绝对值三角不等式及其应用.
- 格式:ppt
- 大小:1.22 MB
- 文档页数:15
绝对值不等式的证明及应用一、绝对值有关性质回顾:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②ab a b =,aa b b= (0)b ≠ ③22a a =④0a ≥ ⑤a a a -≤≤⑥x a a x a ≤⇔-≤≤ x a x a a ≥⇔≥≤-或 二、绝对值不等式:定理:绝对值三角不等式:a b a b a b-≤±≤+.(代数形式)a b a b a b -≤±≤+(向量形式)几何解释:三角形两边之和大于第三边,两边之差小于第三边.(0b a b ab +≤+≥取等号) 证明:方法一:()22+a b a b +≤, 2222+22a ab b a ab b +≤++, 22ab ab ≤,而22ab ab ≤显然成立,∴(0a b a b ab +≤+≥取等号)||||||a b a b +=====+||||||a b a b +===<==+方法二:(选修4-5证法) 当ab ≥0时, ||,ab ab =||,ab ab =-当ab <0时综上,a b a b +≤+ 0ab ≥当时,取等号, 方法三:(原人教版教材证法) ∵a a a -≤≤ ① b b b -≤≤ ②①+②:()a b a b a b -+≤+≤+, 逆用性质x a ≤得:a b a b +≤+推论1:123123.......n a a a a a a a +++≤++ ,当123,,,......n a a a a 都非正或都非负时。
a b a b -≤+.证明:方法一:当0a b -<时显然成立,当0a b -≥时,两边平方,()22a b a b-≤+, 222222a ab b a ab b -+≤++, 22ab ab -≤,而22ab ab -≤显然成立,∴a b a b -≤+,(当0ab <时取等号). 方法二:直接利用定理1a ab b a b b a b b =+-≤++-=++.当()()0a b b +-≥时,取等号.即()00a b b ab +≤⇒≤,取等号. 合在一起得:a b a b a b -≤+≤+.(当0ab ≤时左边取等号,当0ab ≥时右边取等号)(当0ab ≥时左边取等号, 当0ab ≤时左边取等号)证明:只需利用已有结论把a b a b a b -≤+≤+中的b 用b -代替即得到定理3.b ac b c -≤-+-证明:a b a c c b a c c b a c b c-=-+-≤-+-=-+-,(当()()0a c c b --≥时,取等号)几何解释:设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。
绝对值三角不等式的证明方法绝对值三角不等式是解决三角函数不等式问题的重要方法之一。
在证明绝对值三角不等式时,我们可以采用以下简单的策略。
1. 利用三角函数的定义:- 对于正弦函数,我们有sin(x) = sqrt(1 - cos^2(x))。
- 对于余弦函数,我们有cos(x) = sqrt(1 - sin^2(x))。
2. 利用绝对值的性质:- 任何数x的绝对值为|x|,即x的绝对值是x的非负值。
- 绝对值函数满足|x| = -x 当且仅当x ≤ 0。
3. 利用三角函数的周期性:- 正弦和余弦函数的周期都是2π。
即sin(x + 2π) = sin(x) 和cos(x + 2π) = cos(x)。
下面是一个例子,展示了利用以上策略证明绝对值三角不等式的方法:假设我们要证明sin(x) ≤ |cos(x)|,即正弦函数的值永远小于等于余弦函数的绝对值。
证明过程:1. 根据三角函数的定义,sin(x) = sqrt(1 - cos^2(x))。
2. 将右边的cos(x)替换为|cos(x)|,因为余弦函数的绝对值是非负的。
即sin(x) = sqrt(1 - |cos(x)|^2)。
3. 根据绝对值的性质,我们知道|cos(x)|^2 = cos^2(x)。
因此,sin(x) = sqrt(1 - cos^2(x)) = sqrt(1 - |cos(x)|^2)。
4. 由于平方根函数的值永远是非负的,所以sin(x) ≤ sqrt(1 - |cos(x)|^2)。
5. 根据三角函数的周期性,我们可以在等式两边加上2π的整数倍,不改变不等式的成立性。
因此,sin(x) ≤ sqrt(1 - |cos(x)|^2) 可以转变为sin(x) ≤ sqrt(1 - |cos(x + 2πn)|^2),其中n为整数。
6. 综上所述,我们证明了sin(x) ≤ |cos(x)|。
根据以上证明方法,我们可以尝试证明其他类似的绝对值三角不等式。
