与换算 (1)角度制:以度、分、秒为单位的角的胸怀制,叫做角度制. (2)角度的换算:角的胸怀单位是度、分、秒,把一个周角360 均分,每一份就是1 度的角,记作 1°;把 1 度的角 6 0 均分,每一份就是 1 分的角,记作 1′;把 1 分的角 60 均分,每一份就是 1秒的角,记作 1″ .谈要点 角度的换算(1)度、分、秒的换算是 60 进制,与时间中的时、分、秒的换算 同样;(2)角的度数的换算有两种方法:(即从高位向低位化 ),用乘法, 1°= 60′ , 1′ = 60″ ;① 由度化成度、分、秒的形式 ② 由度、分、秒化成度的形式 (即从低位向高位化 ),1″= 1 ′,1′= 160 60 °,用除法.度及度、分、秒之间的转变一定逐级进行转变, “越级”转变简单犯错.【例 2】 (1) 将 70.23 °用度、分、秒表示;(2)将 26°48′ 36″用度表示.剖析: (1)70.23 °际是实 70°+ 0.23 °,这里 70°不要变,只需将0.23 °化为分,而后再把所得的分中的小数部分化为秒.将0.23 °化为分,只需用 0.23 乘以 60′即可.(2)将 26°48′ 36″用度表示,应先将 36″化成分,而后再将分化成度就能够了.将 36″1化成分,能够用60′乘以 36.解: (1)将 0.23 °化为分,可得0.23× 60′= 13.8′,再把 0.8′化为秒,得 0.8×60″=48″ .因此 70.23 °= 70°13′ 48″ .1′× 36=0.6 ′,48′+ 0.6′= 48.6′,把 48.6′ 化成度,(2)把 36″化成分, 36″=60148.6′=60°× 48.6= 0.81 .°因此 26°48′ 36″= 26.81 °.3.角的比较与运算(1)角的比较:①胸怀法:用量角度量出角的度数,而后依据度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小.②叠合法:把两个角的极点和一边分别重合,另一边放在重合边的同旁,经过另一边的地点关系比较大小.解技巧角的比较① 在胸怀法中,注意三点:对中、重合、度数;② 在叠合法中,要注意极点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义关于此后读图形语言有很大帮助,代数意义是此后角的运算的基础.①几何意义:如下图,∠ AOB与∠BOC的和是∠ AOC,表示为∠ AOB+∠ BOC=∠AOC ;∠AOC 与∠ BOC 的差为∠ AOB,表示为∠ AOC-∠ BOC=∠ AOB.②代数意义:如已知∠ A=23°17′ ,∠ B=40°50′ ,∠ A+∠ B就能够像代数加减法一样计算,即∠ A +∠B = 23°17′+ 40°50′= 64°7′,∠ B -∠A = 40°50′ - 23°17′=17°33′ .(3)角的均分线:从一个角的极点出发,把这个角分红相等的两个角的射线,叫做这个角的均分线.如图所示,射线OC是∠AOB 的均分线,则有∠1=∠ 2=12∠ AOB或∠ AOB =2∠ 1= 2∠ 2.警误区角的均分线的理解角的均分线是一条射线,不是线段,也不是直线,它一定知足下边的条件:① 是从角的极点引出的射线,且在角的内部;② 把已知角分红了两个角,且这两个角相等.【例 3】如下图, OE 均分∠ BOC, OD 均分∠ AOC,∠ BOE= 20°,∠ AOD = 40°,求∠ DOE 的度数.解:∵ OE 均分∠ BOC,∴∠ BOE=∠ COE.∵OD 均分∠ AOC,∴∠ AOD=∠COD .又∵∠ BOE= 20°,∠AOD =40°,∴∠ COE= 20°,∠COD =40°.∴∠ DOE=∠ COE+∠COD =20°+ 40°= 60°.4.余角和补角(1)余角和补角的观点:①余角:假如两个角的和等于 90°(直角 ),就说这两个角互为余角,即此中一个角是另一个角的余角;②补角:假如两个角的和等于 180°(平角 ),就说这两个角互为补角,即此中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角 )的余角相等.用数学式子表示为:∠1+∠ 2=90°,∠ 3+∠ 4=90°,又由于∠ 2=∠ 4,因此∠ 1=∠ 3.补角的性质:同角(等角 )的补角相等.用数学式子表示为:∠1+∠ 2= 180°,∠ 3+∠ 4= 180°,又由于∠ 2=∠ 4,因此∠ 1=∠3.(3)方向角:在航海、航空、测绘中,常常会用到一种角,它是表示方向的角,叫做方向角.往常以正北、正南方向为基准,描绘物体运动的方向.往常要先写北或南,再写偏东仍是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间相互依存,只好说∠ 1的余角是∠2,∠ 2 的余角是∠1,或许说∠ 1 与∠ 2 互余,而不可以说∠ 1是余角.【例 4】如下图,直线 AB ,CD,EF 订交于点 O,且∠ AOD = 90°,∠ 1= 40°,求∠ 2 的度数.解:由于∠ AOD +∠ AOC=∠ AOD+∠ BOD = 180°,因此∠AOD =∠ AOC=∠ BOD = 90°.又由于∠ 1+∠FOC = 180°,∠DOF +∠ FOC =180°,因此∠DOF =∠ 1= 40°.因此∠2=∠ BOD-∠ DOF = 90°- 40°= 50°.5.运用整体思想解决角的计算问题整体思想就是依据问题的整体构造特点,不拘泥于部分而是从整体上去掌握解决问题的一种重要的思想方法.