课题绝对值三角不等式
- 格式:doc
- 大小:296.50 KB
- 文档页数:4
课题:绝对值三角不等式红岭中学 隗双和教学目标:知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简单的应用。
过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明。
情感、态度与价值观:体验不等式的美感,提高推理能力,增强学习兴趣。
能运用所学的知识,正确地解决的实际问题.教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。
教学难点:绝对值三角不等式的发现和推导、取等条件。
授课类型:新授课 课时安排:1课时教 具:多媒体辅助。
教学过程:一、复习引入:关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
本节课探讨不等式证明这类问题。
1.请同学们回忆一下绝对值的意义。
⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。
几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。
(2)2a a =, (3)b a b a ⋅=⋅, (4))0(≠=b baba 那么?b a b a +=+?b a b a +=-二、讲解新课:结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.)探究: ,,a b a b +, 之间的什么关系?b a -aba b+方法一:证明:10 .当ab ≥0时, 20. 当ab <0时,综合10,20知定理成立.方法二:分析法,两边平方(略)定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.) (1)若把,a b 换为向量,a b 情形又怎样呢?(2)若把,a b 换为复数12,z z ,结论:1212z z z z ++≤成立吗?根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。
绝对值三角形不等式公式推导绝对值三角形不等式公式推导一、引言绝对值三角形不等式是解决绝对值不等式问题的基本工具之一,在数学中有着广泛的应用。
它主要用于解决包括代数和几何问题在内的多种数学问题。
在本文中,我将深入探讨绝对值三角形不等式的导出过程,并结合具体例子进行解释,以帮助读者更好地理解和掌握这一重要的数学概念。
二、绝对值三角形不等式公式的基本定义为了全面了解绝对值三角形不等式的公式推导过程,我们需要先了解其基本定义。
假设a和b是实数,那么绝对值三角形不等式可以表达为:|a + b| ≤ |a| + |b|这一不等式是指,两个数的绝对值之和不大于其各自绝对值的和。
这一概念对于处理绝对值的复杂运算问题起到了重要的作用。
接下来,我将详细介绍绝对值三角形不等式的推导过程,帮助读者全面理解这一概念。
三、绝对值三角形不等式公式的推导过程为了推导绝对值三角形不等式的公式,我们可以利用数轴的性质和绝对值的定义进行推导。
我们假设a和b是实数且a≥0,b≥0。
现在,我们来看一下具体的推导过程:1. 我们假设a≥0,b≥0。
根据数轴的性质,a和b对应的点分别为A 和B,那么|a|和|b|分别表示点A和B到原点的距离。
2. 现在,我们考虑点C,它表示a+b对应的实数。
根据数轴的性质,我们可以知道|a+b|表示点C到原点的距离。
3. 根据三角形两边之和大于第三边的性质,我们可以得出结论:|a + b| ≤ |a| + |b|通过以上推导过程,我们可以得出绝对值三角形不等式的公式。
这一推导过程清晰地展现了绝对值三角形不等式的基本原理和应用。
四、绝对值三角形不等式公式的应用举例为了更好地理解绝对值三角形不等式的应用,我们可以通过具体的例子来说明。
例1:求解|2x + 1| ≤ 5的解集。
解:根据绝对值三角形不等式的公式,我们可以得出:|2x + 1| ≤ 5-5 ≤ 2x + 1 ≤ 5-6 ≤ 2x ≤ 4-3 ≤ x ≤ 2|2x + 1| ≤ 5的解集为-3 ≤ x ≤ 2。
绝对值的三角不等式公式证明
绝对值三角不等式是一个非常强大且非常有用的数学公式,它可以帮助我们精确地解决很多问题。
它的数学形式可以表述为:|x-y| < = a+b,其中x、y、a、b 都是实数,|x-y|表示x-y的绝对值。
绝对值三角不等式的证明由单射定理开始,它是数学中一个基本定理,其定义可以表达为:如果a>b,则存在c>0,使得a - c < b。
根据这个定理,关于x、y、a、b之间的关系可以写成更加清楚的等式形式:a-b<x-y < a+b。
接下来,假设y-x>0,也就是说x<y,此时有y-x<a+b,带入单射定理可得a-(y-x)<b,也就是说a-y+x < b,整理得x-y<a+b,故可证|x-y|<=a+b。
同理,如果y-x<0,也就是说x>y,此时有x-y<a+b,根据单射定理可得a-(x-y)<b,整理得a-x+y<b,故可证|x-y|<=a+b。
综上所述,可以看出绝对值三角不等式的证明基于单射定理,从而为我们提供了一个精确地解决数学问题的有效方法。
正是由于绝对值三角不等式的重要性和有效性,它被广泛用于各种数学领域中,如超越几何、微积分、概率论等。