绝对值三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |.显然,当且仅当ab ≥0时等号成立.由该不等式可推出定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时等号成立;定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时等号成立.绝对值三角不等式在解答含有绝对值的不等式、函数问题中应用广泛,下面结合实例,来谈一谈如何巧妙运用绝对值三角不等式解题.一、求解绝对值不等式问题绝对值不等式问题有很多种,如解绝对值不等式、证明绝对值不等式、求绝对值不等式中参数的取值范围.解答此类问题,通常需先将不等式进行合理的变形,然后根据绝对值三角不等式将不等式进行放缩,以便使不等式左右两边的式子成为同构式,再利用函数的单调性来解不等式,或将问题转化为函数最值问题,利用函数的性质、图象来解题.例1.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是_____.解:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|,要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4.解答本题,主要利用了绝对值三角不等式.将问题转化为解绝对值不等式,通过解不等式,便可求得参数的取值范围.例2.已知二次函数f ()x =ax 2+bx +c 满足||f ()-1≤1,||f ()0≤2,||f ()1≤1,试证明:当||x ≤1时,不等式||f ()x ≤178成立.证明:由||f ()-1≤1,||f ()0≤2,||f ()1≤1,得ìíîïïf ()-1=a -b +c,f ()0=c,f ()1=a +b +c,即ìíîïïïïa =12f ()1-f ()0+12f ()-1,b =12f ()1-12f ()-1,c =f ()0,因此||f ()x =||ax 2+bx +c =|||éëùû12f ()1-f ()0+12f ()-1x 2|||+éëùû12f ()1-12f ()-1x +f ()0=|||12f ()1()x 2+x +f ()0()1-x 2|||+12f ()-1()x 2-x ≤12||f ()1|x 2+x +||f ()0|1-x 2+12·||f ()-1|x 2-x ≤12||x ||x +1+2||1-x 2+12||x ||x -1=12||x ·()x +1+2()1-x 2+12||x ()1-x =||x +2()1-x 2,当||x ≤1时,||x +2()1-x 2=||x +2()1-||x 2=-2·æèöø||x -142+178,其最大值为178,因此||f ()x ≤178.我们需先通过整体代换,用f ()-1、f ()1、f ()0来表示f ()x ,而||f ()x 中含有多个绝对值,为了证明不等式||f ()x ≤178,需巧妙利用绝对值三角不等式,将目标式进行放缩,从而去掉部分绝对值符号,将问题转化为求||x +2()1-||x 2的最值.二、解答含有绝对值的函数最值问题求解含有绝对值的函数最值问题,可巧用绝对值三角不等式,将含有绝对值的式子进行适当的放缩,使其简化,然后根据绝对值三角不等式取“=”的条件来寻找目标式取得最值时自变量的值.运用绝对值三角不等式,能使含有绝对值的函数最值问题变得简单,可省去许多对绝对值进行分类讨论的过程.例3.求函数y =||x +1+||x +2+…+||x +99的最小值.解:由绝对值三角不等式可得:||x +1+||x +99≥||()x +1-()x +99=98,当且仅当()x +1()x +99≤0时成立,即当-99≤x ≤-1时,“=”成立,因此,当-99≤x ≤-1时,()||x +1+||x +99min=98,当-98≤x ≤-2时,()||x +2+||x +98min =96,当-97≤x ≤-3时,()||x +3+||x +97min =94,⋯,当-51≤x ≤-49时,()||x +49+||x +51min =2,可得当x =-50时,y =||x +1+||x +2+…+||x +99=98+96+…+2+0=2450,即y =||x +1+||x +2+…+||x +99的最小值为2450.运用绝对值不等式求解含有绝对值的函数最值问题,需充分关注绝对值三角不等式:||a |-|b ||≤|a ±b |≤|a |+|b |取“=”时的情况.总之,在解答含有绝对值的不等式、函数问题时,同学们要注意将问题与绝对值三角不等式关联起来,灵活运用绝对值三角不等式,将含有绝对值的式子进行放缩,使其简化,再根据绝对值不等式、函数的性质来解题.(作者单位:江苏省南通市海门证大中学)思路探寻45。
三角不等式与绝对值不等式三角不等式和绝对值不等式是数学中常见且重要的概念。
它们在不同的数学领域中广泛应用,包括代数、几何和数论等。
本文将详细介绍三角不等式和绝对值不等式的定义、性质和应用。
一、三角不等式三角不等式是指在任意三角形中,任意两边之和必大于第三边。
具体而言,对于一个三角形的三边a、b、c,满足以下不等式:a +b > cb +c > ac + a > b三角不等式的证明可以使用几何方法、代数方法或三角函数方法。
无论哪种方法,都能够证明三角不等式的正确性。
三角不等式还可以推广到更一般的形式,即对于任意的a、b,有:|a + b| ≤ |a| + |b|其中,|a| 表示数a的绝对值。
这个不等式称为绝对值不等式。
二、绝对值不等式绝对值不等式是指在不等式中含有绝对值的表达式。
解绝对值不等式的关键是根据绝对值的定义找出各种情况并进行分析。
1. 绝对值的定义:对于一个实数a,其绝对值定义如下:当a≥0时,|a| = a;当a<0时,|a| = -a。
2. 绝对值不等式的解法:对于一个绝对值不等式,可以通过以下方法来解答:(1)情况讨论法:将绝对值表达式中的正负情况进行分情形讨论,并根据实际条件进行求解。