整体思想突出对问题的整体构造的剖析和改造,发现问题的整体构造特点,擅长用“集成”的目光,把某些式子或图形当作一个整体,掌握它们之间的关系,进行有目的的、存心识的整体办理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有宽泛的应用,整体代入、 整体运算、整体设元、整体办理、 几何中的补形等都是整体思想方法在解数学识题中的详细运用.【例 5】如下图,∠ AOB = 90°,ON 是∠ AOC 的均分线, OM 是∠ BOC 的均分线,求 ∠MON 的大小.剖析: 解决问题的要点是把 ∠ AOC - ∠BOC 视为一个整体,代入求值. 解: 由于 ON 是 ∠AOC 的均分 线, OM 是 ∠ BOC 的均分线,因此∠ NOC =12∠ AOC ,∠MOC = 1∠ BOC ,21 1 1 1 因此 ∠MON =∠NOC - ∠MOC =∠AOC - ∠BOC = (∠AOC -∠ BOC)= ∠AOB =222212× 90°= 45°.6.钟表问题关于钟表问题要掌握基本的数目关系,如走一大格为 30 度,一小格为 6 度,分针每分钟转 6 度,时针每分钟转 0.5 度,分针是时针转速的 12 倍等.若已知详细时间,求时针与分针的夹角, 只需知道它们相距的格数,即可求得;假如已知时针与分针的夹角求相应的时间,则一般需要成立方程求解.【例 6】上午 9 点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经 过 x 分钟,时针与分针再次成直角,则时针转过(0.5x) °,分针转过 (6x) °,如图所示,可列方程360- 6x - (90- 0.5x) =90,解得 x = 32 8.即过 32 8分钟,时针与分针再一11 11次成直角.7.角中的实验操作题实验操作题是最近几年来悄悄盛行的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在着手操作中找出答案.这种题目主假如能画出整个过程中的状态表示图,从而求出点的转动角度.【例 7】如图,把作图用的三角尺 (含 30°,60°的那块 )从较长的直角边水平状态下开始,在平面上转动一周,求 B 点转动的角度 (在点的地点没有发生变化的状况下,一律看作点没有转动 ).解: 如图,从地点 ① 到地点 ② , B 点转过 90°;从地点 ② 到地点 ③ ,B 点转过 120°;从地点 ③ 到地点 ④ ,由题意 B 点看作不动.于是在整个过程中 B 点转过的角度为90°+ 120°= 210°.8.概括猜想在角的问题中的运用概括猜想, 是一种很重要的数学思想方法, 数学史上的很多重要发现: 如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的研究、猜想、总结而获得的.学习数学一定不停地去研究、猜想,不停地总结规律,才会有新发现.运用 n(n - 1)这个式子,能解决好多近似的问题,能达到一石数鸟,这都是大家擅长借2鉴的结果.在学习过程中,注意不停总结、概括规律,累积经验,运用总结出来的方法、技巧解决问题.【例 8】(1) 若在 n 个人的聚会上, 每一个人都要与此外全部的人握一次手, 问握手总次数 是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角 )?解: (1)每一个人可与此外 (n -1) 个人握一次手, n 个人就有 (n - 1) ·n 次握手,此中各重复一次,因此,握手总次数是 n(n -1) ÷2 次.(2)图 ① 中每两个点构成一条线段 (近似于两个人握一次手 ),因此共有 n(n - 1) ÷2 条线段. 图 ② 中每条射线都与此外 (n - 1)条射线构成一个角 (近似于握手 ),因此共有 n(n - 1) ÷2个角.9.方向角的应用(1)如图, 画两条相互垂直的直线 AB 和 CD 订交于点 O ,此中一条为水平线, 则图中四条射线所指方向就是东西南北四大方向, 详细是: 向上的射线 OA 表示正北方向, 向下的射线 OB 表示正南方向,向右的射线 OD 表示正东方向,向左的射线 OC 表示正西方向.这四大方向简称为上北下南左西右东.成立这四条方向线后,关于点 P ,假如点 P 在射线 OA 上,则称点 P 在正 北方向;假如点 P 在射线 OB 上,则称点 P 在正南方向;假如点 P 在射线 OC 上,则称点 P 在正西方向;假如点 P 在射线 OD 上,则称点 P 在正东方向.(2)在图中,东西和南北方向线把平面分红四个直角,假如点 P 在正北方向线 OA 与正东( 或正西 )方向线 OD( 或 OC)的夹角内,且射线 OP 与正北方向线 OA 的夹角是 m °,则称点 P 在北偏东 (或西 )m °方向;假如点 P 在正南方向线 OB 与正东 (或正西 )方向线 OD( 或 OC) 的夹角内,且射线 OP 与正南方向线 OB 的夹角为 m °,则称点 P 在南偏东 (或西 )m °方向.比如图中的射线 OA , OB , OC ,OD 分别称为:北偏东 40°、北偏西 65°、南偏西 45°、南偏东 20°.关于倾向 45°的方向角,有时也能够说成东南 (北 )方向或西南 (北 )方向.如图中的 OC,除了说成南偏西 45°外,还能够说是西南方向,但不要说成南西方向.【例 9】如图, OA 的方向是北偏东15°,OB 的方向是西偏北50°.(1)若∠ AOC =∠ AOB,则 OC 的方向是 ________;(2)OD 是 OB 的反向延伸线,OD 的方向是 ____;(3)∠ BOD 可看作是 OB 绕点 O 逆时针方向至OD,作∠ BOD 的均分线OE,OE 的方向是____ ;(4)在 (1) 、 (2) 、 (3)的条件下,∠ COE = ____.