(完整版)绝对值三角不等式
- 格式:doc
- 大小:220.01 KB
- 文档页数:4
绝对值三角不等式
1、绝对值三角不等式定理:|a|-|b|≤|a±b|≤|a|+|b|。
三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子。
2、三角不等式等号成立的条件。
(1)|a|-
|b||≤|a+b|≤|a|+|b|的不等式当a、b同方向时(如果是实数,就是正负号相同)|a+b|=|a|+|b|成立;当a、b异向(如果是实数,就是ab正负号不同)时,||a|-|b||=|a±b|成立。
(2)绝对值三角不等式|a|-|b||≤|a+b|≤|a|+|b|当a、b同号时,|a+b|=|a|+|b|成立;当a、b异号时,绝对值三角不等式||a|-|b||=|a±b|成立。
||a|-|b||≤|a-b|≤|a|+|b|相反。
(3)||a|-|b||≤|a-b|≤|a|+|b|的不等式,当a、b异向(如果是实数,就是ab正负号不同)时,|a-b|=|a|+|b|成立.当a、b同方向时(如果是实数,就是正负号相同)时,||a|-|b||=|a-b|成立。
(4)绝对值三角不等式公式||a|-
|b||≤|a±b|≤|a|+|b|是由两个双边不等式组成。
绝对值不等式的解法与绝对值的三角不等式规律方法指导1、解绝对值不等式的基本思路解绝对值不等式的基本思路是去掉绝对值符号,因此如何去掉绝对值符号是解决这类问题的关键。
常利用绝对值的代数意义和几何意义。
2、解绝对值不等式常用的同解变形①|f(x)|>|g(x)|f2(x)>g2(x)②|f(x)|>g(x)f(x)>g(x)或f(x)<-g(x)③|f(x)|<g(x)-g(x)<f(x)<g(x)④含有两个或两个以上绝对值符号的不等式可用“按零点分区间”讨论的方法来脱去绝对值符号去求解;也可以用函数图像法来解决。
3、绝对值三角不等式等号成立的条件:①取等号②取等号③取等号④取等号经典例题透析类型一:含有一个绝对值符号的绝对值不等式的解法1、解下列不等式(1);(2);(3)解析:(1)由原不等式可得,得,∴原不等式的解集是;(2)原不等式可化为,得或整理得,或∴原不等式的解集是;(3)由原不等式可得或整理得或∴原不等式的解集是总结升华:不等式的解集为;不等式的解集为.举一反三:【变式】(2011山东,4)不等式|x-5|+|x+3|≥10的解集是(A)[-5,7] (B)[-4,6](C)(-∞,-5]∪[7,+∞) (D)(-∞,-4]∪[6,+∞)【答案】D2、解不等式|x2+4x-1|<4解析:原不等式-4<x2+4x-1<4-5<x<-3或-1<x<1.即原不等式的解集是(-5,-3)∪(-1,1).举一反三:【变式】解不等式|x2+4x-1|>4.【答案】原不等式的解集是(-∞,-5)∪(-3,-1)∪(1, +∞)3、解不等式1|2x-1|<5.解析:法一:原不等式等价于①或②解①得:1x<3 ;解②得:-2< x 0.∴原不等式的解集为{x | -2< x 0或1x<3}法二:原不等式等价于12x-1<5或–5<2x-1-1即22x<6或–4<2x0.解得1x<3或–2<x0.∴原不等式的解集为{x|-2<x0或1x<3}总结升华:比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a|x|b a x b或-b x-a(a0).举一反三:【变式1】解不等式:【答案】原不等式的解集是【变式2】解不等式4<|x2-5x|≤6.【答案】原不等式等价于不等式组不等式(1)等价于x2-5x<-4或x2-5x>4不等式(2)等价于-6≤x2-5x≤6利用数轴取不等式(1),(2)的解的交集:∴原不等式的解集为:4、解不等式:|4x-3|>2x+1.思路点拨:关键是去掉绝对值符号。
三角不等式绝对值公式在数学中,三角不等式绝对值公式是一条非常重要的定理,它在几何、代数和实际问题中都有广泛的应用。
这个公式告诉我们,对于任意的实数 a 和b,绝对值的和不大于绝对值的和。
具体地说,对于任意的 a 和 b,有:|a + b| ≤ |a| + |b|这个公式的证明比较简单,我们可以通过几何直观地来理解它。
假设 a 和 b 是实数轴上的两个点,那么|a| 表示点 a 到原点的距离,|b| 表示点 b 到原点的距离。
而 |a + b| 则表示点 a + b 到原点的距离。
根据三角不等式的直观解释,我们可以得出结论:无论a 和b 是正数、负数还是零,点 a + b 到原点的距离都不会大于点 a 到原点的距离与点 b 到原点的距离之和。
三角不等式绝对值公式在几何中有着广泛的应用。
例如,在平面几何中,我们经常需要计算两个点之间的距离。
根据三角不等式绝对值公式,我们可以通过计算两个点在横坐标和纵坐标上的距离之和来得到这个距离。
这个应用在计算几何、图形学等领域中非常常见。
在代数中,三角不等式绝对值公式也有着重要的应用。
例如,在求解方程时,我们经常需要对方程两边取绝对值。
根据三角不等式绝对值公式,我们可以将绝对值运算转化为不等式运算,从而简化方程的求解过程。
三角不等式绝对值公式还在实际问题中发挥着重要的作用。
例如,在经济学中,我们经常需要计算两个变量的差的绝对值。
根据三角不等式绝对值公式,我们可以将差的绝对值表示为两个变量的绝对值之和,从而简化计算过程。
三角不等式绝对值公式是数学中一条非常重要的定理,它在几何、代数和实际问题中都有广泛的应用。