(2)不等式性质法:利用绝对值不等式的性质进行数学推导和计算。
(3)化简法:通过适当的变量替换或等式转换,将绝对值不等式化简为其他形式的不等式。
(4)区间法:绘制实数的数轴,根据绝对值的定义和不等式的性质得出绝对值不等式的解集。
三、三角不等式与绝对值不等式的应用三角不等式在几何领域中的应用非常广泛,如判定三角形的存在性、计算三角形的周长和面积等。
同时,在证明数学定理和不等式时,三角不等式也经常起到重要的作用。
绝对值不等式在代数中具有重要的应用,涉及到绝对值函数的性质和不等式的解法。
在求解问题时,我们常常需要通过绝对值不等式来确定变量的取值范围,或者通过绝对值不等式将问题转化为更容易求解的形式。
绝对值不等式的解法与绝对值的三角不等式规律方法指导1、解绝对值不等式的基本思路解绝对值不等式的基本思路是去掉绝对值符号,因此如何去掉绝对值符号是解决这类问题的关键。
常利用绝对值的代数意义和几何意义。
2、解绝对值不等式常用的同解变形①|f(x)|>|g(x)|f2(x)>g2(x)②|f(x)|>g(x)f(x)>g(x)或f(x)<-g(x)③|f(x)|<g(x)-g(x)<f(x)<g(x)④含有两个或两个以上绝对值符号的不等式可用“按零点分区间”讨论的方法来脱去绝对值符号去求解;也可以用函数图像法来解决。
3、绝对值三角不等式等号成立的条件:①取等号②取等号③取等号④取等号经典例题透析类型一:含有一个绝对值符号的绝对值不等式的解法1、解下列不等式(1);(2);(3)解析:(1)由原不等式可得,得,∴原不等式的解集是;(2)原不等式可化为,得或整理得,或∴原不等式的解集是;(3)由原不等式可得或整理得或∴原不等式的解集是总结升华:不等式的解集为;不等式的解集为.举一反三:【变式】(2011山东,4)不等式|x-5|+|x+3|≥10的解集是(A)[-5,7] (B)[-4,6](C)(-∞,-5]∪[7,+∞) (D)(-∞,-4]∪[6,+∞)【答案】D2、解不等式|x2+4x-1|<4解析:原不等式-4<x2+4x-1<4-5<x<-3或-1<x<1.即原不等式的解集是(-5,-3)∪(-1,1).举一反三:【变式】解不等式|x2+4x-1|>4.【答案】原不等式的解集是(-∞,-5)∪(-3,-1)∪(1, +∞)3、解不等式1|2x-1|<5.解析:法一:原不等式等价于①或②解①得:1x<3 ;解②得:-2< x 0.∴原不等式的解集为{x | -2< x 0或1x<3}法二:原不等式等价于12x-1<5或–5<2x-1-1即22x<6或–4<2x0.解得1x<3或–2<x0.∴原不等式的解集为{x|-2<x0或1x<3}总结升华:比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a|x|b a x b或-b x-a(a0).举一反三:【变式1】解不等式:【答案】原不等式的解集是【变式2】解不等式4<|x2-5x|≤6.【答案】原不等式等价于不等式组不等式(1)等价于x2-5x<-4或x2-5x>4不等式(2)等价于-6≤x2-5x≤6利用数轴取不等式(1),(2)的解的交集:∴原不等式的解集为:4、解不等式:|4x-3|>2x+1.思路点拨:关键是去掉绝对值符号。
绝对值三角不等式在代数问题中的应用绝对值三角不等式是解决代数问题中常用的数学工具。
它可以帮助我们确定变量的取值范围,并在求解方程和不等式时提供指导。
在代数学中,绝对值三角不等式有着广泛的应用,特别是在求解含有绝对值的方程和不等式方面。
绝对值三角不等式的一般形式是:$$|a| + |b| ≥ |a + b|$$其中,a和b是实数。
这个不等式的意义在于,两个实数的绝对值之和大于等于它们的和的绝对值。
绝对值三角不等式在代数问题中的应用之一是用于求解带有绝对值的方程。
举个例子,考虑方程:$$|3x + 2| = 5$$我们可以利用绝对值三角不等式来确定方程的解。
根据绝对值三角不等式,我们可以将方程转化为两个不等式:$$3x + 2 ≥ 5 \quad \text{和} \quad -(3x + 2) ≥ 5$$解这两个不等式,我们可以得到方程的解集。
通过求解这两个不等式,我们可以得到方程的解为:$$x ≥ \frac{3}{2} \quad \text{和} \quad x ≤ -\frac{7}{2}$$绝对值三角不等式在求解含有绝对值的不等式方面也是非常有用的。
考虑不等式:$$|2x - 1| < 3$$我们可以利用绝对值三角不等式来确定不等式的解集。
根据绝对值三角不等式,我们可以将不等式转化为两个不等式:$$2x - 1 < 3 \quad \text{和} \quad -(2x - 1) < 3$$解这两个不等式,我们可以得到不等式的解集。
通过求解这两个不等式,我们可以得到不等式的解为:$$-\frac{2}{5} < x < 2$$绝对值三角不等式在代数问题中的应用不止于此。
在求解含有绝对值的方程和不等式时,绝对值三角不等式可以帮助我们确定变量的取值范围,并提供求解的指导。
通过灵活运用绝对值三角不等式,我们可以更加高效地解决各种代数问题。
因此,绝对值三角不等式在代数问题中的应用是非常重要的。
绝对值型不等式和三角不等式定理1 如果a, b 是实数,则 |a+b|≤|a|+|b|(当且仅当ab ≥0时,等号成立)。