分析: (1)∵ OB 的方向是西偏北50°,∴∠ 1= 90°- 50°= 40°,∴∠ AOB= 40°+ 15°= 55°∵∠ AOC=∠ AOB,∴∠ AOC= 55°,∴∠ FOC=∠ AOF+∠ AOC= 15°+ 55°= 70°,∴ OC 的方向是北偏东70°.(2)∵ OB 的方向是西偏北50°,∴∠ 1= 40°,∴∠ DOH = 40°,∴ OD 的方向是南偏东40°.(3)∵ OE 是∠ BOD 的均分线,∴∠ DOE= 90°.∵∠ DOH = 40°,∴∠ HOE= 50°,∴ OE 的方向是南偏西50°.(4)∵∠ AOF = 15°,∠ AOC= 55°,∴∠ COG= 90°-∠AOF -∠ AOC= 90°-15°- 55°= 20°.∵∠ EOH= 50°,∠HOG = 90°,∴∠ COE=∠ EOH+∠HOG +∠ COG= 50°+ 90°+ 20°=160°.答案: (1)北偏东 70°(2)南偏东 40°(3)南偏西 50°(4)160 °。
第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.B2.D3.C4.D5.⎝⎛⎭⎫344 34的4次方⎝⎛⎭⎫或34的4次幂6.(1)-1 (2)-81 (3)0 (4)12587.解:(1)原式=-8.(2)原式=-425.(3)原式=-949.(4)原式=-827.第2课时 有理数的混合运算1.C2.A3.134.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4.(3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46. (4)原式=-1÷14+6-0=-1×4+6=-4+6=2.1.5.2 科学记数法1.C2.C3.C4.(1)1.02×106 (2)7 (3)2990000005.解:(1)6.4×106m.(2)4.0×107m.1.5.3 近似数1.D2.C3.B4.百万 270000005.解:(1)23.45≈23.5.(2)0.2579≈0.26.(3)0.50505≈0.5.(4)5.36×105≈5.4×105(或54万).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.D2.D3.A4.用100元买每斤9.8元的苹果x 斤后余下的钱5.0.9x6.解:阴影部分的面积为ab -bx.第2课时 单项式1.D2.C3.34.0.5x5.10n6.表中从上至下从左至右依次填:1 -1 -52π -23 1 3 4 3 57.解:因为关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,所以m +1=3,3+n =6,所以m =2,n =3.第3课时 多项式1.B2.D3.C4.四 五 35.4xy 2+3(答案不唯一)6.解:xy 3,-34xy 2z ,a,3.14,-m 是单项式;x -y ,-m 2+2m -1是多项式.7.解:由题意得爸爸的体重为(3a -10)千克.3a -10是多项式,次数为1.2.2 整式的加减第1课时 合并同类项1.C2.D3.A4.C5.解:(1)原式=4a.(2)原式=-2x 2-4x -7. (3)原式=9m 2n -10mn 2.6.解:原式=(4x 2-x 2)+(3xy -2xy)-9=3x 2+xy -9.当x =-2,y =3时,原式=3×(-2)2+(-2)×3-9=12-6-9=-3.第2课时 去括号1.D2.C3.B4.C5.(1)a +b -c -d (2)a -b -c +d (3)a +b +c -d (4)-a +b -c6.解:(1)原式=-2a +6.(2)原式=-2x 4+9x -1. (3)原式=-7x +23y.(4)原式=-2a 2-6ab.第3课时 整式的加减1.B2.C3.B4.C5.解:(1)原式=-x 2+2x 2+5x +5x +4-4=x 2+10x. (2)原式=-6y 2+10x 2-4y 2+7xy =10x 2-10y 2+7xy.6.解:原式=3a 2-ab +7-5ab +4a 2-7=7a 2-6ab.当a =2,b =13时,原式=7×22-6×2×13=28-4=24.第三章 一元一次方程 3.1 从算式到方程3.1.1 一元一次方程1.C2.B3.C4.3x +20=4x -255.3.5x +30=1006.解:由题意知男生人数+女生人数=学生总人数,可列方程32x +x =50.3.1.2 等式的性质1.B2.D3.D4.165.解:(1)x =5. (2)x =-4. (3)x =-7. (4)x =4.3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.A3.x =-34.40和605.解:(1)合并同类项,得2x =6.系数化为1,得x =3. (2)合并同类项,得5x =5.系数化为1,得x =1. (3)合并同类项,得-92x =32.系数化为1,得x =-13.(4)合并同类项,得9y =18.系数化为1,得y =2.第2课时 利用移项解一元一次方程1.D2.A3.B4.解:(1)x =-32.(2)x =92.5.解:设这本《唐诗宋词选读》中宋词的数目为x 首,则唐诗的数目为3x 首.由题意得3x =x +24.移项,得3x -x =24.合并同类项,得2x =24.系数化为1,得x =12.所以3x =36.答:这本《唐诗宋词选读》中唐诗有36首.3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.D2.A3.-14.解:(1)x =6.(2)y =-6.(3)x =8.(4)x =0.5.解:设他投进3分球x 个,则投进2分球(x +4)个.