F 1[AF BG ] AF 1[F ] BF 1[G ]
43
2. 位移性质:
若F [f t ] F ,t0 ,0 为实常数,则
F [f t t0 ] ejt0F , F 1[F 0 ] e j0t f t
或F [e j0t f t ] F 0
证明:F
[f
F f t eitdt(实自变量的复值函数)
称为f t 的Fourier变换,记为F [f t ]。
1 F eitd 称为F 的Fourier逆变换,
2 记为F 1[F ] .
26
若F f t F ,则F 1 F f t ; 若F 1 F f t ,则F f t F f t F :一一对应,称为一组Fourier变换对。 f t 称为原像函数,F 称为像函数。
t
具有性质fT(t+T)=fT(t), 其中T称作周期, 而1/T代表
单位时间振动的次数, 单位时间通常取秒, 即每秒重复 多少次, 单位是赫兹(Herz, 或Hz).
2
最常用的一种周期函数是三角函数。人们发现, 所有 的工程中使用的周期函数都可以用一系列的三角函数的 线性组合来逼近.—— Fourier级数
1
2
1
2
1,
t
0
42
§3 Fourier变换与逆变换的性质
这一讲介绍傅氏变换的几个重要性质, 为了叙述方 便起见, 假定在这些性质中, 凡是需要求傅氏变换的函 数都满足傅氏积分定理中的条件, 在证明这些性质时, 不再重述这些条件.
1.线性性质:
F [af t bg t ] aF [f t ] bF [g t ]
19
1.2 Fourier积分公式与Fourier积分存在定理