绝对值三角不等式.a b a b a b a b -≤-≤±≤+(a,b 为实数)定理2 如果a, b, c 是实数,那么 |a-c|≤|a-b|+|b-c|(当且仅当(a-b)(b-c)≥0时,等号成立)。
证明:根据绝对值三角不等式有|a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c|(当且仅当(a-b)(b-c)≥0时,等号成立)。
绝对值三角不等式能应用定理解决一些证明和求最值问题。
题型一 解绝对值不等式【例1】设函数f (x )=|x -1|+|x -2|.(1)解不等式f (x )>3;(2)若f (x )>a 对x ∈R 恒成立,求实数a 的取值范围.【解析】(1)所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1. 因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1).【变式训练1】设函数f (x )=|x +1|+|x -2|+a .(1)当a =-5时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3,所以-a ≤3,即a ≥-3.题型二 绝对值三角不等式的应用[例2] (1)求函数y =|x -3|-|x +1|的最大值和最小值.(2)设a ∈R ,函数f (x )=ax 2+x -a (-1≤x ≤1).若|a |≤1,求|f (x )|的最大值.[思路点拨] 利用绝对值三角不等式或函数思想方法可求解.[解] (1)法一:||x -3|-|x +1||≤|(x -3)-(x +1)|=4,∴-4≤|x -3|-|x +1|≤4.∴y max =4,y min =-4.法二:把函数看作分段函数.y =|x -3|-|x +1|=⎩⎪⎨⎪⎧ 4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.∴-4≤y ≤4.∴y max =4,y min =-4.(2)|x |≤1,|a |≤1,∴|f (x )|=|a (x 2-1)+x |≤|a (x 2-1)|+|x |=|a ||x 2-1|+|x |≤|x 2-1|+|x |=1-|x 2|+|x |=-|x |2+|x |+1=-(|x |-12)2+54≤54. ∴|x |=12时,|f (x )|取得最大值54.规律:(1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.3.若a ,b ∈R ,且|a |≤3,|b |≤2则|a +b |的最大值是________,最小值是________. 解析:|a |-|b |≤|a +b |≤|a |+|b |,∴1=3-2≤|a +b |≤3+2=5.答案:5 14.求函数f (x )=|x -1|+|x +1|的最小值.解:∵|x -1|+|x +1|=|1-x |+|x +1|≥|1-x +x +1|=2,当且仅当(1-x )(1+x )≥0,即-1≤x ≤1时取等号.∴当-1≤x ≤1时,函数f (x )=|x -1|+|x +1| 取得最小值2.5.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围.解:a <|x +1|-|x -2|对任意实数恒成立,∴a <[|x +1|-|x -2|]min.∵||x +1|-|x -2||≤|(x +1)-(x -2)|=3,∴-3≤|x +1|-|x -2|≤3.∴[|x +1|-|x -2|]min =-3.∴a <-3.即a 的取值范围为(-∞,-3).题型三 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ). 又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ). 解不等式|x -1|+|x -2|≤2得12≤x ≤52. 【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型四 利用绝对值不等式求参数范围【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|.由f (x )≥3得|x -1|+|x +1|≥3,综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞). (2)综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2, 解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}. 由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1}, 因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时, B ={x |3a +1≤x ≤2}, 因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1. 综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.