由题意得2(x +4)+3x =23,解得x =3,则x +4=7.答:他投进了7个2分球,3个3分球.第2课时 利用去分母解一元一次方程1.D2.D3.(1)92 (2)434.解:(1)x =3.(2)x =32.(3)x =-516.(4)y =-25.5.解:设这个班共有x 名学生.根据题意得x 8=x6-2,解得x =48.答:这个班共有48名学生.3.4 实际问题与一元一次方程第1课时 产品配套问题和工程问题1.A2.解:设两队合作x 个月后,可以完成总工程的12.由题意得112x +212x =12,解得x =2.答:两队合作2个月后,可以完成总工程的12.3.解:设安排x 名学生做丙元件,则x 名学生做乙元件,(33-2x)名学生做甲元件.由题意得8(33-2x)=2×3x ,解得x =12,所以33-2x =9.答:应该安排9名学生做甲元件,12名学生做乙元件,12名学生做丙元件,才能使生产的三种元件正好配套.第2课时 销售中的盈亏1.C2.D3.B4.解:设进价是x 元,由题意得0.9×(1+20%)x =x +20,解得x =250. 答:进价是250元.5.解:设打x 折时利润率为10%,根据题意得0.1x×1100=600×(1+10%),解得x =6. 答:为了保证利润率不低于10%,最多可打6折销售.第3课时 球赛积分问题与单位对比问题1.C2.解:设这名选手胜了x 场,则负了(20-x)场.由题意得2x -(20-x)=28,解得x =16.答:这名选手胜了16场.3.解:(1)由题意得15×5-(20-15)×2=75-10=65(分).(2)不可能.理由如下:设小茗答对x 道题,则答错或不答(20-x)道题.由题意得5x -2(20-x)=90,解得x =1847.因为1847不是整数,所以不符合题意,即他的分数不可能是90分.第4课时 电话分段计费问题1.解:设乘车x 公里恰好付费16元.因为16>10,所以x >3.由题意得10+2×(x -3)=16,解得x =6.答:乘车6公里恰好付车费16元.2.解:由题意可知王林第一次购物80元,设第二次购物x 元.因为300×0.9=270,300×0.8=240,而240〈252〈270,所以有两种情况:①当x 〈300时,0.9x =252,解得x =280.此时,一共购物:80+280=360(元),付款360×0.8=288(元).②当x 〉300时,0.8x =252,解得x =315.此时,一共购物80+315=395(元).付款395×0.8=316(元).答:如果王林一次性购买与上两次相同的商品,那么应付款288元或316元.3.解:(1)设一个水瓶x 元,则一个水杯(48-x)元.由题意得3x +4(48-x)=152.解得x =40.则48-x =8.答:一个水瓶40元,一个水杯8元.(2)若选择甲商场购买,需花费0.8×5×40+0.8×20×8=288(元).若选择乙商场购买,需花费5×40+(20-5×2)×8=280(元).因为288>280,所以选择乙商场购买更合算.4.解:(1)设一个月内本地通话xmin 时,两种通讯方式的费用相同.由题意得25+0.2x =0.3x.解得x =250.答:一个月内本地通话250min 时,两种通讯方式的费用相同.(2)设一个月内本地通话ymin 时,花费90元.由题意得全球通25+0.2y =90.解得y =325.神州行0.3y =90.解得y =300.因为325>300,所以选择全球通比较合算.第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形 第1课时 立体图形与平面图形1.B2.D3.B4.①②③⑤⑦ ④ ⑥5.4 46.解:如图所示.第2课时从不同的方向看立体图形和立体图形的展开图1.A 2.B 3.C 4.B 5.A6.三棱柱五棱柱六棱柱长方体圆柱圆锥4.1.2点、线、面、体1.C2.B3.(1)点动成线(2)线动成面(3)面动成体4.解:如图所示.5.解:此立体图形是由3个面围成的,它们是2个平面和1个曲面.4.2直线、射线、线段第1课时直线、射线、线段1.A2.B3.两点确定一条直线4.解:如图所示,共画6条直线.5.解:(1)(2)(3)如图所示.第2课时线段的长短比较与运算1.C2.B3.A4.两点之间,线段最短5.解:因为D为线段AC的中点,所以AD=DC.因为BC=AD+8,AB=20,所以AD +DC+BC=AD+AD+AD+8=20,则3AD=12,解得AD=4.4.3角4.3.1角1.B2.D3.154.解:(1)50.7°=50°42′.(2)15.37°=15°22′12″.5.解:(1)70°15′=70.25°.(2)30°30′36″=30.51°.4.3.2角的比较与运算1.C2.403.解:(1)原式=73°51′.(2)原式=52°44′.4.解:因为OM,ON分别平分∠AOC,∠COB,所以∠AOC=2∠AOM,∠BOC=2∠NOB.因为∠AOM=30°,∠NOB=35°,所以∠AOB=∠AOC+∠BOC=2∠AOM+2∠NOB=2×30°+2×35°=130°.4.3.3余角和补角1.B2.C3.A4.(1)60°(2)65°5.解:(1)因为∠AOC∶∠COD∶∠DOB=2∶5∶3,所以设∠AOC=2x,则∠COD=5x,∠DOB=3x.由题意得2x+5x+3x=180°,解得x=18°.∴∠AOC=36°.(2)因为∠AOC=36°,∠DOB=3×18°=54°,所以∠AOC+∠DOB=90°,则∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.B2.B3.C4.解:答案不唯一,如图.。