绝对值三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |.显然,当且仅当ab ≥0时等号成立.由该不等式可推出定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时等号成立;定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时等号成立.绝对值三角不等式在解答含有绝对值的不等式、函数问题中应用广泛,下面结合实例,来谈一谈如何巧妙运用绝对值三角不等式解题.一、求解绝对值不等式问题绝对值不等式问题有很多种,如解绝对值不等式、证明绝对值不等式、求绝对值不等式中参数的取值范围.解答此类问题,通常需先将不等式进行合理的变形,然后根据绝对值三角不等式将不等式进行放缩,以便使不等式左右两边的式子成为同构式,再利用函数的单调性来解不等式,或将问题转化为函数最值问题,利用函数的性质、图象来解题.例1.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是_____.解:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.解答本题,主要利用了绝对值三角不等式.将问题转化为解绝对值不等式,通过解不等式,便可求得参数的取值范围.例2.已知二次函数f ()x =ax 2+bx +c 满足||f ()-1≤1,||f ()0≤2,||f ()1≤1,试证明:当||x ≤1时,不等式||f ()x ≤178成立.证明:由||f ()-1≤1,||f ()0≤2,||f ()1≤1,得ìíîïïf ()-1=a -b +c,f ()0=c,f ()1=a +b +c,即ìíîïïïïa =12f ()1-f ()0+12f ()-1,b =12f ()1-12f ()-1,c =f ()0,因此||f ()x =||ax 2+bx +c =|||éëùû12f ()1-f ()0+12f ()-1x 2|||+éëùû12f ()1-12f ()-1x +f ()0=|||12f ()1()x 2+x +f ()0()1-x 2|||+12f ()-1()x 2-x ≤12||f ()1|x 2+x +||f ()0|1-x 2+12·||f ()-1|x 2-x ≤12||x ||x +1+2||1-x 2+12||x ||x -1=12||x ·()x +1+2()1-x 2+12||x ()1-x =||x +2()1-x 2,当||x ≤1时,||x +2()1-x 2=||x +2()1-||x 2=-2·æèöø||x -142+178,其最大值为178,因此||f ()x ≤178.我们需先通过整体代换,用f ()-1、f ()1、f ()0来表示f ()x ,而||f ()x 中含有多个绝对值,为了证明不等式||f ()x ≤178,需巧妙利用绝对值三角不等式,将目标式进行放缩,从而去掉部分绝对值符号,将问题转化为求||x +2()1-||x 2的最值.二、解答含有绝对值的函数最值问题求解含有绝对值的函数最值问题,可巧用绝对值三角不等式,将含有绝对值的式子进行适当的放缩,使其简化,然后根据绝对值三角不等式取“=”的条件来寻找目标式取得最值时自变量的值.运用绝对值三角不等式,能使含有绝对值的函数最值问题变得简单,可省去许多对绝对值进行分类讨论的过程.例3.求函数y =||x +1+||x +2+…+||x +99的最小值.解:由绝对值三角不等式可得:||x +1+||x +99≥||()x +1-()x +99=98,当且仅当()x +1()x +99≤0时成立,即当-99≤x ≤-1时,“=”成立,因此,当-99≤x ≤-1时,()||x +1+||x +99min=98,当-98≤x ≤-2时,()||x +2+||x +98min =96,当-97≤x ≤-3时,()||x +3+||x +97min =94,⋯,当-51≤x ≤-49时,()||x +49+||x +51min =2,可得当x =-50时,y =||x +1+||x +2+…+||x +99=98+96+…+2+0=2450,即y =||x +1+||x +2+…+||x +99的最小值为2450.运用绝对值不等式求解含有绝对值的函数最值问题,需充分关注绝对值三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |取“=”时的情况.总之,在解答含有绝对值的不等式、函数问题时,同学们要注意将问题与绝对值三角不等式关联起来,灵活运用绝对值三角不等式,将含有绝对值的式子进行放缩,使其简化,再根据绝对值不等式、函数的性质来解题.(作者单位:江苏省南通市海门证大中学)思路探寻45。
课题:绝对值三角不等式
红岭中学 隗双和
教学目标:
知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会
进行简单的应用。
过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合
的数学思想,并能运用绝对值三角不等式公式进行推理和证明。
情感、态度与价值观:体验不等式的美感,提高推理能力,增强学习兴趣。
能运用所学的知
识,正确地解决的实际问题.