类型一:含一个绝对值符号的不等式的解法含一个绝对值符号的不等式的一般形式为()()f x g x > 或 ()()f x g x <,解这种不等式我们最常用的方法是等价转化法,有时也可用分类讨论法.例1.解不等式2|55|1x x -+<.[分析]利用|f(x)|<a(a>0) ⇔-a<f(x)<a 去掉绝对值后转化为我们熟悉的一元二次不等式组.解:原不等式等价于21551x x -<-+<,即22551(1)551(2)x x x x ⎧-+<⎪⎨-+>-⎪⎩ 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<.[注]本题也可用数形结合法来求解.在同一坐标系中画出函数2551y x x y =-+=与的图象,解方程2551x x -+=,再对照图形写出此不等式的解集.例2. 解不等式4321x x ->+.[分析]利用|f(x)|<g(x) ⇔-g(x)<f(x)<g(x)和|f(x)|>g(x) ⇔f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理或用分类讨论法解之.方法一:原不等式转化为4321x x ->+或43(21)x x -<-+,解之得原不等式的解集为123x x x ⎧⎫><⎨⎬⎩⎭或. 方法二:原不等式等价于4304321x x x -≥⎧⎨->+⎩或430(43)21x x x -<⎧⎨-->+⎩.解之得342x x ⎧≥⎪⎨⎪>⎩ 或3413x x ⎧<⎪⎪⎨⎪<⎪⎩,即2x >或13x <.所以原不等式的解集为123x x x ⎧⎫><⎨⎬⎩⎭或. [注]⑴.通过例2可以发现:形如)()(x g x f <,)()(x g x f >型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,用同解变形法则更为简洁.⑵.分类讨论法也可讨论()0()0g x g x ≤或而解之,这实际上是同解变形法的推导依据. 类型二:含两个绝对值符号的不等式的解法 含两个绝对值符号的不等式,我们常见的形式为:1122a x b a x b c +±+> 或1122a x b a x b c +±+<()0c ≥,我们解这种不等式常用的方法有零点分段法和构造函数的方法,有时候也可利用绝对值的几何意义和平方法.例3.解不等式||||x x +<+123[分析]两边都含绝对值符号,所以都是非负,故可两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:|()f x |<|()g x |⇔22()()f x g x <⇔[()()][()()]f x g x f x g x +-<0解:原不等式0)1()32()32()1(|32||1|222222>+-+⇔+<+⇔+<+⇔x x x x x x 解得x x <->-243或,故原不等式的解集为{|}x x x <->-243或 例4.解不等式127x x ++-≥.[分析]解法一 利用绝对值的几何意义(体现了数形结合的思想). 不等式127x x ++-≥的几何意义是表示数轴上与()1A -、()2B 两点距离之和大于等于7的点,而A 、B 的距离之和为3,因此线段AB 上每一点到A 、B 的距离之和都等于3,A 左侧的点到A 、B 的距离之和等于这点到A 点距离的2倍加3,B 右侧的点到A 、B 的距离之和等于这点到B 点距离的2倍加3.图1由图1可知:原不等式的解集为{}34x x x ≤-≥或.解法二 利用1020x x +=-=,的零点,把数轴分为三段,然后分段考虑.把原不等式化为不含绝对值符号的不等式求解(零点分段讨论法).(1)当1x <-时,原不等式同解于13127x x x x <-⎧⇒≤-⎨---+≥⎩,,;(2)当12x -≤≤时,原不等式同解于12127x x x -≤≤⎧⇒⎨+-+≥⎩,,无解;(3)当2x >时,原不等式同解于24127x x x x >⎧⇒≥⎨++-≥⎩,,. 综上知,原不等式的解集为{}34x x x ≤-≥或.解法三 通过构造函数,利用函数图像(体现了函数与方程的思想). 原不等式可化为1270x x ++--≥.令()127f x x x =++--,则(1)(2)7(1)()(1)(2)7(12)(1)(2)7(2)x x x f x x x x x x x -+---<-⎧⎪=+----≤≤⎨⎪++-->⎩⇔26(1)()4(12)28(2)x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩,,, 可解得原不等式的解集为{}34x x x ≤-≥或.例5 解关于x 的不等式|log ||log |a a ax x 22<+[分析]原不等式可化为|log ||log |122+<+a a x x ,一般会分类讨论去绝对值号解题,即:通常分log log a a x x <--≤<12120,,log a x ≥0三种情况去绝对值符号,再分a a ><<101或进行讨论,这样做过程冗长,极易出错根据此题特点,不妨改变一下操作程序,即原不等式两边平方,再由定义去绝对值号,则分析将十分清晰,过程也简洁得多.