4.3.1角(1)【学习目标】1、通过丰富的实例,理解角的形成,建立几何中角的概念,掌握角的两种定义形式和四种表示方法.2、通过在图片、实例中找角,培养学生的观察、探究、抽象、概括的能力以及把实际问题转化为数学问题的能力。
【学习过程】一、预习探究⑴请你根据小学对角的认识与理解,画一个角。
⑵角的两边是;他们的位置关系如何?根据自己的理解试给角下一个定义?二、课堂学习探究:(一)角的概念角的定义:有组成的图形叫做角.这个公共端点是角的,这两条射线是角的.举出几个生活中给我们角的形象的物体:。
(二)角的表示方法:在刚才的讨论中,我们发现了生活中有许多角的形象.那么,我们如何给这些角取名呢?①用三个大写字母表示:∠AOB(顶点写在中间)②用一个大写字母表示:∠O(用顶点表示,该顶点处只有一个角)③用一个希腊字母表示:∠α(用小弧圈在图中表示)④用数字表示:∠1(用小弧圈在图中表示)(三)例题点睛例 1 如图,回答下列问题。
(1)写出图中能用一个字母表示的角;(2)写出以B为顶点的角;(3)图中共有几个角?分别把它们表示出来。
课堂练习1.如下左图所示,把图中用数子表示的角,改用大写字母表示分别是________.2.将上右图中的角用不同的方法表示出来,填入下表:(四)用旋转观点定义角角也可以看成是由一条射线绕着它的端点旋转而形成的图形.当射线OA绕点O旋转时,当终止位置OB和起始位置OA成一条直线时,会形成什么角?继续旋转,当OB和OA重合时,又形成什么角?①绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做;②绕着端点旋转到角的终边和始边再次重合,这时所成的角叫做。
③小于180°角可以分成:、、。
(五)小结三、反馈练习:1.把图中的角表示成下列形式,哪些正确,哪些不正确?(1)∠APO (2)∠AOP (3)OPC (4)∠OCP(5)∠O (6) ∠P2.图中以O点为顶点的角有几个?以D点为顶点的角有几个?试用适当的方法来表示这些角。
《图形的初步认识》教材分析与教学建议1.教学目标●直观认识立体图形、视图和展开图,使学生了解研究立体图形的方法,同时也为平面图形的引入做准备;●通过观察、操作,直观认识平面图形,在此基础上了解点和线,并探索点和线的性质。
2. 教材特点●两个强调:强调直观,强调操作。
在观察中学会分析,在操作中体验变换。
1、充分利用现实世界中的实物原型,展示丰富多彩的几何世界。
(引言、第一节等)2、强调学生的动手操作和主动参与,让他们在观察、操作、想像、交流等活动中认识图形,发展空间观念。
(观察思考探究数学活动)3、重视几何语言的培养和训练。
几何教学就是几何图形的教学,教学中,教师一定要重视几何模型的建立,注重文字语言、符号语言、图形语言的准确示范,并强化它们之间的相互转化,让学生能够熟练准确的用几何语言表述几何图形的特征,并能够用符号语言进行书面表达。
同样,根据符号与几何语言的描述,学生能够迅速画出相应的几何图形。
(线段的比较线段的和与差线段的中点角的比较角的和差角的平分线)本章是空间与图形的起始章,所研究的主要内容都是后继学习的基础,研究问题的方法也是今后学习相关内容的主要方法,教师在教学中,要引导学生梳理学习的主要内容,总结学习方法,为后续内容的学习打好基础。
本章概念较多,并且较为零散,他们大多隐藏在丰富的现实物体和图形之中,在本章的学习中,一定让学生在自我回顾、反思和交流中去梳理相关内容寻找它们的联系,逐步建立知识的结构体系。
3.知识结构3.1 多姿多彩的图形课时安排4.1 多姿多彩的图形……………4课时4.1.1 几何图形1课时从不同方向看立体图形1课时展开立体图形1课时4.1.2 点、线、面、体1课时4.2 直线、射线、线段…………3课时直线、射线、线段的认识与表示………1课时线段的大小比较及和、差、中点………1课时两点间的距离…………1课时4.3 角………………………………………5课时4.3.1角的认识与度量……………………1课时4.3.2角的比较与运算………………2课时4.3.3余角和补角………………1课时方位角……………1课时4.4 课题学习………………………………2课时小结………………………………………2课时3.1.1立体图形和平面图形教学目标:1、使学生初步认识立体图形和平面图形的概念,能从具体实物中抽象出圆柱、圆锥、棱柱、棱锥、球等简单立体图形,能找到这些立体图形在生活中的原型.2、了解几何体从不同方向看,得到的是平面图形;3、能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们简单组合得到的平面图形的示意图;能辨认从不同方向看简单物体的形状.4、在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉和形象思维.5、培养学生用图形描述现实世界的意识,激发学生对几何图形的好奇心,培养几何直觉.通过揭示几何图形与丰富多彩的图形世界的密切联系,使学生感受到几何图形的美及实用价值,培养热爱数学的情感.重点:认识简单的立体图形,发展几何直觉. 认识几种简单的立体图形的平面展开图.会辨认从不同方向看一些基本几何体以及它们简单组合所得到的平面图形.难点:从实物中抽象出立体图形. 会辨认从不同方向看一些基本几何体的简单组合所得到的平面图形;知识点1:让学生记住几种常见的立体几何图形:柱体:圆柱、棱柱(三棱柱、四棱柱……)锥体:圆锥、棱锥(三棱锥、四棱锥……)其他:长方体、正方体、球体等等。