通过这个公式,我们可以更加直观地理解绝对值的性质,并简化各种计算和推导过程。
在学习和应用数学时,我们应该充分理解并灵活运用三角不等式绝对值公式,以便更好地解决各种数学问题。
1.4 绝对值三角不等式 教案1 (新人教选修4-5)
教学目标:
1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法, 会进行简 单的应用。
2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数
学
思想,并能运用绝对值三角不等式公式进行推理和证明。
教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。
教学难点:绝对值三角不等式的发现和推导、取等条件。
教学过程: 一、复习引入:
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
本节课探讨不等式证明这类问题。
1.请同学们回忆一下绝对值的意义。
⎪⎩
⎪
⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。
几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:
(1)a a ≥,当且仅当0≥a 时等号成立,.a a -≥当且仅当0≤a 时等号成立。
(2)2
a a =, (3)
b a b a ⋅=⋅, (4)
)0(≠=
b b
a
b
a 那么?
b a b a +=+?b a b a +=- 二、讲解新课:
结论:a b a b ++≤(当且仅当0ab ≥时,等号成立.)
已知,a b 是实数,试证明:a b a b ++≤(当且仅当0ab ≥时,等号成立.) 方法一:证明:10 .当ab ≥0时, 20. 当ab <0时,
探究: ,,a b a b +, 之间的什么关系?
b a -
综合10, 20知定理成立.
方法二:分析法,两边平方(略)
定理1 如果,a b 是实数,则a b a b ++≤(当且仅当0ab ≥时,等号成立.) b a ,换为向量b a
,情形又怎样呢?
(1)若把
根据定理1,有b b a b b a -+≥-++,就是,a b b a ≥++。
所以,b a b a -≥+。
定理(绝对值三角形不等式)
如果,a b 是实数,则a b a b a b -±+≤≤ 注:当b a ,为复数或向量时结论也成立. 推论1:1212n n a a a a a a ++
++++≤
推论2:如果a b c 、、是实数,那么a c a b b c --+-≤,当且仅当()()0a b b c --≥时,等号成立.
思考:如何利用数轴给出推论2的几何解释?
(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。
这就是上面的例3。
特别的,取c =0(即C 为原点),就得到例2的后半部分。
) 三、典型例题:
例1、已知 2
,2c
b y
c a x <-<
-,求证 .)()(c b a y x <+-+ ||,||||||
=+=====+ab ab a b a b ||,||||||
=-+===<==+ab ab a b a b a
a b
+a b +a b
证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)
2
,2c b y c a x <-<
- , ∴c c
c b y a x =+<-+-2
2 (2)
由(1),(2)得:c b a y x <+-+)()(
例2、已知.6,4a
y a x <<
求证:a y x <-32。
证明 6,4a y a x << ,∴2
3,22a
y a x <<,
由例1及上式,a a
a y x y x =+<+≤-2
23232。
注意: 在推理比较简单时,我们常常将几个不等式连在一起写。
但这种写法,只能用
于不等号方向相同的不等式。
例 3 两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10公里和第20公里处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次,要使两个施工队每天往返的路程之和最小,生活区应该建于何处?
解:如果生活区建于公路路碑的第 x km 处,两施工队每天往返的路程之和为S(x)km 那么 S(x)=2(|x-10|+|x-20|)
四、课堂练习:
1.(课本20P 习题1.2第1题)求证:
⑴2a b a b a ++-≥;⑵2a b a b b +--≤ 2. (课本P 19习题1.2第3题)求证:
⑴x a x b a b -+--≥;⑵x a x b a b ----≤ 3.(1)、已知.2,2c
b B
c a A <-<
-求证:c b a B A <---)()(。
(2)、已知.6
,4c
b y
c a x <-<-求证:c b a y x <+--3232。
五、课堂小结:
·10
x
··20
1.实数a 的绝对值的意义:
⑴(0)0(0)(0)a a a a a a >⎧⎪
==⎨⎪-<⎩
;(定义)
⑵a 的几何意义:
2.定理(绝对值三角形不等式)
如果,a b 是实数,则a b a b a b -±+≤≤注意取等的条件。