解:原不等式可化为|log ||log |122+<+a a x x ,将两边平方可得:4414422(log )log (log )|log |a a a a x x x x ++<++,则有:(1)log ,(log )log a a a x x x ≥<⎧⎨⎩⇒≤<01012; (2)log ,log log log a a a a x x x x <+-<⎧⎨⎩⇒-<<03830302. 综上知-<<31log a x ,故当a >1时,解为a x a -<<3;当01<<a 时,解为a x a <<-3 [注]形如()120axb ax bc c +-+>>和()120ax b ax b c c +++<>的含两个绝对值符号的不等式用平方法并不是很麻烦,可以通过两次平方去掉绝对值化为一般的不等式,所以我们在解题的过程中要选择一个合适的方法进行求解. 例6解不等式 2331x x --≤[分析]解含有双层绝对值符号的不等式的基本思想就是一层一层的去掉绝对值,使不等式化为不含绝对值的一般不等式.常用的方法有等价转化法、零点分段法和平方法,当然利用绝对值不等式的性质求解不等式是一种比较简单的方法,但这种方法比较抽象,一般不容易想到.但本题不可以采用零点分段法,也不能采用平方法,因为平方后既含有x 的项,又含有x 的项,所以我们先把不等式进行等价转化,然后把它看成有关x 的一元二次不等式组进行求解.解: 2331x x --≤ ⇔ 21331x x -≤--≤ ⇔ 22320340x x x x ⎧--≥⎪⎨--≤⎪⎩,,⇔ 22320340x x x x ⎧--≥⎪⎨--≤⎪⎩,,⇔324x x ⎧+≥⎪⎨⎪≤⎩, ⇔332244x x x ⎧+≤-≥⎪⎨⎪-≤≤⎩或, ∴原不等式的解集为317442⎡⎡⎤+--⎢⎢⎥⎣⎦⎣⎦,. 类型三:含参数的绝对值不等式的解法解含参数的绝对值不等式的思想就是首先要对参数的情况进行分情况讨论,然后分别在各种情况下对不等式进行求解,最后把各种结果综合在一起就可以得到原不等式的解.另外,有一些题也可通过转化,不进行讨论就可以轻松的解答出来.例7 解关于x 的不等式 34422+>+-m m mx x[分析]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大.若化简成3|2|+>-m m x ,则解题过程更简单.在解题过程中需根据绝对值定义对3m +的正负进行讨论.解:原不等式等价于 3|2|+>-m m x当03>+m 即3->m 时,)3(232+-<-+>-m m x m m x 或∴333-<+>m x m x 或当03=+m 即3-=m 时, 0|6|>+x ∴x ≠-6当03<+m 即3-<m 时, x ∈R[注]形如|()f x |<a ,|()f x |>a (a R ∈)型不等式,简捷解法是等价命题例8 (2004年海南卷)解关于x 的不等式a x x a x x +-->+--1111 [分析]利用)()(x f x f <,无解或0)()()(<⇔>x f x f x f ,即利用绝对值的定义法求解.解:0111111<+--⇔+-->+--a x x a x x a x x a x a x -<-⇔<+-⇔11011 (1) 当0=a 时,原不等式等价于:1011<⇔<-x x (2) 当0>a 时,原不等式等价于:111011<<-⇔<-<-x ax a (3) 当0<a 时,原不等式等价于:01<-x 或ax 11->-1<⇔x 或ax 11-> 综上所述: (1) 当0=a 时,原不等式的解集为:{}1<x x(2) 当0>a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧<<-111x a x (3) 当0<a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧-><a x x x 111或 类型四:含参绝对值不等式有解、解集为空与恒成立问题例9 (2010高考安徽卷)不等式a a x x 3132-≤--+对任意的实数恒成立,则实数a 的取值范围是( )A .(][)+∞-∞-,41, B.(][)+∞-∞-,52,C.[]2,1D.(][)+∞-∞-,21,[分析]要使a a x x 3132-≤--+对任意实数x 恒成立,只要|x +3|-|x -1|的最大值小于或等于23a a -.方法一:形如使,x m x n c x m x n c ---≤-+-≤恒成立型不等式.可利用绝对值三角不等式:b a b a b a +≤±≤-,结合极端性原理即可解得,即:()()()max c x m x n c x m x n x m x n n m ≥---⇔≥---=---=-;()()()m n n x m x n x m x c n x m x c -=---=---≤⇔-+-≤min ; 解:设函数()()41313)(=--+≤--+=x x x x x f ,所以4)(max =x f 而不等式a a x x 3132-≤--+对任意的实数x 恒成立.故41432≥-≤⇒≥-a a a a 或,故选择A方法二:因|x +3|的几何意义为数轴上点x 到-3的距离,|x -1|的几何意义为数轴上点x 到1的距离,|x +3|-|x -1|的几何意义为数轴上点x 到-3与1的距离的差,其最大值可求.解:根据绝对值的几何意义,设数x ,-3,1在数轴上对应的点分别为P 、A 、B ,则原不等式即求|PA|-|PB|≤23a a -成立∵|AB|=4,即|x +3|-|x -1|≤4故当23a a -≥4时,即41432≥-≤⇒≥-a a a a 或原不等式恒成立[注]⑴. 