第一章有理数1.1正数和负数1.2有理数1.2.1有理数1.2.2数轴1.2.3相反数1.2.4绝对值第1课时绝对值第2课时有理数大小的比较1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则第2课时有理数加法的运算律及运用1.3.2有理数的减法第1课时有理数的减法法则第2课时有理数的加减混合运算1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则第2课时有理数乘法的运算律及运用1.4.2有理数的除法第1课时有理数的除法法则第2课时有理数的加减乘除混合运算1.5有理数的乘方1.5.1乘方第1课时乘方第2课时有理数的混合运算1.5.2科学记数法1.5.3近似数第二章整式的加减2.1整式第1课时用字母表示数第2课时单项式第3课时多项式2.2整式的加减第1课时合并同类项第2课时去括号第3课时整式的加减第三章一元一次方程3.1从算式到方程3.1.1一元一次方程3.1.2等式的性质3.2解一元一次方程(一)——合并同类项与移项第1课时用合并同类项的方法解一元一次方程第2课时用移项的方法解一元一次方程3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时利用一元一次方程解配套问题和工程问题第2课时利用一元一次方程解销售问题第3课时利用一元一次方程解积分问题和计费问题第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识立体图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图4.1.2点、线、面、体4.2直线、射线、线段第1课时直线、射线、线段第2课时线段长短的比较与运算4.3角4.3.1角4.3.2角的比较与运算4.3.3余角和补角第一章有理数1.1正数和负数知识点1正数和负数的概念大于0的数叫做正数;在正数前面加上符号“-”(负)的数叫做负数.判断正数、负数的方法:判断一个数是正数还是负数,首先要确定它不为零;其次看它的“+”“-”号的呈现形式:若不含“+”、“-”号,或只含“+”号,或“-”号的个数为偶数,则均为正数,否则为负数.知识点20的意义0既不是正数,也不是负数.0是正数、负数的分界.0的意义已经不仅表示“没有”.知识点3具有相反意义的量在生活中存在各种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义却相反,我们把这样的量叫做相反意义的量.为了表示具有相反意义的量,我们把其中一种意义的量规定为正,把另一种与之意义相反的量规定为负.(总分30分)1.(知识点1)(3分)四个数-3,0,1,2,其中负数是(A)A.-3B.0C.1D.22.(知识点1)(3分)下列各数中是正数的为( A ) A .3 B .-12C .-2D .03.(知识点1、2)(3分)下列说法正确的是( C ) A .不带“-”的数就是正数B .正数必须带“+”,负数必须带“-”C .0不仅表示没有,它还有其他的意义D .正数可以把“+”省略,负数也可以把“-”省略 4.(知识点3)(3分)下列各组量中,互为相反意义的量是( A ) A .篮球比赛胜6场与负6场 B .上升与减小C .增产20吨粮食与减产-20吨粮食D .向东走3千米,再向南走2千米5.(知识点2)(3分)在-1,0,1,2这四个数中,既不是正数也不是负数的是0. 6.(知识点1、2)(7分)读下列各数,并指出哪些是正数,哪些是负数. -1.5,2.4,+147,0,-0.4,15,-1.7,-32.解:读法略.正数有:2.4,+147,15;负数有:-1.5,-0.4,-1.7,-32.7.(知识点3)(8分)在一条南北走向的跑道上,规定向南运动为正. (1)+3米表示什么意思?-4米表示什么意思?原地不动应记作什么?(2)若小明先向南走了7米,又向北走了3米,那么他此时的位置在原来的什么方向,相距多远?解:(1)+3米表示向南运动3米,-4米表示向北运动4米,原地不动应记作0米. (2)南面,相距4米.1.2 有理数 1.2.1 有理数知识点1 有理数及相关概念正整数、0、负整数统称为整数;正分数、负分数统称为分数. 整数和分数统称为有理数. 知识点2 有理数的分类有理数有两种常用的分类方式. (1)按定义分类:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧ 正整数 0负整数分数⎩⎪⎨⎪⎧正分数 负分数(2)按性质分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数 正分数负有理数⎩⎪⎨⎪⎧ 负整数负分数(总分30分)1.(知识点1)(3分)下列四个数中,属于负整数的是( A ) A .-3 B .0 C .-12D .-2.82.(知识点1)(3分)下列四个有理数中,既是分数又是正数的是( D ) A .2 B .-312C .0D .3.63.(知识点1)(3分)下列说法错误的是( B ) A .3,23,0都是非负数B .0不是整数C .13是正数D .-0.35是负分数4.(知识点1)(3分)下列八个有理数:-2,34,-0.2,211,0,-25,3.14,234;其中分数共有 ( C )A .3个B .4个C .5个D .6个5.(知识点2)(3分)下列各数:5,0.5,0,-3.5,-12,34,10%,-72中,属于整数的有5,0,-12,属于分数的有0.5,-3.5,34,10%,-72,属于负数的有-3.5,-12,-72.6.(知识点2)(7分)请用两种不同的分类标准将下列各数分类: -15,+6,-2,-0.9,1,35,0,314,0.63,-4.95.解:分类一⎩⎪⎨⎪⎧整数:-15,+6,-2,1,0;分数:-0.9,35,314,0.63,-4.95.分类二⎩⎪⎨⎪⎧正数:+6,1,35,314,0.63;0;负数:-15,-2,-0.9,-4.95.7.