教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。
教学难点:绝对值三角不等式的发现和推导、取等条件。
授课类型:新授课 课时安排:1课时
教 具:多媒体辅助。
教学过程:
一、复习引入:
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
本节课探讨不等式证明这类问题。
1.请同学们回忆一下绝对值的意义。
⎪⎩
⎪
⎨⎧<-=
>=0000x x x x x x ,如果,如果,如果。
几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即
2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:
(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。
(2)2
a a =, (3)
b a b a ⋅=⋅, (4)
)0(≠=
b b
a
b
a 那么?
b a b a +=+?b a b a +=-
二、讲解新课:
结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)
已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.)
探究: ,,a b a b +, 之间的什么关系?
b a -
a
r b
r a b
+r r 方法一:证明:10 .当ab ≥0时, 20
. 当ab <0时,
综合10,20知定理成立.
方法二:分析法,两边平方(略)
定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.)
(1)若把,a b 换为向量,a b r r
情形又怎样呢?
(2)若把,a b 换为复数12,z z ,结论:1212z z z z ++≤成立吗?
根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。
所以,b a b a -≥+。
定理(绝对值三角形不等式)
如果,a b 是实数,则a b a b a b -±+≤≤ 注:当a b 、为复数或向量时结论也成立. 推论1
1212n n a a a a a a ++++++L L ≤
推论2:如果a b c 、、是实数,那么a c a b b c --+-≤,当且仅当()()0a b b c --≥时,等号成立.
思考:如何利用数轴给出推论2的几何解释?
(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。
这就是上面的例3。
特别的,取c =0(即C 为原点),就得到例2的后半部分。
) 三、典型例题:
a r b
r ||,
||||||=+=====+ab ab a b a
b ||,||||||
=-+===<==+ab ab a b a b a b
+r r
例1、已知 2
,2c
b y
c a x <-<
-,求证 .)()(c b a y x <+-+ 证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)
2
,2c b y c a x <-<
-Θ, ∴c c
c b y a x =+<-+-2
2 (2)
由(1),(2)得:c b a y x <+-+)()(
例2、已知.6,4a
y a x <<
求证:a y x <-32。
证明 6,4a y a x <<Θ,∴2
3,22a
y a x <<,
由例1及上式,a a
a y x y x =+<+≤-2
23232。
注意: 在推理比较简单时,我们常常将几个不等式连在一起写。
但这种写法,只能用于不等号方向相同的不等式。
例3 两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10公里和第20公里处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次,要使两个施工队每天往返的路程之和最小,生活区应该建于何处?
解:如果生活区建于公路路碑的第 x km 处,两施工队每天往返的路程之和为S(x)km 那么 S(x)=2(|x-10|+|x-20|)
四、课堂练习:
1.(课本20P 习题1.2第1题)求证:
⑴2a b a b a ++-≥;⑵2a b a b b +--≤ 2. (课本20P 习题1.2第3题)求证:
⑴x a x b a b -+--≥;⑵x a x b a b ----≤ 3.(1)、已知.2,2c
b B
c a A <-<
-求证:c b a B A <---)()(。
(2)、已知.6
,4c
b y
c a x <-<-求证:c b a y x <+--3232。
五、课堂小结:
1.实数a 的绝对值的意义:
·10
x
··20
⑴(0)0(0)(0)a a a a a a >⎧⎪
==⎨⎪-<⎩
;(定义)
⑵a 的几何意义:
2.定理(绝对值三角形不等式)
如果,a b 是实数,则a b a b a b -±+≤≤注意取等的条件。
六、课外作业:1。
必做:课本19第2,4,5。
2.选作:(1).求证
.111b
b a
a b
a b a ++
+≤
+++
(2).已知 .1,1<<b a 求证:
.11<++ab
b
a
七.教学反思:
绝对值三角不等式结构优美,构思巧妙,他的发现、证明、应用能够培养学生的探索、发现、推理能力,有着良好的培养学生能力的机会,因此本节课之前应该给学生安排课外预习、自学绝对值三角不等式的含义、意义、证明等重要内容,以让学生对绝对值三角不等式有初步的了解,本节课上可以放手让学生探索绝对值三角不等式的发现、意义和特点、证明的方法、 应用的结构特点等问题,使课堂内容更加丰富,学生思维活动更加主动、激烈,另外在探究过程中,学生个体的差异比较明显,对于部分反应较慢的学生,要加强及时课堂的个别指导,从而更加体现新课程的要求,全面锻炼学生的能力。