此题也可把不等式的左边用零点分段的方法改写成分段函数,通过画出图象,观察k 的取值范围,但过程较繁.⑵. 转化思想在解中有很重要的作用,比如:恒成立问题、定义域为R 、有解或解集为空等问题都可转化为求最大、最小值问题.[变式] (2012陕西文理)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是___________.[解析]:1|||1|3a x a x -≤-+-≤,解得:24a -≤≤例10(2012课标文理)已知函数()f x =|||2|x a x ++-.(Ⅰ)当3a =-时,求不等式 ()f x ≥3的解集;(Ⅱ) 若()f x ≤|4|x -的解集包含[1,2],求a 的取值范围.[分析]本题(Ⅱ)有些同学可能会去解()f x ≤|4|x -这个不等式,再分析该不等式的解集与[1,2]的集合关系,结果将问题复杂化.这个问题实际上可转化为不等式()f x ≤|4|x -在[1,2]恒成立的问题而解之.解:(1)当3a =-时,()3323f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩ 1x ⇔≤或4x ≥(2)原命题()4f x x ⇔≤-在[1,2]上恒成立 24x a x x ⇔++-≤-在[1,2]上恒成立22x a x ⇔--≤≤-在[1,2]上恒成立 30a ⇔-≤≤例11(2010全国卷)设函数)(x f =24x - + 1.(Ⅰ)画出函数y=)(x f 的图像:(Ⅱ)若不等式)(x f ≤ax 的解集非空,求a 的取值范围解:(Ⅰ)由于25,2()23,2x x f x x x -+⎧=⎨-≥⎩则函数()y f x =的图像如图所示.(Ⅱ)由函数()y f x =与函数y ax =的图像可知,当且仅当12a ≥或2a -时,函数()y f x =与函数y ax =的图像有交点.故不等式)(x f ≤a 的解集非空时,a 的取值范围为()1,2,2⎡⎫-∞-⋃∞⎪⎢⎣⎭[注]㈠.此题巧用构造函数法利用数形结合法解第二问,比参变分离法转化为最值问题求解更为简洁,避免了分类讨论的麻烦.㈡.含参绝对值不等式有解、解集为空与恒成立问题的等价转换(函数法): ⑴.()f x a ≤有解()min a f x ⇒≥;()f x a ≤解集为空集()min a f x ⇒<;这两者互补.()f x a ≤恒成立()max a f x ⇒≥.⑵.()f x a <有解()min a f x ⇒>;()f x a <解集为空集()min a f x ⇒≤;这两者互补.()f x a <恒成立()max a f x ⇒>.⑶.()f x a ≥有解()max a f x ⇒≤;()f x a ≥解集为空集()max a f x ⇒>;这两者互补.()f x a ≥恒成立()min a f x ⇒≤.⑷.()f x a >有解()max a f x ⇒<;()f x a >解集为空集()max a f x ⇒≤;这两者互补.()f x a >恒成立()min a f x ⇒≤.类型五 绝对值三角不等式问题例12 已知13)(2+-=x x x f ,1<-a x ,求证:)1(2)()(+<-a a f x f[分析]本题中给定函数)(x f 和条件1<-a x ,注意到要证的式子右边不含x ,因此对条件1<-a x 的使用可有几种选择:(1)直接用;(2)打开绝对值用11+<<-a x a ,替出x ;(3)用绝对值的性质11+<⇒<-≤-a x a x a x 进行替换. 证明:∵13)(2+-=x x x f ,∴13)(2+-=a a a f , ∵1<-a x ,∴1<-≤-a x a x .∴1+<a x , ∴x a a x a f x f -+-=-22)()()())((a x a x a x --+-=)1)((-+-=a x a x 1-+⋅-=a x a x)1(21111+=+++<++<-+<a a a a x a x ,即)1(2)()(+<-a a f x f .[注]这是绝对值和函数的综合题,这类题通常要涉及绝对值及绝对值不等式的性质等综合知识的运用.分析中对条件1<-a x 使用时出现的三种可能是经常碰到的,要结合求证,灵活选用.例13 已知函数f(x)=21x +,a,b ∈R ,且b a ≠,求证|f(a)-f(b)|<|a-b|.[分析]要证|||11|22b a b a -<+-+,考察左边,是否能产生|a-b|.证明:|f(a)-f(b)|=||||||||11|||11|222222b a b a b a b a b a b a +-⋅+<+++-=+-+||||||||||||b a b a b a b a -=-⋅++≤(其中||122a a a =>+,同理|,|12b b >+∴||||111122b a b a +<+++)[注]⑴.证题时,应注意式子两边代数式的联系,找出它们的共同点是证题成功的第一步.此外,综合运用不等式的性质是证题成功的关键.如在本例中,用到了不等式的传递性,倒数性质,以及“三角形不等式”等等.⑵.本题的背景知识与解析几何有关.函数21x y +=是双曲线,122=-x y 的上支,而||2121x x y y --(即|)()(|ba b f a f --),则表示该图象上任意两点连线的斜率的绝对值,很显然这一斜率的范围是在(-1,1)之间.