(知识点2)(8分)下列两个圈内分别表示某个集合,重叠部分是这两个集合所共有的. (1)如图,把有理数-3,2078,0.37,-227填入它所属的集合的圈内;解:(2)请你仿照(1)重新给出一列数,并在下图的三个区域内分别填入这列数.解:略(答案不唯一,合理即可)1.2.2 数 轴知识点1 数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴. 数轴的画法:一画:画一条直线(一般是水平直线); 二取:选取原点,并用这点表示数字0;三定:确定正方向,用箭头表示(一般规定向右为正); 四统一:单位长度应统一;五标数:在原点左右两边依次标上对应的刻度数. 知识点2 数轴上的点与有理数的对应关系一般地,设a 是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示-a 的点在原点的左边,与原点的距离是a 个单位长度.(总分30分)1.(知识点1)(3分)下列说法正确的是( D ) A .规定了正方向和单位长度的射线数轴 B .规定了原点、单位长度的线段叫做数轴 C .有正方向和单位长度的直线叫做数轴D .规定了原点、正方向和单位长度的直线叫做数轴 2.(知识点1)(3分)下列数轴表示正确的是( D )3.(知识点2)(3分)如图,数轴上点M 表示的数可能是( C )A .1.5B .-1.5C .-2.4D .2.44.(知识点1)(3分)在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.5.(知识点2)(3分)如图所示,在数轴上有A ,B ,C 三点.请回答:(1)将点A 向右移动2个单位长度后,表示的有理数是-1; (2)将点B 向左移动3个单位长度后,表示的有理数是-4; (3)将点C 向左移动5个单位长度后,表示的有理数是-2.6.(知识点1)(7分)画出数轴并表示下列有理数:1.5,-2,-2.5,0,23.解:如图所示.7.(知识点2)(8分)根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数;(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其他字母表示),并写出这些点表示的数.解:(1)A点表示的数为1,B点表示的数为-2.5.(2)A,B两点之间的距离为1+2.5=3.5.(3)如图,点C,D与点A的距离为2.这两个点表示的数是-1和3.1.2.3相反数知识点1相反数的定义只有符号不同的两个数叫做互为相反数.知识点2相反数的性质求一个数的相反数就是在这个数的前面加上“-”号,即a的相反数是-a,其实质是改变这个数的符号.任何一个数都有相反数,而且只有一个.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.知识点3多重符号的化简化简一个带有多重符号的数,与它前面的“+”号个数无关,与“-”号个数有关,当“-”号的个数为奇数时,这个数为负,当“-”号的个数为偶数时,这个数为正;即我们可以按照“奇负偶正”的原则直接写出结果.(总分30分)1.(知识点1)(3分)2078的相反数是(B)A.2078 B.-2078C.12078D.-12078 2.(知识点1)(3分)下列各组数中互为相反数的是(D)A .2与-3B .-3与-13C .2078与-2077D .-0.25与143.(知识点2)(3分)下列说法中:①-2是相反数;②2是相反数;③-2是2的相反数;④-2和2互为相反数.其中正确的有( B )A .1个B .2个C .3个D .4个4.(知识点3)(3分)下列各式中,化简正确的是( C ) A .+(-5)=5 B .+(+5)=-5 C .-(+5)=-5D .-(-5)=-55.(知识点1、2)(3分)-12的相反数是12,-53与53互为相反数,-234的相反数是234.6.(知识点2)(7分)在数轴上有A ,B 两点,如图所示,怎样移动A ,B 中的一点,才能使两个点表示的数互为相反数?解:将点A 向右平移3个单位或将点B 向右平移3个单位,都能使两个点表示的数互为相反数.7.(知识点3)(8分)化简下列各数:+(-7),-(+1.4),+(+2.5),-[+(-5)],-[-(-2.8)],-(-6),-[-(+6)]. 解:+(-7)=-7,-(+1.4)=-1.4,+(+2.5)=2.5,-[+(-5)]=5,-[-(-2.8)]=-2.8,-(-6)=6,-[-(+6)]=6.1.2.4 绝对值 第1课时 绝对值知识点1 绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作||a (这里的数a 可以是正数、负数和0).知识点2 绝对值的性质及应用一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即:如果a >0,那么||a =a ;如果a =0,那么||a =0;如果a <0,那么||a =-a .非负性:任何有理数的绝对值都是非负数,即||a ≥0.(总分30分)1.(知识点1)(2分)-2078的绝对值是( C ) A .12078B .-2078C .2078D .-120782.(知识点1)(2分)化简|-12|的结果是( B )A .-12B .12C .-2D .23.(知识点2)(3分)若|x |=5,则x 的值是( C ) A .5 B .-5 C .±5D .154.(知识点2)(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( C )5.