(完整版)(精心整理)图像的傅里叶变换
- 格式:ppt
- 大小:10.26 MB
- 文档页数:72
图像傅里叶变换
傅里叶变换(Fourier Transformation)是一种重要的数学工具,用于分析正弦波、矩形波和其他不同类型的函数。
最初,傅里叶变换
是用来解决热力学方程的,但是后来发展成多种多样的应用,其中之
一就是图像处理。
图像傅里叶变换是把图像中的所有信息转换为一组与波频成正比
的数字。
它通过傅里叶公式,把一副图像分割成它的频率和振幅组成
的多个部分,每一部分都表示图像中的一个特征。
图像傅里叶变换的
最重要的应用之一就是进行图像压缩,在这种压缩技术中,可以利用
傅里叶变换将某些低频成分合并,而抛弃某些高频成分,进而减小图
像的数据量,而且没有太多损失。
另外,图像傅里叶变换还可以用来
识别图像中的不同特征,可以用于图像检索、图像处理、图像分类等。
图像傅里叶变换是解决图像处理问题的一种重要手段,它能够使
我们提取图像像素、压缩图像数据和检测图像特征的能力大大提高,
已成为当今图像处理的重要工具。
常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。
5 傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。
14
15
16 a>0
17
变换本身就是一个公式。
实验三 图像的傅里叶变换一、 实验目的1.了解图像变换的意义和手段;2.掌握FFT 变换方法及应用;3.通过实验了解二维频谱的分布特点;4.通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。
二、 实验原理1 应用傅立叶变换进行图像处理傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。
通过实验培养这项技能,将有助于解决大多数图像处理问题。
对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
2 傅立叶(Fourier )变换的定义对于二维信号,二维Fourier 变换定义为:2()(,)(,)j ux uy F u v f x y e dxdy π∞∞-+-∞-∞=⎰⎰逆变换: 2()(,)(,)j ux uy f x y F u v e dudv π∞∞+-∞-∞=⎰⎰二维离散傅立叶变换为: 112()001(,)(,)i k N N j m n N N i k F m n f i k e N π---+===∑∑ 逆变换:112()001(,)(,)i k N N j m n N N m n f i k F m n e N π--+===∑∑三、 实验步骤及结果步骤:1将图像内容读入内存;2用Fourier 变换算法,对图像作二维Fourier 变换;3将其幅度谱进行搬移,在图像中心显示;4用Fourier 系数的幅度进行Fourier 反变换;5用Fourier系数的相位进行Fourier反变换;6比较4、5的结果,评价人眼对图像幅频特性和相频特性的敏感度。
7记录和整理实验报告。
结果:四、程序源代码clear;I=imread('');I=rgb2gray(I);subplot(3,3,1);imshow(I);title('');E=fft2(double(I));sfftI=fftshift(E); %正半轴部分和负半轴部分的图像分别关于各自的中心对称RR=real(sfftI);II=imag(sfftI);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 ;subplot(3,3,2);imshow(A);title('原图频谱');FE=abs(fftshift(E));subplot(3,3,3);imshow(log(FE+1),[]);%自然对数title('幅度谱');PE=angle(E); %向量E的相角subplot(3,3,4);imshow(PE);title('图像相位谱');IFE=ifft2(FE);subplot(3,3,5);imshow(log(1+abs(IFE)),[]); title('幅度谱的反变换');IPE=ifft2(exp(j*PE));subplot(3,3,6);imshow(abs(IPE),[]);title('相位谱的反变换');IE=ifft2(E)/225;subplot(3,3,7);imshow(IE);title('原图频谱反变换');。
图像处理1--傅⾥叶变换(FourierTransform)楼下⼀个男⼈病得要死,那间壁的⼀家唱着留声机;对⾯是弄孩⼦。
楼上有两⼈狂笑;还有打牌声。
河中的船上有⼥⼈哭着她死去的母亲。
⼈类的悲欢并不相通,我只觉得他们吵闹。
OpenCV是⼀个基于BSD许可(开源)发⾏的跨平台计算机视觉库,可以运⾏在Linux、Windows、Android和Mac OS操作系统上。
它轻量级⽽且⾼效——由⼀系列 C 函数和少量 C++ 类,同时提供了Python、Ruby、MATLAB等语⾔的接⼝,实现了和计算机视觉⽅⾯的很多通⽤算法。
OpenCV⽤C++语⾔编写,它的主要接⼝也是C++语⾔,但是依然保留了⼤量的C语⾔。
该库也有⼤量的Python、Java andMATLAB/OCTAVE(版本2.5)的接⼝。
这些语⾔的API接⼝函数可以通过在线获得。
如今也提供对于C#、Ch、Ruby,GO的⽀持。
所有新的开发和算法都是⽤C++接⼝。
⼀个使⽤CUDA的GPU接⼝也于2010年9⽉开始实现。
图像的空间域滤波:空间域滤波,空间域滤波就是⽤各种模板直接与图像进⾏卷积运算,实现对图像的处理,这种⽅法直接对图像空间操作,操作简单,所以也是空间域滤波。
频域滤波说到底最终可能是和空间域滤波实现相同的功能,⽐如实现图像的轮廓提取,在空间域滤波中我们使⽤⼀个拉普拉斯模板就可以提取,⽽在频域内,我们使⽤⼀个⾼通滤波模板(因为轮廓在频域内属于⾼频信号),可以实现轮廓的提取,后⾯也会把拉普拉斯模板频域化,会发现拉普拉斯其实在频域来讲就是⼀个⾼通滤波器。
既然是频域滤波就涉及到把图像⾸先变到频域内,那么把图像变到频域内的⽅法就是傅⾥叶变换。
关于傅⾥叶变换,感觉真是个伟⼤的发明,尤其是其在信号领域的应⽤。
⾼通滤波器,⼜称低截⽌滤波器、低阻滤波器,允许⾼于某⼀截频的频率通过,⽽⼤⼤衰减较低频率的⼀种滤波器。
它去掉了信号中不必要的低频成分或者说去掉了低频⼲扰。