类型六 含有绝对值的不等式的应用含绝对值的不等式常用来解决一些有关集合、函数、数列、平面向量、解析几何的问题,也用来解决一些实际问题,通常解决这些问题就是根据题意列出含有绝对值符号的不等式,然后解出这个不等式就可以得到问题的答案,解这些不等式的常用的方法就是我们上面所总结的方法.例14 (2004届湖北省黄冈中学综合测试题)已知条件a x p >-|15:|和条件01321:2>+-x x q ,请选取适当的实数a 的值,分别利用所给的两个条件作为A 、B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.[分析]本题为一开放性命题,由于能得到的答案不唯一,使得本题的求解没有固定的模式,考生既能在一般性的推导中找到一个满足条件的a ,也能先猜后证,所找到的实数a 只需满足2151≤-a ,且≥+51a1即可.这种新颖的命题形式有较强的综合性,同时也是对于四个命题考查的一种新尝试,如此命题可以考查学生探究问题、解决问题的能力,符合当今倡导研究性学习的教学方向.解:已知条件p 即a x -<-15,或a x >-15,∴51a x -<,或51ax +>, 已知条件q 即01322>+-x x ,∴21<x ,或1>x ;令4=a ,则p 即53-<x ,或1>x ,此时必有q p ⇒成立,反之不然. 故可以选取的一个实数是4=a ,A 为p ,B 为q ,对应的命题是若p 则q ,由以上过程可知这一命题的原命题为真命题,但它的逆命题为假命题. 例15 已知数列通项公式n n naa a a a 2sin 23sin 22sin 2sin 32++++=对于正整数m 、n ,当n m >时,求证:n n m a a 21<-.[分析]已知数列的通项公式是数列的前n 项和,它的任意两项差还是某个数列的和,再利用不等式n n a a a a a a +++≤+++ 2121,问题便可解决.证明:∵n m > ∴mn n n m maa n a n a a 2sin 2)2sin(2)1sin(21+++++=-++ mn n maa n a n 2sin 2)2sin(2)1sin(21+++++≤++ 211)211(21212121121--=+++≤-+++nm n m n n)12110(21)211(21<-<<-=--nm n n m n . [注]⑴.以121+n 为首项,以21为公比,共有n m -项的等比数列的和,误认为共有1--n m 项是常见错误.⑵.弦函数的值域,即1sin ≤α,1cos ≤α,是解本题的关键.⑶.把不等式、三角函数、数列、n 个变量的绝对值不等式问题连在一起,是一个较为典型的综合题目.如果将本题中的正弦改为余弦,不等式同样成立.[高考试题精选] 2011年试题: 一、选择题:1. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6](C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞ 【答案】D 【解析】由不等式的几何意义知,式子|3||5|++-x x 表示数轴的点)(x 与点(5)的距离和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D 正确 二、填空题1. (2011年高考天津卷理科13)已知集合{}1|349,|4,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.【答案】{}52|≤≤-∈x R x【解析】∵{}{}54|9|4||3||≤≤-∈=≤-++∈=x R x x x R x A ,()()⎭⎬⎫⎩⎨⎧+∞∈-⨯≥∈=⎭⎬⎫⎩⎨⎧+∞∈-+=∈=,0,6142|,0,614|t t t x R x t t t x R x B {}2|-≥∈=x R x ,∴{}{}{}52|2|54|≤≤-∈=-≥∈≤≤-∈=x R x x R x x R x B A .对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 .【答案】53. (2011年高考广东卷理科9)不等式130x x +--≥的解集是______. 【解析】}1|{≥x x 。
绝对值的三角不等式公式
绝对值三角不等式定理:|a|-|b|≤|a±b|≤|a|+|b|。
三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。
三角不等式定理
绝对值的三角不等式公式 2
||a|-|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。
一个是||a|-|b||≤|a+b|≤|a|+|b|,这个不等式当a、b同方向时(如果是实数,就是正负符合相同)|a+b|=|a|+|b|成立。
当a、b异向(如果是实数,就是ab正负符合不同)时,||a|-|b||=|a±b|成立。
另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向(如果是实数,就是ab正负符合不同)时,|a-b|=|a|+|b|成立。
当a、b同方向时(如果是实数,就是正负符合相同)时,||a|-|b||=|a-b|成立。