(知识点1、2)(5分)(1)①正数:|+5|=5,|12|=12; ②负数:|-7|=7,|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是非负数,即|a |≥0. 6.(知识点2)(8分)计算: (1)|-3|+|+5|-|-4|; (2)-(-6)÷|+(-2)|; (3)2.7+|-2.7|-|-2.7|; (4)|-16|+|+36|-|-1|;解:(1)原式=3+5-4=4. (2)原式=6÷2=3. (3)原式=2.7+2.7-2.7=2.7. (4)原式=16+36-1=51.7.(综合题)(7分)已知|x -4|+|y +2|=0,求x 与y 的相反数.解:因为|x -4|+|y +2|=0,所以|x -4|=0,|y +2|=0,所以x =4,y =-2.所以x 的相反数为-4,y 的相反数为2.第2课时 有理数大小的比较知识点1 用数轴比较有理数的大小在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.知识点2 用法则比较有理数的大小 (1)正数大于0,0大于负数,正数大于负数. (2)两个负数,绝对值大的反而小.(总分30分)1.(知识点1)(3分)如图所示,根据有理数a ,b ,c 在数轴上的位置,比较a ,b ,c 的大小关系是( A )A .a >b >cB .a >c >bC .b >c >aD .c >b >a2.(知识点2)(3分)下列各数中,最大的是( B ) A .0 B .2 C .-2D .-123.(知识点1)(3分)已知点M ,N ,P ,Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( D )A .MB .NC .PD .Q4.(知识点2)(3分)比较-3,1,-2的大小,正确的是( A ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3D .1<-3<-25.(知识点1)(3分)若有理数a ,b 在数轴上对应的点的位置如图所示,则|a |,|b |的大小关系是||a >||b6.(知识点2)(4分)用“>”或“<”填空. (1)-3.14<-3; (2)+45>34;(3)-12<+13;(4)-100<0.7.(知识点1)(5分)在数轴上表示出下列各数:-2,313,0,-3.5,2,3.5,并用“<”号将它们连接起来.解:-3.5<-2<0<2<313<3.5.8.(综合题)(6分)如图所示,数轴上的点A ,B ,C ,D 表示的数分别为:-1.5,-3,2,3.5.(1)将点A ,B ,C ,D 表示的数按从小到大的顺序用“<”号连接起来;(2)若将原点改为C 点,点A ,B ,C ,D 所表示的数分别为多少?将这些数按从小到大的顺序用“<”号连接起来;(3)改变原点位置后,点A ,B ,C ,D 所表示的数的大小顺序改变了吗?这说明了数轴的什么性质?解:(1)-3<-1.5<2<3.5. (2)分别为:-3.5,-5,0,1.5;用“<”号连接为:-5<-3.5<0<1.5. (3)没有改变,说明数轴上表示的数右边的数总比左边的数大.1.3 有理数的加减法 1.3.1 有理数的加法 第1课时 有理数的加法法则知识点1、2 有理数的加法法则及应用有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.两数相加时,首先确定和的符号,再确定绝对值的大小,最后将绝对值相加或相减.(总分30分)1.(知识点1)(3分)计算(-2)+(-5)的结果是( A ) A .-7 B .7 C .-3D .32.(知识点1)(3分)下列运算结果为负数的是( B ) A .3+5 B .3+(-5) C .5+(-3)D .(-5)+53.(知识点1)(3分)两数相加,如果它们的和比两个加数都小,则这两个数( C ) A .同为正数 B .异号 C .同为负数D .是零和负数4.(知识点2)(3分)某商店今年第一季度盈利23000元,第二季度亏损6000元,若盈利记为正,则该商店今年上半年盈利(或亏损)可用算式表示为( D )A .(+23000)+(+6000)B .(-23000)+(+6000)C .(-23000)+(-6000)D .(+23000)+(-6000)5.(知识点2)(3分)已知飞机的飞行高度为10000m ,上升3000m 后,又上升了-5000m ,此时飞机高度是8000m.6.(知识点1)(8分)计算: (1)⎝⎛⎭⎫-534+725; (2)⎝⎛⎭⎫-27+⎝⎛⎭⎫-213; (3)(-3.51)+(+2.83); (4)⎝⎛⎭⎫-356+0. 解:(1)原式=+⎝⎛⎭⎫725-534=11320. (2)原式=-⎝⎛⎭⎫27+213=-21321. (3)原式=-(3.51-2.83)=-0.68. (4)原式=-356.7.(知识点2)(7分)小明从家里出发骑车到一个公园去玩,当他意识到骑过头的时候,已经走了4.5km ,他又向回骑了1.2km 才到达目的地.(1)列算式求出小明家离公园有多远; (2)求小明骑车行驶的路程.解:(1)4.5-1.2=3.3(km).答:小明家离公园 3.3km. (2)4.5+1.2=5.7(km).答:小明骑车行驶的路程为5.7km.第2课时 有理数加法的运算律及运用知识点1 有理数加法运算律加法交换律:两个数相加,交换加数的位置,和不变,用字母表示为a +b =b +a . 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用字母表示为(a +b )+c =a +(b +c ).常用组合方法:相反数结合法;同号结合法;同分母结合法;凑整法;同形结合法等。